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Abstract
To this point, there has been extensive research investigating human-robot motion retargeting, but the vast majority of

existing methods rely on sensors or multiple cameras to detect human poses and movements, while many other methods

are not suitable for usage on real-time scenarios. The current paper presents an integrated solution for performing real-

time human-to-robot pose retargeting utilizing only regular monocular images and video as input data. We use deep

learning models to perform three-dimensional human pose estimation on the monocular images and video, after which

we calculate a set of joint angles that the robot must utilize to reproduce the detected human pose as accurately as possi-

ble. We evaluate our solution on Softbank’s NAO robot and show that it is possible to reproduce promising approxima-

tions and imitations of human motions and poses on the NAO robot, although it is subject to the limitations imposed by

the robot’s degrees of freedom, joint constraints, and movement speed limitations.

Category: Real-Time Systems
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I. INTRODUCTION

Human-robot motion retargeting has been established

as an important part of the learning-from-demonstration

paradigm in the robotics field, where it is often applied to

train or develop motor function in humanoid robots. However,

most existing solutions based on motion-retargeting rely

on the usage of either single/multiple cameras observing

the human demonstrator [1] or sensors to detect the source

human pose [2].

Moreover, many of the existing solutions are not fit for

usage in real-time scenarios due to excessive computational

resource demands and other constraints.

Motion tracking and retargeting has applications in

multiple fields, with the most common being in the robotics

field for robot motion [3, 4]. Other applications in recent

years have appeared in the fields of computer animation,

such as for generating realistic human-like motion on

different bodies. Motion tracking and pose estimation has

also seen some applications, including in monitoring

motor function development in children [5]. 

Similarly, these technologies have been applied in the

field of sports for monitoring the performance and training

of athletes [6] and for monitoring and preventing injuries

in athletes [7]. Designing an appropriate solution for

human motion tracking and retargeting requires solving

many challenges from the computational perspective, with

even more challenges to be solved if not using sensors, as

is the focus of the current work. Not having access to

sensors or multiple cameras means that it is necessary to
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extract meaningful and accurate three-dimensional (3D)

information about human poses from two-dimensional

RGB images.

In [8], the authors explain that this is itself a difficult

problem due to depth ambiguities, inconsistent metrics

(e.g., the need to estimate real-world measures such as

millimeters instead of using image pixels), and the non-

linear nature of human dynamics and motions. Moreover,

the extracted 3D information has to then be further

processed to calculate relevant data for the robot’s motion,

such as estimating joint angles.

The contributions of our present work are as follows: 

● We trained a deep learning model to perform 3D

human pose estimation from the two-dimensional

image and video data.
● We developed our own inverse kinematics algorithm

to obtain the corresponding joint angles to utilize for

the robot.
● We developed an interface to stream the obtained

joint angles to a physical NAO robot, which will

essentially replicate the movements of a human

demonstrator from either an image, a video, or a

camera’s video feed.

In Section II, we explore and discuss similar solutions

to our problem. In Section III, we explain the main

concept involved in developing our proposal, such as the

chosen deep learning model, the inverse kinetics method,

and the interface to the NAO robot. In Section IV, we

detail all the experiments that we carried out and their

results to prove the feasibility of our proposal. Finally, in

Section V, we describe the main conclusions of this work

and future directions.

II. RELATED WORKS

Several previous works have focused on motion

retargeting from a human to a humanoid robot.

A. Solutions that Utilize Sensors

Some of these works utilize sensors to first obtain the

pose of the human and then apply diverse techniques for

retargeting.

One of the most well-known approaches for humanoid

motion retargeting was performed in [2]. They developed

a solution using one Kinect sensor and two strength

sensors to obtain the movements performed by a person,

after which a Gaussian process latent variable model,

dynamic time warping (DTW), and variational hetero-

scedastic Gaussian process regression algorithm were

applied to perform the retargeting from a human pose to

the joints of a NAO robot.

Another interesting approach is that which was

developed in [9]. This approach involved using a Kinect

sensor to obtain RGBD images of a human performing a

pose and then introducing those images into their

parametric model called HUMROB, which has the shape

of the target skeleton but keeps the dimension of the body

as similar as possible to those of the corresponding

human. The joint’s angles are obtained directly from the

final model and then are sent to the humanoid robot.

Another notable approach was developed in [10]. In

that study, the skeleton extraction was performed by a

Kinect sensor, and the retargeting was manually done

using linear algebra to calculate the angles in the robot

coordinate space. The main focus of that work was on

allowing the robot to perform complex motion sequences

without losing balance. To that end, they applied clusteri-

zation and optimization to calculate the ideal sequence of

angles and achieve a smoother motion without losing the

original motion properties.

Our approach herein differs from these previous

solutions because we are not using sensors to obtain the

human position, as we instead focus uniquely on

monocular images and videos as well as human pose

estimation to obtain the pose. Our method for retargeting

utilizes analytic geometry and linear algebra, and it

therefore shares some similarities with  [10] according to

the field of study, but not for the specific approach.

B. Solutions that Utilize Human Pose Estimation

Meanwhile, there are also approaches that involve

applying human pose estimation combined with other

techniques.

One remarkable approach was developed in [11]. Their

work involved the use of 3D pose estimation to obtain the

pose of a person. In particular, two poses of the same

person were obtained from different points of view,

which were then fused and used to obtain the angles,

which were finally directly transferred to the robot that

has the same skeletal structure as the human.

Another approach developed in [12] involved the

construction of a whole vision-based system that included

a human pose estimation model and a series of analytical

procedures to retarget the angles into a single armed robot.

The novelty of our approach relies in using one camera

point that only uses one camera point of view for pose

calculation, and that we present a slightly different solution

for the arm angle calculation and also include the head

movement.

III. RETARGETING HUMAN POSES TO THE
NAO ROBOT

Three-dimensional motion tracking and retargeting

from monocular images and videos is a challenging
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problem due to the need to extract 3D information from

2D data. Managing multiple degrees of freedom for limbs

and joints, and achieving smoothness between individual

movements and maintaining good computational performance

are some of the specific difficulties that have to be dealt

with when performing such a task.

A. Preliminary Concepts

Next, we present some of the common key concepts

related to motion retargeting from monocular image and

video data.

1) Human Pose Estimation

According to [13], the task of human pose estimation

aims to estimate the configuration of human body parts

from some given input data, which is typically in the

form of either images or videos. Human pose estimation

allows for the extraction of geometric information

pertaining to the analyzed human body, which can then

be used for a wide variety of applications and purposes,

as is the case with human-robot motion retargeting.

Human pose estimation methods tend to be categorized

by authors, such as [9], into two main categories: marker-

based methods and markerless methods. The former

requires the person to wear sensors or some kind of

hardware attached to keypoints on their body to obtain

precise marker positions, while the latter only utilizes

external sensors (most commonly a single camera) and

often requires the use of deep learning models and

algorithms to actually extract the keypoints data from the

body.

Moreover, human pose estimation may also be

performed in three dimensions. That is, the 3D pose of a

person can be estimated from a 2D image or video.

Popular methods for this often begin by utilizing 2D pose

estimation, to obtain the given keypoints in the image,

and then utilize a deep learning model or some method to

“lift” the keypoints from the image and generate the data

for the third dimension.

2) Human-Robot Motion Retargeting

Motion retargeting consists of the transformation of a

posture or motion from one hierarchical structure of

joints to another target structure. In the specific context

of the present work, human-robot motion retargeting is

explained by [14] as the process of a robot mimicking

human-like motion as accurately as possible (Fig. 1). In

[9], the authors explain two of the main difficulties

associated with motion retargeting: geometric and

topologic differences.

Geometric differences: Differences in the size and

length of the different body parts or limbs of the human

and target robot. It is typically not too difficult to handle

geometric differences on their own when performing

motion retargeting, as long as the joint structure (topology)

remains similar or equal between the source and target

bodies. A common approach in such cases is to employ

inverse kinematic solvers or similar algorithms to estimate

the angles for each joint from their given location.

Topologic differences: Refers to the differences in

hierarchical joint structure between the source human and

the target robot; i.e., the robot is not of humanoid

structure. Such cases are much more difficult to handle as

no proper mapping exists by default, so it has to be

generated or learned through different means. In the

context of this work, we are dealing with very little

topologic differences due to the usage of the NAO robot,

but it is still important to keep them in mind.

B. Method

To perform motion retargeting of human poses from

monocular images and videos to the NAO robot, we

propose using an off-the-shelf 3D pose estimator to

extract the 3D pose data from the input image, video, or

camera feed. For the latter cases, pose smoothing is also

performed across frames to reduce noise and account for

small inconsistencies in pose detection.

The extracted pose data must then be processed to

obtain the angles for each joint on the target NAO robot,

which we will solve by utilizing direct analytical geometry

methods. The procedure followed in our approach is

shown in Fig. 2.

1) 3D Human Pose Estimation

To perform 3D Human Pose Estimation, we utilize

Google’s Mediapipe Pose solution. Mediapipe is a library

that contains several machine learning solutions for

media processing. The solution used is called BlazePose

(Fig. 3), which is a lightweight convolutional neural

network for 3D human pose estimation that is targeted to

mobile devices and developed by the Google Research

Fig. 1. Example of retargeting of human joint structure: (a)
source skeleton and (b) target skeleton.
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Team [15].

This model is ideal for our purposes, as it achieves

outstanding performance using CPU alone, to the extent

that it can handle high frame per second videos and even

approach the performance of other state-of-the-art

solutions using GPU [16]. The model approach involves

using heatmaps and regression to match the keypoint

coordinates. The topology of the estimation contains 33

keypoints as shown in Fig. 4.

2) Calculating Angles from the Detected Pose

To begin, we developed a simple demonstrative

example of motion retargeting utilizing 2D human pose

estimation alone, along with trivial vector operations to

calculate only shoulder and elbow roll from 2D keypoints.

We obtained satisfactory results for two dimensions

and decided to attempt to generalize it further into three

dimensions, which proved to be conceptually challenging,

but mostly feasible.

For the explanation of our method, we will employ the

definitions from Table 1.

Generating the reference axes: The first step of our

method is to generate some referential axes for the

detected pose that we will later use to calculate some

joint angles on the detected pose.

Initially, we calculate the pose’s right axis  as the

simple subtraction of the location of the left shoulder

from right shoulder.

Then, the pose’s forward axis  will be calculated as

the average of the normal vectors of the triangles that can

be formed from the torso keypoints.

Every tuple of three adjacent torso keypoints forms a

well-defined triangle T (i.e., T = Hl, Hr, Sr). Thus, the

normal vector for each of the triangles can be calculated

as the cross product of the vectors  (the

triangles in Fig. 5). The forward vector  is assigned to

be the average of the four torso normal vectors.

Finally, the up axis can be calculated as the cross-

R

R Sr Sl–=

F

T3 T2–  T1 T2– 

F

Fig. 2. Flowchart detailing every step in our approach.

Fig. 3. BlazePose results [15].

Fig. 4. BlazePose 33-keypoint topology [15].
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product of the right vector  and forward vector  as

follows:

Shoulder pitch and roll: It tends to be difficult to

correctly estimate the shoulder angles from detected

keypoints, because a composed rotation is needed to

properly represent the human shoulder (pitch and then

roll, or vice-versa).

We calculate the shoulder pitch as the angle between

the vectors  and  when projected onto the plane

generated by the right-axis vector  (that is, the plane to

which  is orthonormal) (Fig. 6).

Then, to calculate shoulder roll, first we have to

calculate the plane over which the shoulder roll will

perform its movement. The orthogonal vector that defines

this plane can be simply calculated as the cross-product

of the side-projection of  with the reference lateral

axis (right vector).  is then projected onto said plane,

after which the shoulder roll can finally be trivially

calculated as the angle between  and the reference

lateral axis (both of which are projected onto the

shoulder-roll plane) (Fig. 7). 

Elbow roll: Elbow roll may be calculated as the

simple angle between the elbow-shoulder, which is equal

to , and the elbow-wrist vector . Given vectors

 and , the angle between them is calculated by

taking their cross-product as the reference vector for the

angle sign (Fig. 8).

Elbow yaw: Initially, we tried to calculate the elbow

yaw by transforming the reference forward and right

vectors  and  with the successive relative transform

of the shoulder and elbow joint, after which we

calculated the elbow yaw by projecting the elbow to wrist

vector  onto the plane of the transformed vectors.

However, we decided against implementing this

method directly as it would likely be very error-prone due

to its heavy dependence on the precision of the estimation

R F

U R F=

VSE F

R

R

VSE

VSE

VSE

VES– VEW

VES VEW

F R

VEW

Table 1. Symbol definitions (assume all direction vectors are
taken with unit-size, even if not specified)

Symbol Definition

Sr Location of the detected right shoulder joint

Hr Location of the detected right hip joint

Er Location of the detected right elbow joint

Wr Location of the detected right wrist joint

Sl Location of the detected left shoulder joint

Hl Location of the detected left hip joint

El Location of the detected left elbow joint

Wl Location of the detected left wrist joint

Direction vector from an arm's shoulder to elbow

Direction vector from an arm's elbow to wrist

Direction vector from an arm's wrist to its index finger

Direction vector from an arm's wrist to its pinky finger

Referential front-axis vector for the detected pose

Referential right-axis vector for the detected pose

Referential up-axis vector for the detected pose

VSE

VEW

VWl

VWP

F

R

U

Fig. 5. Torso triangles for forward-vector calculation. Fig. 6. Projection of  and  onto ’s plane.VSE F R
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of the locations and transformations of the shoulder and

elbow joints, and it would also require more complex

vector and matrix operations.

Therefore, we ended up reformulating our idea in a

very similar manner, but while utilizing the plane

generated by the shoulders and elbow joint (that is, the

plane defined by vectors  and , respectively) instead.

To actually calculate the angle of the vector 

relative to the aforementioned plane, it is easier to

calculate the angle between the shoulders-elbow and

shoulder-elbow-wrist planes (Fig. 9).

The angle between two planes is equivalent to the

angle between their normals, so the final elbow yaw can

be simply calculated as the angle between the vectors

 and . Even though it was derived

using a different approach, this resulted in a formulation

equivalent to the one utilized by [17].

Wrist yaw: For the calculation of the wrist yaw, it is

possible to employ a very similar method to that used for

the elbow yaw. We utilize the shoulder-elbow-wrist plane

as the base reference, and we calculate a vector normal to

the palm of the hand by utilizing the hand’s index and

pinky finger joints. Specifically, the normal vector of the

back-side of the palm can be calculated as the cross-

product of  and . With this, we can trivially

calculate the angle between the hand-plane and the

shoulder-elbow-wrist plane as the angle between their

normal vectors, in the exact same manner as was

explained for the elbow yaw calculations.

Head pitch and yaw: To calculate the corresponding

head angles, we will generate a frontal vector for the face

of the detected person. This vector is generated as the

mean of two vectors: the normal vector of the triangle

formed by the nose and eyes as well as the normal vector

of the triangle formed by the nose and both endpoints of

the mouth.

With the face frontal vector, we can simply compare

this to the torso frontal and calculate the angles projected

onto the lateral plane (pitch) and the “floor” plane (yaw).

Once again, the lateral plane is defined simply by the

right vector that was initially calculated for the detected

pose. The “floor” plane is also defined by the calculated

up-vector.

Averaging over frames: The last step, after having

calculated all the joint angles from the detected poses, is

to calculate an average of the new set of angles with the

angles obtained from previous frames. We found that, in

practice, averaging the angles over the last three frames

yields a good balance of smooth and accurate motion

replication, so this is the value we utilize by default.

However, in the experiments section, we attempt to use

different numbers of frames for the average (from 1 to 4)

and explore the corresponding effect on the accuracy of

pose replication.

R VSE

VEW

R VSE  VEW VSE– 

VWP VWI

Fig. 7. Plane formed by  and , and the angle formed by
the two vectors.

R VSE

Fig. 8. Elbow roll calculation with angle between  and .VEW VSE–

Fig. 9. Elbow yaw calculation. Visualization of the elbow plane
and shoulder-elbow plane (purple) and the shoulder-elbow-
wrist plane (orange).
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IV. EXPERIMENTS

In this section, we present and explain the experiments

we have performed with our proposal, how to replicate

them, and the results we have obtained.

For the experimentation, we recorded a couple of

motions that involved movement of the upper body

joints. Table 2 lists each motion used for our approach.

The videos themselves can be found on the following

Google Drive folder: https://drive.google.com/drive/folders/

12O1Vt3utwt01d1WI3Y-MRD8rKdvulQFW?usp=share_link.

1) Experimental Protocol

The experiment was performed on a 16 GB RAM Ryzen

3 3100 4-Core 3.59 GHz PC. The data utilized for the

experimentation was manually constructed and consisted

of five monocular videos in which a person performs an

upper body motion. All the utilized code can be found in

the following GitHub repository: https://github.com/

oscarburga/mrmime2.

2) Performance Evaluation

To evaluate the performance of our solution, we have

to consider four different main elements that will

contribute to the execution time: reading the data, running

the pose estimation model, calculating the angles for the

NAO robot, and sending the angles to the NAO robot.

For our purposes, we skip measuring the time it takes

to read the input data (i.e., the image, frame of a video, or

frame of a webcam stream), as well as the time it takes to

send the pose information to the robot. Therefore, we

only measure the time taken to perform pose detection

with Mediapipe’s BlazePose, as well as the time taken to

generate the angles from the detected pose data. This

information is calculated per-processed-frame, and we

present the average obtained for each of the videos in

Table 3.

3) Experimental Comparative Evaluation

The target of our experimentation is to evaluate the

performance of our approach in terms of accuracy and

optimize it to achieve better results. To be able to

measure the accuracy of our approach, we utilize a metric

called Fréchet distance [18]. This metric was initially

proposed to measure the similarities between polygonal

curves while considering the order of points, and it has

been utilized by several authors to measure the

effectiveness of their motion retargeting solution [1, 19].

A smaller Fréchet distance indicates a stronger similarity

between curves.

In our approach, the curves that are compared are the

arms after the motion retargeting is applied. These are

defined by three joints: the shoulders, elbows, and wrists.

The head is not included because there is no translation

involved in its motion. To be able to estimate the overall

effectiveness in three dimensions, we evaluate each plane

independently is an n-dimension approach that can be

used to obtain the Fréchet distance, but other authors tend

to make comparisons using only two dimensions [1, 19].

We experienced some difficulties when trying to

design fair comparisons for our solution with those

presented by other authors, because there are not many

open approaches that utilize human pose estimation on

monocular videos or images. Most of the solutions utilize

more than one camera or sensors to obtain human joint

positions, which benefits their results and also makes and

then average each of the results. The data compatibility

made it harder for us.

We were not able to find any existing open solution

that utilized the NAO robot and worked only with

monocular images, but there were a couple of solutions

that used Fréchet distance as an evaluation metric. Even

though the environment and complexity of those

approaches differ from ours, they will help us define the

Fréchet distance boundaries of a good solution. The

authors in [1] developed a motion retargeting solution for

a YUMI robot and obtained an overall Fréchet distance of

0.13 after evaluating several motions. The authors collected

popular works and compared their Fréchet distances with

the one they obtained. Overall, the Fréchet distances of

the mentioned works were between 0.14 and 0.20, and

this range can be used as an indicator of good results [1].

We executed our approach using five monocular

videos in which a person performs an upper body motion

focused on the arms. Our variable on each execution of

the five motions was the number of frames used to

Table 3. Average time taken to process each frame (unit:
second)

Average time (s)

Pose Angles Total

Motion 1 0.02949 0.00188 0.03137

Motion 2 0.02938 0.00184 0.03122

Motion 3 0.02965 0.00185 0.03122

Motion 4 0.02944 0.00201 0.03145

Motion 5 0.02942 0.00192 0.03134

Table 2. Motions used for experimentation

Action performed

Motion 1 Waving of arms

Motion 2 Raising of arms

Motion 3 Arms stretching forward

Motion 4 Arms stretching to the sides

Motion 5 Rotation of elbows
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calculate the averages for the angles generated from the

last detected pose. We measured the Fréchet distance

between the curves of the arms independently for each

arm and every frame and calculated the mean of all these

results. The obtained results are presented in Table 4.

The results our approach obtained after the experi-

mentation process were not optimal compared to those

obtained by other works. As can be seen in Table 4, the

Fréchet mean for each video is greater than 0.43, which is

inferior to those of other state-of-the-art solutions.

There are several factors that can help explain these

results. One of them is related to the human joints

calculation, which involves using human pose estimation

based on monocular video alone, and this involves a lack

of depth information when obtaining the human pose,

specifically that the elbow placement was typically in

front of the person’s torso even if their arms were

straight. All the monocular videos were taken from a

perspective in front of the person, which made the depth

calculations harder.

We also noticed that the right shoulder presented a

slight forward inclination that caused additional differences

after the motion retargeting was performed. This is

evidenced in the higher Fréchet distance for the right

arm, as can be seen in Table 4.

It is worth mentioning that, while we obtain the lowest

Fréchet distance while using only one frame on average,

in practice we can empirically observe that the movements

tend to be smoother and less violent when averaging

between 2–4 frames. The differences in Fréchet distance

are also small when compared among these numbers of

frames for averaging, so we can consider using 2–4

frames for averaging if we are interested in achieving a

smoother, more natural motion over maximizing accuracy.

V. CONCLUSION AND PERSPECTIVES

In the present work, we proposed using 3D human

pose estimation from monocular images and videos in

combination with direct analytical geometry methods to

perform motion retargeting from a human person demon-

strator to the NAO robot. We implemented the proposed

solution while utilizing the BlazePose 3D human pose

estimation model from Google’s Mediapipe library, and

we also wrote our own geometric primitives and

calculations mostly from scratch. Finally, we empirically

evaluate our solution and performed both an analysis of

the results utilizing the Fréchet distance metric as well as

meaningful qualitative observations identifying the

weaknesses and strong points of our solution.

We conclude that performing human-robot motion

retargeting from monocular images and videos can be

successfully achieved through utilizing computer vision

methods for performing 3D pose estimation, as well as

through the use of direct analytical geometry calculations

to obtain the angles of the robot.

At present, having to rely on the correctness of the

poses detected by the 3D pose estimation model is a

significant weakness of approaches like ours. Depth

ambiguities and body occlusions are very detrimental to

the quality of the results. However, this only means that,

as more research and development is conducted in the

field of 3D pose estimation, approaches like ours will

become passively better and more reliable over time.

We strongly believe that motion retargeting from

monocular images and videos is, and will continue to be a

huge step toward making robotics more accessible for

both users and programmers alike. As such, for future

works, we encourage fellow researchers to continue

building motion retargeting solutions based on 3D human

pose estimation from monocular imagery, not only to

achieve better retargeting accuracy metrics but also to

start branching out into more meaningful tasks and

applications: leg motion replication (locomotion, walking,

etc.), object manipulation (grabbing and letting go), etc.

It would also be ideal to explore more beneficial

applications of motion retargeting in different fields:

healthcare, sports, tasks automation, and so on.

Table 4. Comparative table of results by human pose estimation framerate

Number of frames to average

1 frame 2 frames 3 frames 4 frames

Lt. arm Rt. arm Lt. arm Rt. arm Lt. arm Rt. arm Lt. arm Rt. arm

Motion 1 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44

Motion 2 0.43 0.47 0.43 0.47 0.43 0.47 0.43 0.47

Motion 3 0.43 0.44 0.43 0.44 0.43 0.48 0.43 0.48

Motion 4 0.43 0.43 0.47 0.43 0.43 0.47 0.43 0.47

Motion 5 0.42 0.42 0.47 0.42 0.42 0.47 0.42 0.47

Overall mean 0.43 0.44 0.45 0.44 0.43 0.47 0.43 0.47
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