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Abstract
At present, automatic image matting methods primarily focus on portraits and hard edge targets, which gives them a lim-

ited ability to deal with low-resolution, complex, and blurred non-portrait targets. To address these issues, the current

paper proposes an automatic image matting method called TGMatting. This method automatically optimizes Trimap

generation through three modules: the U2S-Net pre-segmentation module, which is based on the U2-Net network,

enhances segmentation by removing null convolutions and reducing oversampling interference; the BGTrimap module,

which is also based on U2-Net, refines edge regions using optimized dilation-erosion methods and Manhattan distance

for seed point sparsification, thus ensuring accurate region growth and background information removal; and in the last

module, edges are transformed into mixed-pixel regions using Sobel operator and non-local-means denoising binariza-

tion, and a Trimap map is automatically generated by combining OTSU segmentation with pre-segmentation results, thus

achieving fully automated processing. Finally, a transparency mask is obtained via FBAMatting, which enables interac-

tion-free automatic matting. The experimental results demonstrate that the improved U2S-Net network reduces MAE by

0.003 on the SOD-Spider test set, enhances accurate detection of significant regions in low-resolution images compared

to U2S-Net, and reduces BGTrimap's sum of absolute difference value by about 10% compared to other Trimap genera-

tion methods in IFMatting and KNN Matting.
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I. INTRODUCTION

Image matting, the purpose of which is to finely segment

the foreground and background, has a wide range of

applications in the field of data enhancement as well as

the film and television special effects industries [1]. Unlike

other image segmentation methods, semantic segmentation

[2] and salient object detection (SOD) [3] can achieve

coarse segmentation of foreground and background with

0/1 classification, while image matting, and specifically

the image matting method used in one study that is based

on the Trimap [4], can achieve segmentation effects for

details as fine as hair. This fine segmentation is key to

achieving precise results, but it can be more difficult to

obtain the trimap. Therefore, this paper strives to realize

an automatic image fine-matting method based on image

matting that does not require user interaction.

For general image segmentation, although semantic

segmentation and saliency target detection—in addition

to other coarse segmentation methods—can achieve 0/1

classification of the foreground and background of the

image, they fail to produce a smooth transition at the

boundary [4]. Recent years have seen significant advance-

ments in segmentation networks based on large models.

Examples of such advancements include Segment Anything

Model (SAM) [5], OpenSeeD [6], CLIP-Driven Universal

Model [7], DSC-Net [7], and other segmentation models,

all of which are still coarse segmentation methods.

Although they have achieved better results in panoramic

segmentation and can understand semantics to a large

extent, they cannot capture fine detail information such

as hairs. However, image matting is the only method that

has been shown to be capable of achieving automatic fine

segmentation. It mainly relies on predicting the trans-

parency of mixed pixel regions, with its core being the

auxiliary input of the Trimap [4]. However, obtaining a

Trimap is challenging, as it typically requires manual

interaction based on the original image. Such methods

entail heavy workloads and cumbersome operations, and

the need for manual interaction limits the ability to

implement automatic image matting [1].

The existing Trimap generation methods involving

human interaction mainly rely on traditional image pro-

cessing methods. For instance, Yao [8] utilizes dynamic

threshold segmentation to generate a Trimap based on

human annotations. Li et al. [9] employ super-resolution

to predict three regions of the image based on strokes and

set a threshold to generate the Trimap. While these

methods can retain more details, they obtain limited

amounts of information from annotations. Consequently,

the generated Trimap may contain significant interference

from the background region, thus hindering automatic

matting.

Automatic image matting methods mainly comprise

Trimap-based methods and end-to-end training methods.

The automatic Trimap generation methods are based on

pre-segmentation results, which are used as a priori

information in automatic Trimap generation. Therefore,

the key to achieving image matting without human

interaction lies in the automatic generation of pre-

segmentation and the Trimap. The end-to-end training

method integrates Trimap generation into the overall model

architecture of image matting, ultimately establishing a

separate Trimap generation module. This module

automatically utilizes Trimap information during the

matting process to achieve interaction-free automation

[10]. Some studies have achieved automatic Trimap

generation and image matting based on it. For portrait

images, automatic Trimap generation is mainly achieved

either through pre-segmentation based on three classi-

fications of portraits or by detecting portrait information.

For hard edge targets, automatic Trimap generation

primarily involves pre-segmentation followed by expansion

and erosion. Ran and Feng [11] used the pre-segmentation

result of semantic segmentation as well as mapping from

0/1 to 0/255 to generate the Trimap using a fixed

threshold to achieve automatic portrait matting. However,

the quality of the Trimap obtained using this method is

poorer for more complex portrait foregrounds, and it can

only target portraits, which limits its applicability. In an

approach focusing on hard edge non-portrait images,

Wang et al. [12] employed semantic segmentation to pre-

segment the foreground of the car. Through expansion

and erosion, they obtained the Trimap. As the edges of

the car image belong to hard edges, simple morpho-

logical processing can yield better results. However, this

is not applicable in the complex image edges' goal of

unrestricted semantics. Some methods aim to achieve the

automatic generation of semantically unrestricted Trimap

without interaction by mainly relying on pre-segmentation

using traditional image processing methods. For instance,

Henry and Lee [13] generate the Trimap by combining

pre-segmentation results with FCM clustering, while

Gupta and Raman [14] generate the Trimap by over-

segmenting the image and combining it with k-means

clustering. Cho et al. [15] generate the Trimap by expanding

the pre-segmentation results and then employing dynamic

brushes and downsampling. However, most of the above

methods require processing times ranging from more

than 10 seconds to 1 minute while also being less

effective for images with low resolution and complex

backgrounds, which ultimately makes them unsuitable

for automatic matting tasks.

The aforementioned matting methods, which rely on

automatic Trimap generation, are implemented through

pre-segmentation techniques with the ultimate aim of

providing rudimentary binary classification details. At

present, the principal pre-segmentation approaches

encompass semantic segmentation and saliency target

detection. However, semantic segmentation methodologies

rely on extensive training data, which constrains their

performance and scalability [16]. Conversely, saliency
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target detection methods tend to delineate significant image

components [3], which proves advantageous in mitigating

redundant background details while also offering greater

adaptability in single-objective dichotomous classifications,

ultimately rendering them more suitable for subsequent

Trimap generation. Early saliency target detection strategies

typically rely on fully convolutional networks [17].

However, with the advent of U-Net [18], U-Net-based

algorithms, as exemplified by U2-Net devised by Qin et

al. [19], demonstrate superior results, which can be

attributed to their nested U-Net architecture, which is

adept at capturing contextual nuances. By contrast,

modified GAN-cAED [20] leverages a novel generative

adversarial network (GAN) approach for image fusion,

although the segmentation efficacy of this model may

suffer from insufficient training data or inaccurate labeling.

SThy-Net [21] encompasses multiple hyperparameters,

which complicates the quest for optimal configurations

and heightens the intricacy and challenge of its

implementation. Meanwhile, DeepDR Plus [22] harnesses

convolutional neural network (CNN) models for feature

extraction from fundus images, yet its predictive outcomes

merely represent best estimations that are based on

existing data and model capabilities. A novel fuzzy

extensive learning system introduced by Ali et al. [23]

offers promising prospects, although channel extraction

is needed to maximize its segmentation effectiveness, and

its limited generalization ability poses challenges in

extending its application to complex image segmentation

tasks.

Matting methods based on end-to-end training have

become an important research topic in recent years.

However, most of these methods focus on end-to-end

portrait matting. For instance, the Alibaba team proposed

semantic human matting (SHM) [10], which achieves

end-to-end portrait matting by predicting rough classi-

fication information of the human body using the T-Net

module to obtain a Trimap. Another method, MODNet

[24], performs automatic matting of human images by

predicting rough information of the human body within

the network and then distinguishing between mixed pixel

regions and foreground backgrounds.

There have been fewer studies examining end-to-end

matting of non-human nature images. Li et al. [25]

proposed an end-to-end matting network, AIM, which

predicts the generalized Trimap of any image containing

humans and animals in the form of a unified semantic

representation. The learned semantic features guide the

matting network to focus on the transition region through

an attention mechanism. In another study, Li et al. [26]

proposed a scanning and focusing matting network (GFM)

that employs a shared encoder and two independent

decoders to collaboratively learn the two tasks. This

method utilizes three semantic and transition region

representations to achieve end-to-end image matting. An

animal matting dataset (AM-2k) was also created to

facilitate the end-to-end matting task.

However, such methods have higher requirements for

image saliency. In particular, it is not possible for most

tiny, non-significant targets to be captured in the

foreground, which results in either a blank segmentation

foreground or the presence of a large residual. To achieve

better results, it is necessary to use more samples of non-

significant fine segmentation of such targets for training,

which incurs an extremely high labeling cost.

The deep image matting method proposed by Xu et al.

[4] utilizes deep learning models to achieve accurate

segmentation of images, thereby capturing subtle details

in the image and accurately extracting foreground

objects. However, it typically requires the use of a large

amount of annotated data in training the deep learning

models, which requires manual annotation of foreground

objects and backgrounds, thus incurring high costs and

lengthy training times. The method proposed by Yu et al.

[27] can also accurately extract the boundaries between

the foreground and the background, thus achieving high-

quality image cutout effects. However, there are also

issues that arise with high training costs and complexity.

In summary, the current Trimap-based automatic matting

methods and end-to-end matting methods primarily focus

on portraits or hard edge objects, which poses limitations

when matting non-portrait targets with low resolution and

complex edges [28]. Precise segmentation methods for

non-human images also face problems such as long

training times and high complexity. In particular, matting

soft-edge targets such as insects, spiders, and other non-

human subjects prove more challenging due to their

complex edges. These targets are also nocturnal hunters

and easily startled, which makes image acquisition

difficult; images of these subjects often suffer from

deficiencies in clarity, resolution, and other aspects. Most

of these targets feature long limbs, spindles, and other

intricate organs, often with dense hair, thus causing them

to be classified as complex soft-edge objects [31].

Therefore, it is difficult to achieve automatic matting for

such images with low resolution or complexity, or with

blurred foreground edges.

To address these issues, the current paper proposes an

automatic image fine-matting method that combines the

improved U2-Net network and automatic optimization of

Trimap generation. First, based on U2-Net, we enhance

the effectiveness of the model with low-resolution images

and construct the U2S-Net pre-segmentation module.

Then, using the pre-segmentation results, we employ

region growing algorithms and Sobel operator edge

detection to swiftly generate the high-quality Trimap.

Finally, we utilize the image matting method to complete

the automatic matting process. Using this approach, we

successfully achieve automatic fine matting of low-

resolution non-portrait images with complex and blurred

foreground edges.
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II. TGMATTING AUTOMATIC MATTING METHOD

In this paper, to address the problems described in the

previous paper, an automatic matting network based on

Trimap Generates Matting Network (TG-Matting) is

constructed that consists of the U2S-Net pre-segmentation

module, BGTrimap automatic Trimap generation module,

and FBAMatting matting module, as shown in Fig. 1.

The U2S-Net pre-segmentation module is based on the

saliency target detection method, which generates the

corresponding saliency map by calculating the saliency

value of each pixel in the image, and this reduces the

interference caused by the excessive downsampling

based on U2S-Net. Meanwhile, the BGTrimap module

obtains the edge region by optimizing the expansion and

erosion algorithm, removes the background redundant

information by using the seed point set with Manhattan

distance constraints, detects the edge by using the Sobel

operator, and then transforms it into a mixed-pixel region

by using NML denoising binarization. Finally, it obtains

the Trimap based on the results of the pre-segmentation

and Otsu thresholding results. The matting module uses

the FBAMatting method to obtain the final transparency

mask. The spider species segmentation dataset SOD-

Spider and the spider species matting dataset Alpha-

Spider are used for validation. Most of the above data

suffer from problems such as low resolution, complex

and fuzzy foreground edges, etc. The current paper

conducts a comparative study in which low-resolution

images are defined as images with a foreground target

area lower than 200×200 pixels or less, and where

foreground targets account for 20% or less of the overall

pixels. This provides a better way to validate the effect of

the TGMatting method on this type of data.

A. U 2S-Net Pre-segmented Network

Pre-segmentation is the first step of the automatic

matting method described in this paper. It aims to obtain

the rough classification information regarding foreground

and background in the image, wherein each pixel point of

the image is classified in a binary manner. This paper is

based on the U2S-Net network and constructed using the

saliency target detection U2S-Net pre-segmentation module.

Saliency target detection methods generally use VGG

or ResNet networks that have been trained on the

ImageNet dataset as the backbone network, which is used

to replace the coding module to extract deep features.

However, these networks are designed for image

classification, and the semantic features they extract are

different from the global and local information needed

for segmentation tasks. This makes it difficult to obtain

the feature information in regions where saliency is not

obvious. Meanwhile, the U2-Net model constructed by

Qin et al. [19] does not use a backbone network to extract

features but instead uses the traditional U-Net splicing

structure to obtain contextual information. This structure

can better learn the semantic information in the training

images and reduce the interference of the traditional

backbone network in feature extraction. This also allows

it to effectively improve the training speed and final

results of the single semantic pre-segmentation work.

Fig. 1. TGMatting.



TGMatting: Automatic Image Matting Based on Trimap Generation

Jianming Wang et al. 97 http://jcse.kiise.org

However, the codec of U2-Net employs six layers of

RSU modules (Residual U-blocks), in a manner similar

to the U-Net structure, for stacking. This structure

downsamples the image to 1/24 of the original image,

resulting in a low-resolution image. However, excessive

downsampling can lead to a loss of too much detail

information in the bottom layer. Simultaneously, the

model splices the output of each RSU module in the

decoding layer, jointly calculates the loss of each layer to

obtain the final loss, and outputs the final result in the top

layer RSU module. However, when applying this method

to low-resolution images as was done in the current work,

it is difficult to distinguish the saliency value of the entire

image, which results in a poor final output. This can also

cause significant interference, as illustrated in Fig. 2.

The resolution of the input image in Fig. 2 is 240×204

pixels. Outputs a to f represent the results obtained by the

decoder from the low layer to the high layer. However,

outputs a and b lose many details, which can interfere

with the final result when spliced. The bottom layer of

the cavity convolution module downsamples the image

from 1/12 to 1/24; it also calculates the output image loss

during this process. While this method allows for deeper

feature extraction in image coding and decoding, for low-

resolution images, the model lacks a valuable reference

that can assist in computing the final output loss. This

results in a loss of significance prediction in the final

output region. When used with low-resolution images

with complex and blurred foreground edges, the U2-Net

method can easily lead to a loss of key details.

To address the aforementioned issues, this paper

enhances the U2-Net model, which serves as the pre-

segmentation module in this study to ensure accurate

coarse segmentation results. The specific structure of the

constructed U2S-Net is depicted in Fig. 3.

The overall structure of U2S-Net is based on U2-Net,

which employs a nested U-Net structure. However, U2S-

Net excludes the sixth layer of the RSU module, as it is

replaced with a null convolution layer, a pooling layer,

and a ReLU function. The RSU structure of the sixth layer

is consistent with that of the preceding and subsequent

layers. Instead of the RSU module from the bottom layer,

the RSU module from the fifth layer is used to reduce

model depth, which enhances the segmentation efficacy

of each layer and improves the obtained results,

particularly for low-resolution images after final splicing.

The loss function of U2-Net aggregates the losses of

the six RSU modules in the decoding layer to form the

final loss. The training loss of the enhanced U2S-Net with

reduced depth is as follows:

. (1)

Here, unlike in the original loss function, the number

L wmlm wsls+
m 1=

M

=

Fig. 2. Output of each layer U2-Net.

Fig. 3. U2S-Net model structure.
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of layers M in RSU is 5. Moreover, lm denotes the loss of

each layer’s output, while wm signifies the weight that is

assigned to each layer. Lastly, ls and ws, respectively

represent the loss and the weight of the final result after

splicing.

B. BGTrimap AutoTrimap Generation Module

As the core method of automatic matting in this paper,

the Trimap module needs to accurately classify the

foreground, background, and mixed pixels of an image. It

is difficult to obtain an accurate Trimap, and it typically

requires manual annotation, particularly for images with

low resolution, complex details, and blurred foreground

edges. To address these challenges, this paper presents an

automatic Trimap generation algorithm based on edge

growth without human interaction - BGTrimap. The

overall flow of the algorithm is illustrated in Fig. 4.

Based on the pre-segmentation results, BGTrimap first

uses the optimized expansion-corrosion method to identify

the edge region. Then, it automatically derives seed points

from this region. Initially, Manhattan distance is used to

sparsify the set of edge seed points, which facilitates

more precise region growth and eliminates redundant

background information. To mitigate the impact of low

image resolution on background information, the Sobel

operator is applied to detect edge details. The gradient

information is then transformed into mixed- pixel regions

through NML denoising binarization. Finally, in a process

aided by Otsu segmentation and the pre-segmentation

results, the Trimap is generated without human intervention.

The first step of the BGTrimap algorithm is the

acquisition of edge regions. Most of the blended pixel

regions in images are concentrated at the junction of the

foreground and the background. Therefore, BGTrimap

focuses on this region, which effectively enhances the

algorithm’s effectiveness and speed. The edge region is

often expanded using the erosion algorithm while

adjusting the kernel size. For low-resolution images, even

if the kernel size of the erosion operation is minimized to

2×2, there will still be a loss of foreground information.

For example, consider the spider’s legs; the target area is

only 2 to 3 pixels wide, as depicted in Fig. 5, where the

white area represents the result of erosion and the grey

area signifies the difference between the expansion area

and the erosion area. With a kernel size of 2×2, there is a

significant loss in the foreground features of the spider’s

leg region, which causes the entire leg to be inaccurately

labeled as an edge region. This reduction in accuracy

compromises the acquisition of mixed pixel regions in

subsequent processing.

To address this issue, this paper first upsamples the

original image to an appropriate resolution and then

applies an optimized expansion and erosion algorithm to

delineate the edge region. Initially, the faster bilinear

interpolation method is used to upsample the binary map.

Then, the expansion and erosion operations are conducted.

Fig. 6 depicts the effect of this expansion using bilinear

interpolation. The details of the process are as follows:

through bilinear interpolation, Fig. 6(a) is upsampled to

Fig. 6(b), after which Fig. 6(c) is obtained by mean

downsampling Fig. 6(b) to restore the results, which

Fig. 4. BGTrimap overall process.

Fig. 5. Expansion corrosion of low-resolution images: (a) original
figure and (b) trimap.
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ultimately reveals no discernible difference from a binary

map (Fig. 6(a)). This shows that there is no loss of grayscale

information in the upsampling and downsampling processes.

Consequently, the expansion and erosion algorithm can

be applied to Fig. 6(b) to derive a high-quality edge

expansion region.

However, with traditional expansion-corrosion methods,

it is necessary to customize the kernel size based on

different images or by fixing semantics, such as by

uniformly using smaller kernels for expansion-corrosion in

scenarios like cars to acquire edge regions. Nevertheless,

for low-resolution complex edge targets, where the

target's proportion in the image and the complexity of the

edge contour vary, it is not feasible to directly acquire the

edge region through simple expansion-corrosion operations.

Therefore, this paper proposes an improved expansion

and erosion method based on an adaptive kernel. This

method automatically adjusts the size of the expansion

and erosion kernels by detecting the proportion of

foreground pixels as a whole and determining whether

the image data belongs to a small target image. Once the

kernel size has been determined, the traditional expansion

and erosion operations are performed, after which the

resolution is restored through downsampling using the

mean value method. The formula used to determine the

expansion-corrosion kernel size is as follows:

, (2)

where Ikernel is the dimension of the kernel, max(W,H) is

the number of pixels on the longest side of the pre-

segmentation result, F is the number of foreground pixels

in the pre-segmented image, and X is the number of

pixels in the overall image. Parameter β controls the

expansion ratio of the expansion corrosion. Through

experimental comparison studies, β is obtained as 5, which

indicates a 1/5 expansion.

The optimized expansion corrosion algorithm is based

on a coarse segmentation mask to obtain the edge

grayscale map, and linear operations are executed on the

original image to extract the edge region in the RGB

channels. Since most of the mixed pixel regions in the

image correspond to the edge region, the goal of

obtaining the edge region is to reduce the subsequent

computation time of different algorithms while also

minimizing interference from redundant foreground and

background information. The calculation formula used in

this process is as follows:

, (3)

where I represents a single pixel point, A is an RGB

image, and i, j denote the position of the pixel point. I(i, j)

represents the pixel value of the pixel point located at

column j and row i in image I.  denotes the set of

pixels in the dilated region, while  denotes the set

of pixels in the eroded area. This operation is performed

across all channels of a three-channel RGB image.

After obtaining the edge region GB in the initial step,

the second step is to remove redundant background

information in the GB image; we use the seeded region

growing (SRG) algorithm for this purpose. The SRG

algorithm is beneficial because it uses the expanded and

eroded edge region as the growth range and selects outer

edges as seed points. This approach effectively reduces the

computational burden of rejecting background information

while also enhancing accuracy. The key aspects of the

SRG algorithm are seed point selection (Seeds) and the

choice of the growth threshold. Initially, BGTrimap

expands and erodes the boundary for pre-processing,

while also collecting seed points Sd. However, the seed

points obtained through this method are overly dense,

which leads to poor background rejection when using a

low threshold during growth. In this paper, we use

Manhattan distance to sparsify the seed point set Sd,

which is defined as follows:

, (4)

, (5)

where  denotes the Manhattan distance between

the pixel points of I1 and I2, and the set of seed points

after thinning is denoted as Sm. The aforementioned

method makes it possible to automatically obtain seed

points without requiring interaction.

Region growing is performed using the set of seed

points Sm. During region growing, pixels are expanded at

each seed point, and those that are smaller than the

threshold are added to the set. Subsequently, the sets

corresponding to all seed points are merged. Due to the

small threshold value and the large number of seed

Ikernel
1000

max W,H 
--------------------------

F
3

2
---

X
-------=

GB I i, j 
i, j D

 I i, j , I A
i, j E

–=

i, j D
i, j E

d I
1

, I
2  Ii

1

Ij
2

– Ii
1

Ij
2

– , I
1

, I
2

Sd+=

Sm I i, j , I Sd
d I

1
, I
2

  3=

=

d I
1

, I
2 

Fig. 6. Bilinear interpolation method for obtaining edge region.
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points, the segmented image can better retain the

foreground and mixed pixel regions while eliminating

background redundant information, all without requiring

interaction.

Fig. 7 shows the comparison of seed points before and

after sparsification. It can be observed from the detailed

areas that the seed points that were obtained directly by

expanding the edges for region growth contain more

redundant information in the foreground and mixed pixel

regions. For example, in Fig. 7, the background between

the forelimbs of the spider is misclassified as a foreground

and mixed pixel region, which is not conducive to

subsequent classification of the mixed region. Sparsification

using the Manhattan distance removes redundant pixel

information in the background region while accurately

retaining foreground and mixed pixel regions.

Building upon the aforementioned steps, edge detection

is then used to enhance the details within GB. The mixed

pixel region typically encompasses numerous complex

edge textures, which can be refined through edge

detection methods to extract more detailed information

based on edge gradients. Subsequently, the edge details

are converted into regions to extract mixed pixel

information. The edge detection algorithm employed in

this paper utilizes the Sobel operator, which yields coarser

edges, thereby enhancing edge detail consistency while

also maintaining faster processing speeds.

The Sobel operator detects edges in the image by

computing the grayscale values. For each pixel, both

horizontal and vertical convolution operators are applied

to perform the convolution operation. The formulations

for these two convolution operators are as follows:

, (6)

, (7)

where A represents the original image, and Gx and Gy

respectively represent the horizontal and vertical gradient

images. The output is constrained as a grayscale image

with 16-bit symbolic shaping. Subsequently, gradients in

both directions are combined, after which the 16-bit

image is converted to an 8-bit image to obtain the overall

gradient image G. The formula used for gradient

combination is as follows:

. (8)

The obtained edge gradient map contains numerous

details, which primarily consist of point and line infor-

mation. To obtain specific mixed pixel regions, these

details need to be segmented into regions. To address this

issue, BGTrimap initially employs the non-local average

denoising (non-local means [NLM]) algorithm to denoise

the image. The NLM algorithm has been shown to be

effective in noise reduction while preserving texture

details, ultimately resulting in superior outcomes. Mini-

mizing the loss of details during denoising operations can

significantly enhance the accuracy of subsequent image

binarization.

The purpose of binarization is to distinctly differentiate

edge regions from non-edge regions based on the NML

denoising results. In this study, it was found that a

threshold of 50 for binarization effectively eliminates

redundant background while retaining more details. The

specific formula that was used is as follows:

. (9)
Gx

1–   0  +1

2–   0  +2

1–   0  +1

A=

Gy

+1  +2  +1

0    0   0

1–   2–   1–

A=

G Gx
2

Gy
2

+=

Z i, j 
255, G i, j  50
0, G i, j  50




=

Fig. 7. Comparison of different seed points.
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Experimental comparative studies showed that better

results are achieved by defining the threshold value as 50.

If the grayscale value of pixel  is greater than 50,

threshold value will be set to 255; if it is smaller than or

equal to 50, threshold value will be set to 0. The resulting

image, Z, still contains interference from the boundary

between the foreground of the GB image and the

transparent region, which needs to be subtracted. The

specific process used to obtain the mixed pixel region is

shown in Fig. 8.

Performing Sobel edge detection on the edge region

yields its edge gradient. As can be seen in the detailed

region, the gradient map contains abundant information

about edge details, which can be used as preprocessing

features for the mixed pixel region of Trimap. However,

the gradient map also includes numerous scattered points,

which can primarily be attributed to the fact that the

background's redundant information was not removed.

By employing the NML algorithm, the entire gradient

map is treated as a denoising region. This denoising

operation effectively eliminates redundant scattered points.

Subsequently, the gradient map is binarized. By treating

the entire gradient map as a grayscale image, along with

discrete points, it can be converted into regions consisting

of points, lines, and other areas, ultimately resulting in a

cleaner and more accurate mixed pixel region.

Afterwards, BGTrimap also uses the maximum interclass

variance method (Otsu) to refine the aforementioned

results and generate Trimap. The aim is to confine the

foreground region in Trimap, thereby preventing the

mixed pixel region from including parts of the foreground.

Otsu belongs to the adaptive thresholding segmentation

algorithm, which operates based on the grayscale charac-

teristics of the image.

Assuming the existence of a threshold, TH, that divides

all pixels of an image into the following two categories:

regions smaller than the threshold D1 and regions larger

than the threshold D2. The mean grey value of each region

is m1 and m2, respectively, and the probabilities that a

pixel will be classified into the two regions are p1 and p2.

The threshold selection formula for Otsu is as follows:

. (10)

The threshold value that maximizes  in the above

equation serves as the Otsu threshold. The image can

then be segmented using this threshold value.

Through the aforementioned processes, we obtain the

following images: MS, which represents the background

removal of the GB image using the region growing

method; MB, which denotes the edge detection after

blending pixel regions; and MO, which is obtained

through Otsu algorithm threshold segmentation. We then

combine MS, MB, and MO through pre-segmentation

constraints to generate Trimap. In the MO and pre-

segmentation results, M is found to constrain the genera-

tion of Trimap. The black regions in MS and MO represent

the foreground and part of the background, while the

black region in MB indicates the edges of the blended

pixel region. The specific formulas are defined as follows:

   , (11)

  ,

(12)

, (13)

where GBM is the grayscale label map of GB, where

G i, j 


2

p1p2 m1 m2– 2=


2

T i, j  0

MB i, j  255= , M i, j  0                    =
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


=
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Fig. 8. Mixed pixel area acquisition.
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white represents the foreground, black represents the

background, and grey represents the boundary region.

The results obtained through the aforementioned linear

operations make it possible for us to accurately classify

foreground, background, and mixed pixels to generate the

Trimap map.

In summary, the algorithm steps of BGTrimap outlined

in this paper are as follows:

Input: RGB image I, Coarse segmentation result M. 

Output: Trimap diagram T.

Step 1: Read image M and utilize the optimized swell-

corrosion algorithm to derive the swollen region

D and corroded region E.

Step 2: Obtain the edge pixel region GB from D and E

using Eq. (4).

Step 3: Generate the initial seed point set Sd from the

edge of region D, sparsify Sd using the Manhattan

distance (Eq. 5), and obtain the final seed point

set Sm.

Step 4: Grow the region of GB based on the fixed

threshold seed point set Sm to acquire MS.

Step 5: Conduct Sobel operator edge detection on

region GB to produce the gradient map G.

Step 6: Apply NML denoising on the gradient map G,

then use binarization to derive the edge-mixed

pixel region MB.

Step 7: Perform Otsu threshold segmentation on GB to

obtain MO.

Step 8: Utilize the linear operations described in Eqs.

(11)-(13) on MS, MB, and MO to derive the final

Trimap diagram T.

III. EXPERIMENTAL RESULTS AND ANALYSES

The TGMatting automatic image matting method

proposed in this paper comprises the U2S-Net pre-

segmentation module, the BGTrimap automatic Trimap

generation module, and the final matting module.

Therefore, the effectiveness, advantages, and disadvantages

of this method are verified by conducting comparative

experiments for U2S-Net, BGTrimap, and the final

matting module.

A. Data Sources and Pre-processing

To evaluate the performance of TGMatting on low-

resolution images with complex and blurred foreground

edges, spiders were selected as experimental subjects.

Obtaining a large number of high-quality live images of

spider species is challenging, as most existing images

suffer from issues such as low resolution, complex

foreground edges, and blurring. Spiders also exhibit

characteristics such as body hairs, long and thin limbs,

and complex morphology, which makes them suitable for

verifying the method. In this study, we constructed an

image dataset of spider species through web collection,

specimen shooting, and field image collection. The spider

dataset used in this paper was created by selecting spider

images from two public datasets, ImageNet [30] and

Animal-10 on Kaggle, and combining them with images

captured in the field along with specimen images to form

the Spider-1100 dataset, ultimately consisting of 1,100

original images. The distribution table of spider families

is presented in Table 1.

To validate the pre-segmentation and matting results,

this paper constructs the SOD-Spider coarse segmentation

dataset and the Alpha-Spider fine segmentation test set

based on the Spider-1100 dataset; these datasets are used

to evaluate the performance of the matting method.

1) SOD-Spider Dataset

In the field of image segmentation, there is a shortage

of datasets that are exclusively dedicated to spider species,

making it challenging to train high-quality models using

pre-segmentation methods. SOD-Spider is one of the few

segmentation datasets that has been specifically designed

for spiders: It comprises 1,000 training images and 100

test images, where the foreground and background of the

pre-processed images are manually classified using

Photoshop. The foreground is labeled as white, while the

background is labeled as black, resulting in the generation

of the ground-truth (GT) map. Several images from the

SOD-Spider dataset are depicted in Fig. 9.

Due to the small size of the spider subjects, in most

scenes depicted in spider images, they constitute a small

proportion of the overall image, often resulting in lower

resolution. In the training set, a significant portion of the

SOD-Spider dataset consists of images with a unilateral

resolution of 300 to 400 pixels, which aligns with the

resolution distribution that is found in many current

datasets [31]. The SOD-Spider test dataset, Spider-test,

also includes low-resolution images with complex and

blurred foreground edges to evaluate the model's segmen-

tation capability on such images [32]. It encompasses

spiders from at least 28 families and 40 genera, thus

Table 1. Spider-1100 dataset distribution

Spider categories Number of images

Thomisidae 200

Theraphosidae 100

Missulena 100

Araneidae 250

Salticidae 100

Sparassidae 50

Lycosidae 100

Other 200
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providing better coverage of spiders with various mor-

phological features. This helps address issues related to

the model's limited generalization ability, and ultimately

enhances its robustness.

2) Alpha-Spider Dataset

In this paper, 60 spider images with various features

from the Spider-1100 dataset are selected to construct the

Alpha-Spider spider image matting test dataset. This

dataset is used to evaluate the performance of the matting

method. Image processing professionals use transparency

masks to finely segment the spider's hairs and other

details based on the original images. Several images from

the Alpha-Spider dataset are presented in Fig. 10. The

first row shows the original images, while the second row

displays the processed transparency masks. The dataset

includes images that have been captured at different

distances and features various types of edge details.

3) Alphamatting Dataset

Most current research has assessed the performance of

image matting methods using the Alphamatting dataset

[33], which is test data that is publicly available on the

Image Matting Evaluation website. The Alphamatting

dataset comprises around 30 images with mixed pixel

regions exhibiting various characteristics, such as portraits,

hair, and dolls, making it suitable for method evaluation.

However, due to its limited size, the dataset is not adequate

for training purposes. Since there is no suitable criterion

for directly evaluating Trimap generation, many methods

opt to first generate Trimap using the Alphamatting

dataset and then derive transparency masks using a fixed

image matting method. The quality of Trimap generation

is then assessed based on the quality of the resulting

transparency masks.

In this paper, the BGTrimap algorithm is implemented

as the Trimap generation module of TGMatting. Experi-

ments are tested on the Alphamatting public dataset to

verify the Trimap generation effectiveness of the

BGTrimap algorithm. Fig. 11 shows some images from

the Alphamatting dataset.

Fig. 9. Selected images of the SOD-Spider dataset.

Fig. 10. (a-f ) Alpha Spider dataset images.
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B. U2S-Net Pre-segmentation Module Results
and Analysis

The purpose of pre-segmentation is to accurately classify

foreground and background regions. Pre-segmentation is

achieved in this paper using the salient target detection

method, which typically involves a salient target detection

dataset containing original images as well as corres-

ponding salient region labels. This dataset can be used for

both model training and testing. The method described in

this paper is trained and tested using the public dataset

DUTS and the SOD-Spider spider dataset that has been

constructed in this study.

1) Evaluation Criteria

Commonly used evaluation metrics for salient target

detection include mean absolute error (MAE) [34],

precision-recall (P-R) curves, and F-measure [35].

The MAE directly calculates the mean absolute error

between the saliency map and the ground truth map of the

model output, which is calculated using the following

formula:

, (14)

where W is the width of the image, H is the height of the

image,  denotes the significance result, and 

denotes the ground truth value.

The P-R curve refers to the probability that the

predicted value of the model is in the GT, while the R rate

refers to the probability that the significant region in GT

will still be significant in the model prediction. It

involves comparing the model (M) and GT pixel by pixel

to calculate the precision and recall values. The specific

formula used for this process is as follows:

 
. (15)

Sometimes, neither the precision rate nor the recall rate

can fully capture the performance of the model; hence it

was proposed that the F-measure be used. The F-measure

represents the weighted harmonic mean (WHM) of

precision and recall, with non-negative weights denoted

by β. The F-measure is calculated using the following

formula:

. (16)

A value of 0.3 is commonly used for  2, implying that

more emphasis is placed on precision than recall. This

suggests that accuracy is considered to be more important

than completeness. This choice is made because, when

the model labels all pixels as significant regions, the

precision rate will be equal to 100% whereas the recall

rate will be very low.

2) Analysis of Coarse Segmentation Results of U
2
S-

Net Module

In the experiments, the improved U2S-Net is compared

with U2S-Net and U2-Netp [20]. Since the parameter

count of the improved method in this paper is 82.62M,

which is only half of that of U2-Net, another method with

a smaller parameter count—U2-Netp—is chosen from the

U2-Net paper for simultaneous comparison and validation.

The U2-Net method, the improved U2S-Net, and U2-Netp

are all trained using the DUTS-TR training set, and they

are finally tested on the DUTS-TE test set with each

evaluation index calculated. Moreover, to compare the

effect of the improved U2S-Net method and U2-Net on

low-resolution small target datasets, we compare the

performance of these two methods on the SOD-Spider

dataset in this paper. The values of MAE and F metrics

are listed in Table 2. Further, Fig. 12 depicts the P-R

curves and F metric curves of the methods on both the

DUTS-TE and Spider-test test sets.

The results indicate that, on the DUTS-TE test set, the

evaluation metrics of U2S-Net are slightly lower than

those of U2-Net. This is primarily attributed to the

diverse range of saliency targets that is present in DUTS-

TE. Moreover, the U2S-Net model has a lower parameter

MAE
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Fig. 11. Partial images from the Alphamatting dataset.
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count of 82.6M than U2-Net's parameter count of

176.8M. This makes it challenging for the model with

fewer parameters to effectively learn complex saliency

regions. However, the improved U2S-Net outperforms

the model with fewer parameters, U2-Netp, across all

evaluation metrics. Moreover, in terms of processing

time, the average processing time of U2S-Net per image

is approximately 10% faster than that of U2-Net. This

suggests that the improved U2S-Net achieves similar

efficiency and effectiveness compared to the original

method. As a result of the comparison using the SOD-

Spider dataset, the MAE, max Fβ, and mean Fβ values of

U2S-Net are still found to be better than those of the U2-

Net method, despite having fewer parameters. Specifically,

the MAE is reduced by 0.003, while max Fβ and mean Fβ

are both improved by approximately 0.02. The Spider-

test dataset includes images with low resolution, small

targets, and complex and blurred edges, so the results

demonstrate the advantage of the U2S-Net method on

such images.

Table 2. SOD results of the models

Model Training set Test set MAE Max Fβ Mean Fβ

U2-Net [19] DUTS-TR DUTS-TE 0.044 0.873 0.848

SOD-Spider Spider-test 0.034 0.873 0.843

U2-Netp [19] DUTS-TR DUTS-TE 0.054 0.852 0.763

U2S-Net DUTS-TR DUTS-TE 0.048 0.855 0.828

SOD-Spider Spider-test 0.031 0.899 0.862

Fig. 12. Comparison of P-R curve and F measurement curve: (a) precision, (b) F-measure in DUTS, and (c) precision and (d) F-measure in
SOD-Spider.
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In the Spider-test test dataset, specific comparisons

between U2S-Net and U2-Net in low-resolution images

are shown in Fig. 13.

From left to right, Fig. 13 shows the original image,

the outputs of U2-Net's high-level, middle-level, and

bottom-level layers, and the outputs of U2S-Net's high-

level, middle-level, and bottom-level layers, respectively.

The resolutions of these five test images are all below

200 pixels, while the proportion of spider pixels in the

images is less than 20%. In the low-resolution images,

U2-Net's predictions for saliency values of the foreground

and background are unclear. The bottom layer predicts

almost all pixels as non-significant regions, while the

middle layer fails to distinguish specific significant and

non-significant regions. Moreover, the top layer predicts

that most significant regions are non-significant. Due to

the reduction in model depth, U2S-Net performs better in

predicting saliency for images with different resolutions.

Its outputs are improved across all levels, and especially

improved for low-resolution and small target images.

This improvement is particularly crucial for saliency

target detection in low-resolution images with complex

and blurred foreground edges, such as those of spider

species.

The results of the quantitative comparison presented

above indicate that the improved U2S-Net achieves better

results. This improvement primarily stems from the fact

that the downsampling and joint loss computation of U2-

Net are less effective for very low-resolution images. By

reducing the burden on the model's bottom layer, U2S-

Net alleviates excessive downsampling, which leads to

significant improvements in performance for low-resolution

images. Although the downsampling method aims to

increase the receptive field of the model while reducing

memory and computation requirements, it requires the

use of multiple multi-scale features to achieve optimal

results. While U2-Net combines encoding and decoding

layers to fuse results from the same scale RSU modules to

leverage multi-scale information, excessive downsampling

in low-resolution images results in the loss of crucial

features in the model's bottom layers, which leads to

feature confusion. Although increasing the receptive field

can to some extent enhance multi-category segmentation

capabilities, excessive downsampling is unnecessary for

single-category segmentation tasks. The U2S-Net method

proposed in this paper reduces the model's reliance on

bottom-layer features by replacing the underlying RSU

model, thereby improving computational speed while

maintaining effectiveness.

C. BGTrimap Module Trimap Generation
Results and Analysis

1) Evaluation Criteria

The common evaluation metric for image matting

methods is the sum of absolute differences (SAD) [31].

Fig. 13. SOD results in low-resolution spider images.
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SAD is a measure that is frequently used in regression

analysis, where it is primarily employed to assess the

extent of data changes. A smaller value indicates better

performance. The specific formula is as follows:

, (17)

where H is the height of the image, W is the width of the

image,  is the mask generated by the algorithm,

and  is the ground truth transparency mask. SAD

is the most commonly used and intuitive evaluation metric

in image matting methods. It is frequently employed in

Trimap generation tasks to assess the quality of the

transparency mask that has been obtained [1].

2) BGTrimap Generation Results

To begin with, the Trimap generation efficacy of

BGTrimap is assessed on the images from the Alpha-

matting dataset to subjectively analyze the quality of the

generated results. The intention of doing this is to

observe and compare the Trimap generation performance

of the method across images with varied characteristics.

Some of the generated results for the Alphamatting

dataset are depicted in Fig. 14. The first column represents

the original image, and the second column shows the

SOD model generated by U2S-Net trained on the public

dataset DUTS-TR. Meanwhile, the third column displays

the manually produced Trimap, and the fourth column

exhibits the Trimap generated by BGTrimap. The findings

show that the method proposed in this paper performs

exceptionally well on this dataset, as it demonstrates

results comparable to those obtained by the manually

produced Trimap. The Trimap generated by BGTrimap

effectively distinguishes hard edges of mixed pixels and

hairy regions, as evidenced by the intricate details.

Notably, subtle foreground regions such as buttons and

zippers are accurately classified, thereby showcasing the

method's superior performance over manually produced

Trimaps.

The results that have been generated for the Alpha-

Spider dataset are presented in Fig. 15. The second

column, labeled SOD, displays the results of saliency

target detection generated by U2S-Net trained on SOD-

Spider. Spider species present significant challenges in

Trimap generation due to their complex morphological

features, including small limbs and spinners. The dataset

also features low resolution and complex fuzzy edges.

The results obtained from BGTrimap demonstrate

effective detection of edge-mixed pixels in spider images.

For instance, the results in Fig. 15 demonstrate improved

classification accuracy on the hair edge of the tarantula in

(1) and the hard edge of the black widow in (2). The

algorithm minimizes uncertainty while ensuring precise

delineation of foreground and background regions. In

images (3) and (4), the hairs and spines of the spider are

classified with high accuracy, even in tiny soft-edge

regions.

SAD x, y  mask x, y  gt x, y –
y 1=

H


x 1=

W

=

mask x, y 
gt x, y 

Fig. 14. Alphamatting generated results.
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3) Quantitative Comparison

The Alphamatting dataset is currently considered to be

the most authoritative dataset for image matting testing.

This paper conducts a quantitative comparison with

existing methods on Alphamatting to evaluate the effec-

tiveness of the BGTrim algorithm proposed herein. To

provide a comprehensive assessment, this study compares

BGTrim with several typical Trimap generation algorithms

that do not require interaction. These algorithms include

the fusion-based approach proposed by Li et al. [36], the

clustering-based approach described by Henry and Lee

[13], the edge-based approach introduced by Shahrian et

al. [37], the patch-based approach detailed by Aksoy et

al. [38], and the expansion-based approach used by Gupta

and Raman [14].

Since the quality of the Trimap affects the performance

of image matting methods, we first assess the different

Trimaps generated by different methods. Two traditional

image matting methods, KNN Matting [39] and Infor-

mation Flow Matting (IFMatting) [38], are selected for

this comparison. Transparency masks are generated from

the results of each Trimap generated using these two

matting methods, and the SAD values between the

transparency masks and the ground truth maps are

calculated. The selection of traditional matting methods

aims to mitigate dataset interference on model performance

in deep learning, thereby improving model robustness

and reducing bias in performance across different data

types. This approach ensures that more informative results

are obtained. Specific results are presented in Table 3.

The SAD comparison of the IFMatting method is

presented in the first section of Table 3. It can be

observed that the BGTrimap method proposed in this

paper achieves the lowest SAD values in GT02, GT17,

and GT22, indicating superior performance on images

with relatively few edge-mixed regions. This can be

attributed to the effectiveness of the region growing

algorithm, particularly in handling images with significant

color variations, as it performs better in removing

redundancy from the background. Conversely, the clustering

Trimap generation method yields the best results in

GT05, GT09, and GT18, which is attributed to its ability

to accurately classify large opaque regions. The pruning

Trimap generation method achieves better results in

GT06. Conversely, the expansion-based Trimap generation

method performs poorly, resulting in higher SAD values.

Notably, the average SAD value of BGTrimap is 6,923,

which is lower than that of the clustering-based method

(8,316) and all other Trimap generation methods. These

results indicate that, among the transparency masks lost

in the final IFMatting methods, BGTrimap aligns closely

with the true value of the map, which demonstrates its

superior effectiveness.

The SAD results for the KNN Matting method are

presented in the second section of Table 3. Notably, this

method achieves the lowest SAD values in GT02, GT05,

GT17, and GT22, which indicates its effectiveness,

particularly in images with fewer edge-blending regions.

Conversely, the clustering-based Trimap generation

method yields the best results in GT06, GT09, and GT18,

which is consistent with the observations from the

IFMatting method. This suggests that the performance of

KNN Matting can be significantly enhanced in images

with fewer regions of edge blending. The average SAD

value for KNN Matting is 7,566, which is also lower than

the average SAD values of the other methods.

The experimental comparison results demonstrate that,

overall, the BGTrimap method developed in this paper

Fig. 15. Generation results of spider images.
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achieves the lowest loss in Trimap generation, as it

ultimately accurately generates Trimap maps even for

images with mixed pixel regions concentrated at the edges.

As can be seen in Table 3, from the input image to the

output Trimap, the average Trimap generation time for the

test images above is only about 3.09 seconds, while many

current methods take up to 10 seconds or even a minute

[40]. This reduction in running time can significantly

enhance the efficiency of automatic matting.

D. Image Matting Module Results and Analysis

Although traditional image matting methods may be

effective for validating Trimap generation methods, they

primarily rely on low-level features related to image

color or structure. For instance, the propagation-based

matting method, KNN Matting, by Chen et al. [39] and

the information flow-based IFMatting by Aksoy et al.

[38] both have processing times that are too long for them

to be used in practice as automatic matting modules.

However, the introduction of deep neural networks has

largely addressed this issue. FBAMatting by Forte and

Pitie [41] was proposed to predict foreground and

background maps simultaneously by calculating their

respective losses. Similarly, Liu et al. [42] proposed

TIMI Net, which is a collaborative matting method that

integrates global and local information. This approach

reduces the model's focus on the uncertain areas of the

Trimap by extracting features from the original image and

the Trimap in separate processes using different modules.

1) Comparison Experiment of Different Image Mat-

ting Methods

In the matting module, this paper compares four image

matting methods—KNN Matting, IFMatting, TIMI Net,

and FBAMatting—based on the BGTrimap method using

the Alpha-Spider Spider matting test set. A visual

comparison is presented in Fig. 16.

From the six spider images in Fig. 16, it is evident that

the TIMI Net method exhibits more loss in the detail

region of the spider. In image (b), the matting effect on

the hair detail region of the tarantula is poor. KNN

Matting seems to achieve better hair detail effects but it

performs poorly in shadow classification. Although the

IFMatting method excels in hair segmentation, it incurs

more loss in the fine hard edge region. Overall,

FBAMatting performs better in the six spider images,

which is primarily attributed to its joint loss approach,

which enhances its ability to segment mixed regions in

low-resolution images.

The quantitative comparisons are presented in Table 4,

where the method with the lowest average SAD value is

FBAMatting; this finding is consistent with the previous

visual comparison evaluation. The best-performing method

in spider (a) is TIMI Net, with a SAD value of 745,

which is mainly attributed to the fact that this method can

Table 3. SAD values for different trimap generation methods

Model
Test 

pictures
BGTrimap

Co-fusion-based 

method [36]

Clustering-based 

method [13]

Patch-based 

method [38]

Edge-based 

method [37]

Dilation-based 

method [14]

IFMatting [36] GT02 7526 3550 7259 7291 6702 5544

GT05 3594 6088 2619 4015 2727 6650

GT06 6126 20296 3421 2996 3044 5112

GT09 10982 14393 9483 15112 10737 11231

GT17 7330 13492 20349 20309 22954 23563

GT18 6800 4573 4582 4624 8850 11478

GT22 9147 7040 10499 11602 13714 15685

Average 7358 9918 8316 9421 9818 11323

KNN Matting [39] GT02 6573 5247 7316 9778 7776 11592

GT05 1522 6244 2688 4056 2955 4923

GT06 4698 10005 3630 4071 3802 4477

GT09 12813 16091 10094 14832 12635 13440

GT17 15268 19666 19549 18824 22909 19053

GT18 5335 8622 4674 4974 6310 6423

GT22 6736 10272 10592 12530 14471 13009

Average 7566 10878 8363 9866 10122 10416

Time (s) Average 3.09 4.21 5.11 14.85 4.34 8.19
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better segment the edge information of the spider

overlapping with the shadows. The best-performing

method in spider (b) is KNN Matting, while the lowest

SAD value in all other images is FBAMatting. The SAD

value of the TIMI Net method in this dataset is the

highest at 1,887, indicating that TIMI Net performs

relatively poorly in low-resolution images, which is

attributed to its global and local information mining

method. On the other hand, FBAMatting, due to its

foreground and background joint loss, excels in extracting

detailed features. It performs best in low-resolution small

target images and also provides better segmentation

results for spider images with more hairs at the edges.

2) Comparison of End-to-End Natural Image
Matting Methods

Based on the research described above, the automatic

image matting method TGMatting, which relies on

Trimap generation, can now be used to generate precise

transparency masks without human interaction. Unlike

the automatic Trimap-based matting approach in this

paper, numerous methods dedicated to end-to-end non-

portrait matting are currently available. In this study, we

have chosen two fully end-to-end non-portrait matting

methods, AIM and GFM, for comparison with TGMatting.

We compare and verify the final segmentation and

background replacement effects using selected images

Fig. 16. Results of different image matting methods.

Table 4. Different image matting methods

Test set Test pictures FBA-Matting [41] TIMI Net [42] IFMatting [38] KNN Matting [39]

Alpha-Spider a 908 745 892 1163

b 1197 1427 1153 1138

c 2644 3951 3209 3395

d 1433 3444 2080 1482

e 222 359 399 502

f 1326 1397 1615 1451

Average 1288 1887 1558 1521
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from the Alpha-Spider dataset. Table 5 and Fig. 17 present

the specific results. We compare the performances of

TGMatting, AIM, and GFM, two end-to-end natural

image matting methods, on several significant images.

The matting mask and foreground results are showcased.

For non-significant targets, AIM and GFM struggle to

identify significant regions, so they cannot be visually

compared in an effective manner.

The AIM method performs better at finding the

foreground for targets with well-defined saliency regions.

However, for spiders, due to the dataset's lack of

semantics and structural model defects, AIM tends to

lose leg details and may misclassify background noise as

foreground, thus resulting in a poorer overall matting

effect. GFM also struggles to predict salient foregrounds

effectively. Specifically, it tends to misclassify significant

regions, sometimes predicting the entire image as either

foreground or background, thus leading to errors in the

Table 5. Comparison of SAD values for end-to-end natural image matting methods

Test set Test pictures TGMatting AIM [42] GFM [38]

Alpha-Spider a 908 1349 1460

b 1197 1284 1774

c 2644 4259 7831

d 1433 3083 6084

e 222 566 1634

f 1326 2912 3339

Average 1288 2242 3687

Fig. 17. Comparison of end-to-end image matting methods.
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matting process. The SAD results in Table 5 indicate that

our method achieves the lowest values in predicted

targets such as (a), (b), and (f), thus demonstrating

superior performance.

Based on Fig. 16, this paper demonstrates a process

that can be used to obtain a transparent background for

the foreground image using the transparency mask. To

enhance visibility, the method described in this paper first

replaces the background with a solid color—in this case,

white—to showcase the synthesized effect with various

complex backgrounds. The transparent foreground of

each spider is also replaced with different complex

backgrounds, as depicted in Fig. 18. The results reveal a

seamless integration of edge areas with the background,

minimal artifacts, and hair details that maintain their

original image context without incorporating background

information.

IV. CONCLUSION

The purpose of image matting is to achieve fine

segmentation of images. However, it is challenging to

achieve automatic matting due to the difficulty of Trimap

production. Unlike end-to-end training methods, this

paper addresses the issue of automatic matting by

focusing on obtaining high-quality Trimap. To tackle the

challenges posed by low resolution, small targets, and

complex foreground edge images, we designed an

automatic image matting algorithm called TGMatting

that is built upon Trimap generation as a foundation.

TGMatting comprises the U2S-Net pre-segmentation

module, BGTrimap automatic Trimap generation module,

and FBAMatting image matting module. This paper has

constructed a spider segmentation dataset, SOD-Spider,

and a spider matting test dataset, Alpha-Spider, to

evaluate the method's effectiveness on low-resolution,

small-target, and complex foreground-edge images.

The U2S-Net pre-segmentation module, which is based

on the U2-Net method, reduces model depth to mitigate

over-downsampling of low-resolution images, and it

modifies the loss function to diminish interference from

bottom loss, thereby enhancing coarse segmentation

results for such images. The BGTrimap automatic Trimap

generation module leverages algorithms like region

growing, threshold segmentation, and edge detection.

Initially, seed points are automatically obtained using the

region growing method from expanding edges, which is

constrained by Manhattan distance for precise segmentation

with a low threshold, and to eliminate background

redundant information. Subsequently, the Sobel operator

facilitates edge detection, and the denoised and binarized

edge results yield the mixed pixel region. Finally, Trimap

is generated with the assistance of Otsu segmentation and

the pre-segmentation results.

TGMatting successfully automates matting for low-

resolution, small-target, and complex foreground-edge

images like spiders. However, it faces challenges in

generating Trimap for images with extensive transparency

areas, such as glass, grids, or flames. The primary

obstacle here arises from the concentration of blended

pixel areas within the foreground target, which renders

conventional edge acquisition methods ineffective in

identifying these regions. To address this issue in the

future, we propose exploring transparent region detection

methods or optimizing saliency target detection algorithms.

By obtaining pre-segmentation results from various

perspectives, we ultimately aim to enhance Trimap

generation for such semantic elements.
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