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Abstract
The term “microplastic” refers to plastic particles with a length or diameter of less than 5 mm that do not easily decom-

pose in the natural environment and persist for a long time. These microplastics have adverse effects on the marine eco-

system when they enter the ocean. Therefore, it is necessary to estimate the amount of microplastics in rivers and sewers

and to block the outflow of microplastics in areas where they are found to be present at high levels. However, estimating

the amount of microplastics first requires detecting these particles, which is not an easy task to complete efficiently and

accurately due to their small size and the difficulty involved in distinguishing them from organic materials. The current

study therefore proposes a new model structure for microplastic segmentation. This model uses the multi-resolution

fusion module (MRFM), which is known to significantly contribute to the segmentation performance in HRNet, and this

model employs the EfficientNetV2B3 model as a backbone. We also utilize large convolution kernels to achieve better

feature extraction from the inputs of three resolution stages that are closer to the input image resolution. The experimen-

tal results showed that the model using two MRFMs outperformed the model using feature pyramid network in the head

network, with improvements of 3.28% in IoU and 2.67% in F1-score.
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I. INTRODUCTION

Plastic waste, which is found both on land and at sea, has

long been a focus of environmental concerns. However,

tiny plastic particles known as “microplastic” have more

recently been highlighted as particularly harmful pollutants

due to their effects on marine biota [1-3].

Not only are microplastics small in size, but they also
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exist in both pelagic and benthic ecosystems and are

ingested by a variety of marine organisms [4]. The issues

associated with microplastics are not only in the transfer

of pollutants through the food chain but also in the fact

that microplastics can absorb contaminants from water

and pass them on to other trophic levels through

bioaccumulation. Microplastics consist of toxic additives

and monomers and have a relatively large surface area to

volume ratio, making them particularly effective at absorbing

hydrophobic pollutants in water. They can absorb toxins

when ingested by phytoplankton and corals, and they can

produce toxic substances like phycotoxins, thus posing

direct and indirect threats to the health of a wide variety

of marine animals as well as humans [5, 6]. It is therefore

necessary to manage the detection and filtration of

microplastic particles in rivers, sewers, etc. It is expected

that deep learning can be used for the automation of

microplastic detection with sufficient performance. This

involves using semantic segmentation technology and

training a segmentation deep learning model using images

of microplastics filtered through mesh structures.

Microplastics can be categorized into two forms:

fragments and fibers. As depicted in Fig. 1(a), fragments

are generally small in size, while fibers are generally thin

and long, as shown in Fig. 1(b). Fragment-type microplastics,

which are radially shaped, can be easily distinguished by

a model that has been trained using a convolutional

neural network with an effective receptive field that

resembles a Gaussian distribution. However, fiber-type

plastics, which are narrow and long and thus exist over a

relatively wide area, pose difficulties for training and

accurate recognition. Plastics with high reflectivity and

metal mesh structures can also reflect light, further

hindering precise detection. To overcome these challenges,

we propose a new segmentation deep learning model that

effectively combines the feature extraction capabilities of

EfficientNet with the characteristics of the multi-resolution

fusion module (MRFM) from HRNet [7], which is capable

of classifying subjects at various scales.

In the next section, we introduce the U-Net, a neural

network model used for microplastic segmentation, and

we explain the effective receptive field and MRFM.

Section III presents the experimental results of five models,

including the proposed segmentation model, along with

an introduction to the microplastic dataset. The final

section provides a summary of the proposed method and

outlines future research directions.

II. MICROPLASTIC SEGMENTATION

Binary semantic segmentation is the process of separating

the areas of the background and the target object. Through

this process, the amount of microplastics in the sample

can be estimated based on the ratio of the microplastic

area to the total image area.

A representative neural network architecture that is

often used in binary semantic segmentation is the encoder-

decoder structure. In this structure, the encoder embeds

information that is useful for object recognition by

reducing the size and increasing the channels of the input

image, while the decoder outputs the prediction results by

expanding the embedded features back to the size of the

input image and reducing the channels.

In the encoder, a maxpooling layer is used to reduce

the size of the input image. The maxpooling layer outputs

the largest value within the kernel area, with the kernel

typically set to a height of 2, a width of 2, and a stride of

2. With repeated applications of the maxpooling layer,

the size of the feature map decreases significantly. As the

size of the feature map decreases, it becomes more

difficult to retain detailed information, such as very small

particles or thin shapes. This problem can be solved by

using a skip connection, which involves concatenating

features from the front layers of the encoder, which have

undergone fewer maxpooling layers, with features of the

same resolution in the decoder. U-Net [8] is composed of

an encoder and a decoder, as shown in Fig. 2, and it

includes a skip connection that copies and joins features

of the same resolution from the encoder to the corresponding

resolution in the decoder. The horizontal arrows in Fig. 2

represent the role played by the skip connections. The

feature pyramid network (FPN) as shown in Fig. 3 [9]

makes use of the idea of employing intermediate features

from the encoder in the decoder in a manner similar to U-

Net. However, it combines results embedded at various

Fig. 1. Input images on the left side along with ground truths
on the right side for the corresponding input image: (a) an input
example primarily containing microplastic fragments and (b) an
input example primarily containing microplastic fibers.
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sizes through concatenation, so it could potentially achieve

better performance than U-Net. The backbone network

used for feature extraction can also be replaced with

different models, thus allowing for performance or

computational load to be adjusted according to an

application’s particular needs.

The MRFM used in HRNet was developed to extract

features from various resolutions. As shown in Fig. 4, it

fuses high and low resolutions through upsampling and

convolution with a stride of 2. Since MRFM maintains

the resolution even after fusion, it is possible to design a

structure that repeats MRFM two or more times to extract

more features.

A. Effective Receptive Field

A receptive field is the input area that influences a

single value of the tensor resulting from a convolution

operation. Fig. 5 shows the receptive field after performing

two convolution operations consecutively with a 3×3

kernel size. Ultimately, a specific pixel in the third layer

is influenced by an area 5 pixels in height and 5 pixels in

width from the first layer. This can be visualized as

shown with the numbers in the first layer of Fig. 3. The

visualized values follow a Gaussian distribution, and the

more times they are applied, the greater the influence

they have on the final output value. The part of the

receptive field that actually influences the output is

referred to as the effective receptive field [10].

The size of the effective receptive field is directly

proportional to both the depth of the model and the size

of the kernels used. Among these two factors, increasing

the depth of the model leads to several issues such as

overfitting, increased computational costs, and problems

with gradient vanishing and exploding. Meanwhile, although

increasing the size of the kernel has the disadvantage of

increased computational costs, it can successfully increase

the effective receptive field without significantly increasing

the depth of the model. Therefore, the model proposed in

this paper applies large kernels of sizes 21×21, 15×15,

and 13×13 to the intermediate layer outputs of 512, 256,

and 128 pixels in the backbone network to effectively

increase the effective receptive field.

Fig. 2. U-Net architecture.

Fig. 3. FPN architecture.

Fig. 4. The architecture of the multi-resolution fusion module. Fig. 5. Illustration of receptive field and effective receptive field.
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B. Model Architecture

The model structure proposed in this paper, as shown

in Fig. 6, includes the EfficientNetV2B3 [11] as the

backbone network, along with the MRFM and other

convolution layers. This specific backbone network is

selected for its proven performance in a variety of

problems, including ImageNet classification. The head

network utilizes HRNet’s MRFM, which fuses feature

maps of five different resolutions. These fused feature

maps from five stages are concatenated into one tensor,

which then goes through three convolution layers. The

input image resolution is 512×512, and the outputs at

each downsample point of EfficientNetV2B3 are used as

inputs to the head network. As shown in the middle left in

Fig. 6, for the outputs of the backbone with heights and

widths close to the input resolution, i.e., 512, 256, 128

pixels, larger convolution kernels are used to better

extract features of thin and long objects like fibers. The

convolutions used here have large kernel sizes that have

been set to 21, 17, 15, and 13 pixels with the aim of

increasing the effective receptive field. Subsequently,

using the outputs of the backbone with heights and

widths of 64 and 32 pixels, the MRFM is used to fuse

outputs across all resolutions, ultimately extracting a

wealth of features. Finally, through concatenation, the

features of all resolutions are combined, and the result is

produced by final three convolutions.

III. EXPERIMENTS

A. Dataset

To achieve accurate identification and detection of

microplastics, it is important to remove organic materials

attached to the sample or on the surface of microplastics.

Therefore, it is essential to include a preprocessing step

wherein chemicals are used to remove organic matter

before detecting microplastics. After this treatment,

microplastic samples were obtained using a self-made

automated microplastic detection device (with five stages

of filter sizes: 500, 250, 134, 63, and 25 µm). Microplastic

sample image data were measured using a stereo

microscope, and images were repeatedly taken at the

same position after dividing the filter mesh into nine to

36 sections and then fixing it at a constant position.

The obtained image data, comprising images of

microplastics trapped in the mesh at various resolutions,

were used for training and evaluation. The dataset contains

13,711 images of size 512×512×3, of which 10,959

images were used as training data and 2,752 were used as

test data.

B. Experimental Results

Since there was only a small amount of image data,

data augmentation techniques were applied. The data

augmentation techniques applied included a 50% probability

of a random horizontal flip, 80% probability of Cutout

[12], random rotation between 0° and 360°, 50% probability

of Gaussian random blurring with a 9×9 size, random

contrast adjustment between 80% and 120%, random

saturation adjustment between 50% and 150%, and

random brightness adjustment between -20% and 20%.

Alongside the U-Net model, four additional models

were used in the experiment to sum to a total of five

models: one using EfficientNetV2B3 pretrained on

ImageNet [13] as the backbone with FPN in the head

network, and three proposed models where MRFM was

applied once, twice, or three times, respectively, in the

head network. The training was conducted for 50 epochs,

and the performance measures compared were intersection

over union (IoU), recall, precision, and F1-score. The

experimental results are summarized in Table 1. In the

table, the number of parameters for each model is shown

as number of parameters, while the computational cost

for a single prediction is presented in FLOPs. The

proposed models have a similar number of parameters to

U-Net but a lower computational cost compared to the

Backbone+FPN model. In terms of performance, the

proposed models consistently show better results in IoU,

precision, recall, and F1-score compared to U-Net and

the Backbone+FPN model. Among the proposed models,

the Backbone+MRFM×2 model, which repeats MRFM

twice in the head network, showed the best performance

in terms of all aspects. The Backbone+MRFM×3 model,

which repeats MRFM three times, showed lower

performance in IoU, precision, and F1-score compared to

the Backbone+MRFM×1 model, which only uses MRFM

once.

Fig. 7 shows the segmentation prediction results for

each model on actual input examples containing Fiber

and Fragment. Fig. 7(a) shows the input example whereas

Fig. 7(b) shows the Ground Truth image, where the white

areas on a black background represent microplastics.

Fig. 7(c) presents the prediction result using the U-Net

Fig. 6. Overall structure of the proposed segmentation model.
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Fig. 7. Comparison of input image and ground truth with the outputs of the five models: (a) input image, (b) ground truth, (c) prediction
result of the U-Net model, (d) prediction result of the Backbone+FPN model, (e) prediction result of the Backbone+MRFM×1 model, (f )
prediction result of the Backbone+MRFM×2 model, and (g) prediction result of the Backbone+MRFM×3 model.

Table 1. Experimental results comparing five models in terms of IoU, recall, precision, and F1-score shown together with FLOPs and the
number of parameters of each model

Model FLOPs (×10
9
) # Parameters (×10

6
) IoU (%) Recall (%) Precision (%) F1-score (%)

U-Net 55.841 7.85 58.73 77.36 80.88 79.08

Backbone+FPN 220.119 4.51 59.86 80.87 81.62 81.25

Backbone+MRFM ×1 104.513 7.45 62.15 81.03 83.82 82.40

Backbone+MRFM ×2 112.029 8.86 63.14 82.19 85.71 83.92

Backbone+MRFM ×3 119.546 10.27 60.87 82.19 81.43 81.81
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model, while Fig. 7(d) shows the prediction result of the

model with EfficientNetV2B3 as the Backbone and FPN

in the head network. Fig. 7(e)–7(g) each display the

prediction results of models applying MRFM once,

twice, and three times, respectively, in the head network

of the Backbone. As can be seen in the results presented

in Fig. 7, models using MRFM in the head network can

more accurately separate fibers and fragments compared

to the U-Net or Backbone+FPN models. Moreover, among

the models with MRFM applied in the head network, the

one repeating this module twice was observed to separate

fibers more accurately than the models repeating it either

once or three times.

IV. CONCLUSION

Herein, we have proposed microplastic segmentation

models that employ EfficientNetv2B3—which is known

to be effective for problems like ImageNet classification—

as the backbone and utilize one, two, or three MRFMs

from HRNet in the head network. Compared to the U-Net

model or models using FPN in the head network, our

models showed superior performance in terms of IoU,

precision, recall, and F1-score. The model applying two

MRFMs in the head network exhibited the highest

performance. The model with three MRFMs showed

lower performance than the model with just one MRFM,

aside from in recall. 

The proposed segmentation model in this study can be

extended to instance segmentation for tasks involving the

distinction between fragments and fibers and the counting

of objects.
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