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Abstract
Given a set P of n points in the plane, we study the problem of covering P by an optimal pair of two disjoint rectangular

annuli. The optimality is determined by a prescribed cost function that depends on the widths of the resulting rectangular

annuli, such as the maximum or the sum of the widths of the two annuli. In this paper, we present the first O(n log n)-

time algorithms for a wide range of cost functions, including the min-max and min-sum versions of the problem. We also

show the matching lower bound of Ω(n log n), in particular, for the min-sum problem.
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1. INTRODUCTION

In the curve fitting problem, we are given a set P of

input points and a target family C of curves, and want to

find an optimal curve that best fits P. One possible

solution to the curve fitting problem, when C consists of

closed convex curves, can be found by solving the

minimum-width annulus problem.

An annulus informally means a ring-shaped region in

the plane, often described by two concentric circles. By

choosing C as various families of generalized closed

convex curves, one can think of generalized annuli, such

as rectangular or square annuli. The minimum-width

annulus problem asks to find an annulus of a certain

shape, described by C, of minimum width that encloses a

given set P of points in the plane. Among other shapes,

the case of circular annuli has been first studied with an

application to the roundness problem [1–3]. The first sub-

quadratic O( )-time algorithm was presented by Agarwal

et al. [4], and soon improved to O( ) time by Agarwal

and Sharir [5]. Linear-time approximation schemes are

also known by Agarwal et al. [6] and by Chan [7].

The minimum-width axis-parallel rectangular annulus

problem was first considered by Abellanas et al. [8] who

presented an O(n)-time algorithm. Gluchshenko et al. [9]

presented an O(n log n)-time algorithm that computes a

minimum-width axis-parallel square annulus, and proved

a matching lower bound. It becomes more difficult when

considering rectangular or square annuli that minimize

width over all orientations. For rectangular annuli in arbi-

trary orientation, an O(n2 log n)-time algorithm that finds

a minimum-width rectangular annulus was presented by

Mukherjee et al. [10]. For the square case, the first O(n3

log n)-time algorithm that computes a minimum-width

square annulus over all orientations was presented by the

author [11]. This algorithm was soon improved to O(n3)

[12] and to O(n2 log n) time [13], subsequently.

There are even more results on the minimum-width

annulus problems and their generalizations. Bae [14] and

Ahn et al. [15] considered the minimum-width annulus

problem with outliers: given a set P of n points and a

nonnegative integer k ≥ 0, find a minimum-width annulus

n
8

5
--- +

n
3

2
--- +

Received 20 August 2024; Accepted 6 September 2024

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2024.18.3.135 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Computing Science and Engineering, Vol. 18, No. 3, September 2024, pp. 135-143

http://dx.doi.org/10.5626/JCSE.2024.18.3.135 136 Sang Won Bae

of a specific shape that encloses at least n − k points in P.

The minimum-area rectangular and square annulus

problems [12] and the case of parallelogram annuli [16–

18] have also been studied. High-dimensional extensions

have also been discussed in the literature. Mukherjee et

al. [10] showed that the minimum-width cuboidal shell

enclosing P can be computed in linear time as well. The

author of [19, 20] studied the minimum-width cubic and

hypercubic shell problem, which is a high-dimensional

extension of the square annulus problem. The problem of

finding the minimum-width cuboidal shell with outliers

was also considered [21].

All the previous results mentioned above have considered

the problems of enclosing points P by a single annulus, or

its high-dimensional extension, such as a cubic or cuboidal

shell. In this paper, for the first time, we address the

problem of computing an optimal pair of two rectangular

annuli whose union encloses given points P (Fig. 1). While

the optimality is determined by a prescribed cost function,

the most natural and popular would be minimizing the

larger width of the two resulting annuli or minimizing the

sum of the two widths, namely, the min-max two rectangular

annuli problem and the min-sum two rectangular annuli

problem, respectively. Our results are summarized as

follows:

(1) We show that both the min-max and the min-sum

two rectangular annuli problems can be solved in

O(n log n) time.

(2) We also consider any general cost function f and the

min-cost two rectangular annuli problem, in which

we want to minimize the cost of two resulting

annuli with respect to f. This generalizes both the

min-max and the min-sum variants. We show the

same O(n log n)-time algorithms work for this

general problem.

(3) We discuss the lower bound of the problem and

prove that the min-sum two rectangular annuli

problem requires Ω(n log n) time for any algorithm

in the algebraic decision tree model. The same lower

bound is implied for the min-cost two rectangular

annuli problem.

All these upper and lower bounds are the first nontrivial

results to the two rectangular annuli problems, to the

author’s best knowledge.

The rest of the paper is organized as follows: Section II

gives precise definitions of necessary concepts and our

problems, and essential geometric observations that

simplify the problems. Based on those observations, we

present an O(n log n)-time algorithm for the min-max

problem in Section III. Section IV is devoted to describe

our O(n log n)-time algorithm for the min-cost two

rectangular annuli problem with a general cost function.

Finally, we conclude the paper in Section V with

discussions about the lower bound of the problem and

open questions.

II. PRELIMINARIES AND OBSERVATIONS

A standard coordinate system is assumed in the plane

R
2, having the horizontal x-axis and the vertical y-axis.

A. Rectangular Annuli

In this paper, we are only interested in axis-parallel

rectangles. Hereafter, any rectangle we discuss is assumed

to be axis-parallel, unless stated otherwise. Consider a

rectangle R in the plane R2. We call the intersection point

of its two diagonals the center of R. The height and the

width of R are the lengths of its vertical side and horizontal

side, respectively. The (inward) offset of R by δ ≥ 0, or

simply the δ-offset of R, is a rectangle obtained by sliding

the four sides of R inwards by distance δ. If R is of height

h and width w, then the offset of R by δ = min{h, w} is

degenerated to a line segment or a point, called the base

of R. Note that the base of R is either vertical if h > w or

horizontal if h < w (Fig. 2(a)).

For any positive δ ≤ min{h, w}, consider the δ-offset

R′ of R. Then, the closed region A between R and R′,

including its boundary, is called a rectangular annulus

with the outer rectangle R and the inner rectangle R′

(Fig. 2(b)). The distance δ between the sides of R and R′

is called the width of the annulus. Let w(A) denote the
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2
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Fig. 1. (a) A minimum-width rectangular annulus enclosing
given points P and (b) a pair of two rectangular annuli enclosing
the same set P of points that minimizes the larger width of the
two annuli.

Fig. 2. (a) The δ-offset R of rectangle R. The solid horizontal
segment in the middle is the base of R. (b) The rectangular
annulus of width δ whose outer rectangle is R and inner
rectangle is its δ-offset R.
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width of annulus A.

Let P be a given set of n points in the plane R2. The

smallest enclosing rectangle for P, denoted by R(P), is

uniquely determined by the topmost, leftmost, bottommost,

and rightmost points of P. Abellanas et al. [8] proved the

following, while there can be infinitely many rectangular

annuli of minimum width that enclose P.

LEMMA 1 (Abellanas et al. [8]). There exists a minimum-

width rectangular annulus enclosing P such that the outer

rectangle of A is R(P), the smallest rectangle enclosing P.

Such a rectangular annulus is unique and can be computed

in O(n) time.

We let A(P) be the annulus enclosing P as described

above, so A(P) is of minimum width among those enclosing

P and its outer rectangle is R(P). Note that the minimum-

width rectangular annulus shown in Fig. 1(a) is indeed

A(P) whose outer rectangle is R(P) for the set P depicted

in the figure.

B. Problem Definition

Now, we present a precise definition of our problems.

Given a set P of n points in the plane R2,

• the min-max two rectangular annuli problem asks to

find a pair (A1, A2) of two disjoint rectangular annuli

such that P  A1 A2 and the maximum of their

widths, max{w(A1),w(A2)}, is minimized, and

• the min-sum two rectangular annuli problem asks to

find a pair (A1, A2) of two disjoint rectangular annuli

such that P  A1 A2 and the sum of their widths,

w(A1) + wA2), is minimized.

We even generalize the problems by adopting a cost

function f : R × R → R that satisfies the following

conditions:

(i) f (w1, w2) = f (w2, w1) for any w1, w2 ≥ 0.

(ii) f (w1, w2) ≤ f ( , ) if w1 ≤  and w2 ≤ , for

any w1, w2, ,  ≥ 0.

(iii) The value of f (w1, w2) can be computed in O(1)

time for any given w1, w2 ≥ 0.

Then, in the min-cost two rectangular annuli problem,

we are additionally given a cost function f as described

above and our goal is to find a pair (A1, A2) of two disjoint

rectangular annuli such that P is enclosed by A1 A2 and

f (w(A1), w(A2)) ≤ f (w( ), w( )) for all pairs ( , )

of annuli with P  .

Note that the min-cost problem generalizes the min-

max and min-sum variants by setting f (w1, w2) = max{w1,

w2} and f (w1, w2) = w1 + w2, respectively.

C. Characterization of Optimal Solutions

Consider any pair (A1, A2) of two disjoint rectangular

annuli. It is not difficult to observe that such a pair

(A1, A2) always falls into one of the following three cases:

(1) (Horizontally separated) There is a vertical line

that separates A1 and A2.

(2) (Vertically separated) There is a horizontal line that

separates A1 and A2.

(3) (Nested) Either A2 is contained in the interior of the

inner rectangle of A1 or A1 is contained in the

interior of the inner rectangle of A2.

Fig. 3 shows these three cases. This implies that any

optimal solutions to our two rectangular annuli problems

also must fall into one of the three cases.

Now, we define the following subsets of P and their

corresponding costs:

(1) For each 0 ≤ i ≤ n, let Li ⊆ P be the set of i leftmost

points from P and Li := P \ Li. Note that L0 = Ø and

Ln = P. Ties are broken arbitrarily, yet consistently

so that it holds Li  Li+1. Define

fH(i) := f (w(A(Li)), w(A(Li))).

(2) For each 0 ≤ i ≤ n, let Ti ⊆ P be the set of i topmost

points from P and Ti 
:= P \ Ti. Ties are broken

arbitrarily, yet consistently so that it holds Ti  Ti+1.

Define

fV(i) := f (w(A(Ti)), w(A(Ti))).

(3) For p ∈ P, define p  0 to be such that p lies on the

boundary of the δp-offset of R(P). For 0 ≤ i ≤ n, let

Di ⊆ P be the set of i points in P of smallest δp-

values, and Di := P \ Di. Ties are broken arbitrarily,

yet consistently so that it holds Di  Di+1. Note that

D4 consists of the four points that lie on the

boundary of R(P) as their δp-values are all zero.

Define

fN(i) := f (w(A(Di)), w(A(Di))). 




w1



w2



w1



w2



w1



w2





A1



A2



A1



A2



A1

 

A2



Fig. 3. Three cases of a pair of two disjoint rectangular annuli:
(1) the horizontally separated case, (2) the vertically separated
case, and (3) the nested case.
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We then observe the following, which is the key for

our algorithms.

LEMMA 2. There exists an optimal pair ( , ) of two

disjoint rectangular annuli with respect to a cost function

f such that either

(1)  = A(Li) and  = A(Li) for some i,

(2)  = A(Ti) and  = A(Ti) for some i, or

(3)  = A(Di) and  = A(Di) for some i.

Therefore, it holds that

.

Proof. Let (A1, A2) be any optimal pair of two disjoint

rectangular annuli such that P  A1 A2 and f (w(A1),

w(A2)) is minimized. Let P1 := P ∩ A1 and P2 := P ∩ A2.

Note that we have P = P1 P2 and P1 ∩ P2 = Ø, as A1 and

A2 are disjoint. As discussed above, since A1 and A2 are

disjoint, they are either (1) horizontally separated, (2)

vertically separated, or (3) nested. We consider each case

separately.

First, suppose that A1 and A2 are horizontally separated,

so there is a vertical line that separates A1 and A2. Without

loss of generality, assume that A1 is to the left of A2. Then,

we observe that P1 = Li, where i = |P1|, and P2 = Li. Now,

define  := A(Li) and  := A(Li). By definition and

Lemma 1, we have w( ) ≤ w(A1) and w( ) ≤ w(A2).

Hence,

f (w(( ), w( ))  f (w(A1), w(A2))

by condition (ii) of cost function f. This implies the

optimality of ( , ).

Second, suppose that A1 and A2 are vertically separated,

so there is a horizontal line that separates A1 and A2.

Without loss of generality, assume that A1 is above A2.

Then, we observe that P1 = Ti, where i = |P1|, and P2 = Ti.

Now, define  := A(Ti) and  := A(Ti). By Lemma 1,

we have w( ) ≤ w(A1) and w( ) ≤ w(A2). Hence,

f (w( ) ,w( ) )  f (w(A1), w(A2)),

by condition (ii) of cost function f. This implies the

optimality of ( , ).

Finally, suppose that A1 and A2 are nested. Without loss

of generality, we assume that A2 is contained in the

interior of the inner rectangle of A1. In this case, we

define  := A(P1) and  := A(P \ ). Observe that 

encloses P1 and possibly some points from P2, that is,

P1  P ∩ , while we still have w( ) ≤ w(A1) and

w( ) ≤ w(A2) by definition and Lemma 1. So, ( , )

is also an optimal pair, similarly as above. Now, observe

that the outer rectangle of  is the smallest enclosing

rectangle R(P) for P and its inner rectangle is determined

by some point q ∈ P, which is the δq-offset of R(P).

Hence, we have P ∩  = Di and P ∩  = Di, where i is

the rank of q such that q ∈ Di and q ∉ Di−1.

Note that Lemma 2 dramatically simplifies the problem

to computing at most O(n) cost values: fH(i), fV(i), fN(i)

for 0 ≤ i ≤ n.

III. ALGORITHM FOR THE UNIMODAL CASE

In this section, we solve a special case of the min-cost

two rectangular annuli problem, where the given cost

function f induces some favorable properties.

Before getting into the main discussion, we mention

that the exact values of fH(i), fV(i), and fN(i) can be

computed in O(n) time by Lemma 1.

LEMMA 3. Given a set P of n points, a cost function f,

and an integer i with 0 ≤ i ≤ n, the exact values of fH(i),

fV(i), and fN(i) can be computed in O(n) time.

Proof. First, we discuss how to compute fH(i). Recall

that fH(i) = f (w(A(Li)), w(A(Li))) and Li is the set of i

leftmost points from P. To specify Li, we apply the linear-

time selection algorithm [22] to find the i-th leftmost

point in P and then collect the i points from P that have x-

coordinates at most the i-th point. This also gives us the

set Li = P \ Li. We then apply Lemma 1 to compute A(Li)

and A(Li) together with their widths. This way, we can

compute the value of fH(i) in O(n) time.

The case of fV(i) is almost identical to the above case

of fH(i).

Lastly, consider fN(i). Recall that fN(i) = f (w(A(Di)),

w(A(Di))) and Di is the set of i closest points from the

boundary of R(P). To specify Di, compute R(P) and the

δp-values for all p ∈ P, and store the δp-values into an

array. We then apply the selection algorithm [22] as

above to pick the i-th smallest value in the array. From

this, we can specify the subsets Di and Di in O(n) time.

Finally, we apply Lemma 1 to compute A(Di) and A(Di)

as above. The total time complexity is bounded by O(n)

as claimed.

Lemma 3 implies an O(n2)-time algorithm since we are

done by computing all values of fH(i), fV(i), and fN(i) for

0 ≤ i ≤ n by Lemma 2. In the following, we show how to

improve it to O(n log n) time.

Specifically, consider the min-max problem, in which

f (w1, w1) = max{w1, w2}. In this case, we have a nice

property among the values of fH(i), fV(i), and fN(i), called

the unimodality. More precisely, we have:

LEMMA 4. Suppose f (w1, w1) = max{w1, w2}, and let
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g ∈ { fH , fV , fN}. Then, there exists a unique integer m

with 0 ≤ m ≤ n such that g(i) is non-increasing for i ≤ m

and is g(i) is non-decreasing for i ≥ m.

Proof. Recall fH(i) = max{w(A(Li)), w(A(Li))}. The claimed

property is easily seen from the fact that w(A(Li)) is non-

decreasing and w(A(Li)) is non-increasing as i increases

from 0 to n.

The other two functions fV(i) and fN(i) are analogous. 

The unimodality of fH, fV, and fN enables us to apply a

ternary search to find the minimum value of each of

them. More precisely, let g ∈ {fH, fV, fN} be any of the

three functions. Our goal is to find the minimum of g,

that is, min{g(0), g(1), . . . , g(n)}. Set a :=  and

b := . Evaluate g(a) and g(b) using Lemma 3 in

O(n) time. If g(a) > g(b), then we know that the minimum

of g cannot be attained at i ≤ a by the unimodality, so we

discard the range [0, a] and recurse our search in the

range [a + 1, n]; if g(a) < g(b), then we discard the range

[b, n] by the same reason and recurse our search in [0, b − 1];

if g(a) = g(b), then we can discard the ranges [0, a − 1]

and [b + 1, n], and recurse our search in [a, b]. In either

case, the search space is reduced to a fraction of at most

2/3 after spending O(n) time. Hence, it takes only O(n log n)

time to find the minimum of g. So, we conclude our first

algorithmic result.

THEOREM 1. Given a set P of n points in the plane, the

min-max two rectangular annuli problem can be solved

in O(n log n) time.

Though the above algorithm is described for the min-

max case, it is not difficult to see that the same algorithm

also works for any cost function f if the three functions

fH , fV, fN are unimodal.

COROLLARY 1. Given a set P of n points in the plane

and a cost function f satisfying conditions (i)–(iii), suppose

that the three functions fH , fV , and fN are unimodal. Then,

the min-cost two rectangular annuli problem can be

solved in O(n log n) time.

IV. ALGORITHM FOR THE GENERAL CASE

We then consider any general cost function f satisfying

conditions (i)–(iii). The unimodality allows us a very

simple O(n log n)-time algorithm as discussed above, but

this is not always the case. One such example is the min-

sum two rectangular annuli problem. If f (w1, w2) = w1 +

w2, then each of the three functions fH , fV, fN is not

necessarily unimodal.

In general, it seems there is no better way but computing

all values of fH(i), fV(i), fN(i) for 0 ≤ i ≤ n. To beat the

linear-time algorithm described in Lemma 3, we show

that evaluating each one can be done in logarithmic time

using known geometric data structures.

The essential subproblem here is to compute the

minimum-width rectangular annulus and its width for a

certain subset of P. More precisely, consider the following

query problem: given a query rectangle R, find the

minimum-width rectangular annulus enclosing P ∩ R

whose outer rectangle is R. Note that this is equivalent to

finding the largest offset R′ of R whose interior contains

no point of P. So, let us call this problem the largest

empty offset query problem.

A. Largest Empty Offset Queries

In order to efficiently process largest empty offset

queries, we make use of data structures that support the

following queries:

● (  nearest neighbor queries) Given a query point

q  R
2, find a nearest neighbor of q from P under

the  distance or, equivalently, find the largest

axis-parallel empty square centered at q that contains

no points of P in its interior.

● (Segment dragging queries) Given a horizontal

segment s, find the first point from P hit by s when s

is being dragged vertically upwards or downwards.

If there is no such point hit by s, report that there is

no such point. Symmetrically, for a vertical segment

s, we drag s horizontally leftwards or rightwards to

find the first point from P hit by s.

Fig. 4 shows this process. These two types of queries

are known to be handled in O(log n) time after

preprocessing P in O(n log n) time using O(n) space. For

 nearest neighbor queries, we build the  Voronoi

diagram of P with an optimal point location structure.

This can be done in O(n log n) time using O(n) space

[23]. Chazelle [24] presented a data structure for segment

dragging queries that requires O(n log n) preprocessing

n 3 

2n 3 

L

L

L L

Fig. 4. Illustrations to (a) the L∞ nearest neighbor query for a
query point q and (b) the segment dragging query for a query
segment s when dragged upwards for the same set P of points.
For the answer to the queries, (a) the largest empty square
centered at q and (b) the point r  P first hit by the dragged
segment are returned.
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time and O(n) space.

Assume that these data structures have already been

built for the two kinds of queries. Now, we describe how

to handle a largest empty offset query for a given query

rectangle R. Let h and w be the height and width of R, and

assume without loss of generality that h ≤ w; the other

case where h > w can be handled symmetrically. Let s be

the base of R, which is the (h/2)-offset of R. Note that s is

a horizontal segment as h ≤ w. Let ql and qr be its left and

right endpoints, respectively. We query ql and qr for the

 nearest neighbor and then query s for the segment

dragging query, twice: upwards and downwards. By the

two  nearest neighbor queries, we obtain two squares

centered at ql and qr, respectively; let dl and dr be half the

side lengths of the two squares, respectively. By the two

segment dragging queries, upwards and downwards, we

obtain two points above and below s; let du and dd be the

distances to these points from s, respectively. After

specifying the values of dl, dr, du, dd, we take their

minimum

d := min{dl, dr, du, dd, h /2}

and answer the largest empty offset query by reporting

the (h/2 − d)-offset R′ of R.

We claim that the (h/2 − d)-offset R′ of R is indeed the

largest offset of R whose interior contains no point of P

(Fig. 5).

LEMMA 5. After preprocessing P in O(n log n) time and

O(n) space, a largest empty offset query can be correctly

answered in O(log n) time.

Proof. The complexity for preprocessing and handling

a query has been discussed above. Thus, in this proof, we

focus on proving the correctness of the above algorithm.

From the description of the algorithm, the answer to a

largest empty offset query is determined as the (h/2 − d)-

offset of the query rectangle R, when the height h of R is

at most its width, and d is chosen as the minimum of the

five values dl, dr, du, dd, h/2. Hence, there are five cases

according to which of the five is the minimum, deter-

mining d.

First, suppose d = dl, so d is determined by the 

nearest neighbor query for ql (Fig. 5). Let Sl be the

resulting square centered at ql and pl be the  nearest

neighbor of ql, that is, pl lies on the boundary of Sl. We

observe that pl does not lie on the right side of Sl, since, if

so, pl lies above or below the base s of R and the distance

from s to pl, which is either du or dd, must be strictly

smaller than the  distance dl from ql to pl, a

contradiction. Now, consider the (h/2 − dl)-offset R′ of R.

Then, pl lies on the boundary of R′, more precisely, either

on its left, top, or bottom side, so there is no empty offset

of R larger than R′. The emptiness of the interior of R′ can

be verified as follows. Since dl ≤ du and dl ≤ dd, there is no

point of P in the rectangle swept by dragging s upwards

and downwards by distance dl. Further, the interior of Sl

is empty and the interior of the square with side length 2dl

and center qr is also empty since dl ≤ dr. The union of

those empty regions is equal to R′, so the interior of R′ is

empty. This completes the proof for the case where d = dl.

The case where d = dr can also be handled symmetrically.

Second, suppose d = du, so d is determined by the

segment dragging query with s dragged upwards. Let R′

be the (h /2 − du)-offset of R. Note that there is a point in

P on the top side of R′, so there is no empty offset of R

larger than R′. Since du ≤ dd , there is no point of P in the

rectangle swept by dragging s downwards by distance du.

Also, since du ≤ dl and du ≤ dr, the two squares centered at

ql and qr with side length 2du do not contain any point of

P in their interior as well. Similarly as above, since the

union of those empty regions cover the rectangle R′, we

confirm that the interior of R′ is empty. This completes

the proof for the case where d = du. The case where d = dd

can also be handled symmetrically.

Finally, suppose d = h/2, so we have that the four values

dl, dr, du, dd are all at least h/2. From the discussions

above, it is not difficult to see that this implies that the

interior of R does not contain any point of P. Hence, in

this case, the answer to the largest empty offset query

should be R itself, that is, the 0-offset of R.

B. Overall Algorithm

Now, we turn back to the original problem and describe

the overall algorithm. We start by preprocessing P and

building necessary data structures for largest empty offset

queries. Then, we compute fH(i), fV(i), and fN(i) for all

0 ≤ i ≤ n by largest empty offset queries. For this purpose,

we need to compute the corresponding outer rectangles in

advance.

First, we discuss how to compute fH(i). Recall that

L

L

L

L

LFig. 5. Illustration to the algorithm processing a largest empty
offset query for a query rectangle R. Black dots depict points in P
in the interior of R. In this case, dl is the minimum among the
others dr, du, dd, and the (h/2 − dl)-offset of R should be the
answer to the query.
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fH(i) = f (w(A(Li)), w(A(Li)). To apply largest empty offset

queries, we compute and store R(Li) and R(Li) for all i.

For this purpose, we sort P in the x-coordinates and scan

P in this order. The subsets Li are specified during this

scan and at the same time we maintain the four extreme

points of Li, that is, the leftmost, rightmost, topmost, and

bottommost points of Li. These four extreme points

determine the smallest enclosing rectangle R(Li), so we store

them in an array. The subsets Li and their corresponding

rectangles R(Li) can be obtained and stored by another

scan of P in the reversed direction. It is obvious that this

process takes O(n) time after sorting. We are then able to

evaluate fH(i) for all i in O(n log n) total time as A(Li) and

A(Li) for each i can be obtained by largest empty offset

queries for R(Li) and R(Li).

The case of fV(i) can be handled almost the same way

as above, so we omit the details.

Lastly, what remains is to compute fN(i). Recall that

fN(i) = f (w(A(Di)), w(A(Di)). In this case, note that R(Di)

is always the same as R(P), so A(Di) can be found directly

without a largest empty offset query. We start by sorting

the points of P in the increasing order of their δp-values,

and scan them in this order. The subsets Di are specified

during this scan and, at the same time, we also obtain

A(Di) as its outer rectangle is R(P) and inner rectangle is

determined as the δq-offset of R(P), where q is the i-th

point of P, that is, q  Di \ Di−1. To find out A(Di), we scan

the sorted list in the reversed direction. During this

reversed scan, we maintain the four extreme points of Di,

that is, its leftmost, rightmost, topmost, and bottommost

points. From these four points, we can compute and store

R(Di) in an array for all i in O(n) time after sorting. To

obtain A(Di), we apply a largest empty offset query for

R(Di). This way, we can evaluate fN(i) for all i. The total

time spent is O(n log n).

Summarizing, we obtain our main theorem.

THEOREM 2. Given a set P of n points in the plane and

a cost function f satisfying conditions (i)–(iii), the min-

cost two rectangular annuli problem can be solved in O(n

log n) time using O(n) space.

The min-sum two rectangular annuli problem is a

special case of Theorem 2.

COROLLARY 2. Given a set P of n points in the plane,

the min-sum two rectangular annuli problem can be

solved in O(n log n) time using O(n) space.

V. CONCLUDING REMARKS

We have discussed the two rectangular annuli problems

and presented the first algorithms for the problem that run

in O(n log n) time for general cost functions.

One natural question is about the computational

complexity of the problem. We partially answer the

question by showing that the maximum gap problem is

reducible in linear time to the min-sum two rectangular

annuli problem. Given a set S of n real numbers, the

maximum gap of S, denoted by g(S), is the maximum

difference between two consecutive numbers of S when

they are sorted. It is well known that the problem of

computing the maximum gap g(S) of a given set S has

Ω(n log n) lower bound in the algebraic decision tree

model [25].

THEOREM 3. Any algorithm for the min-sum two

rectangular annuli problem requires Ω(n log n) time in

the algebraic decision tree model.

Proof. We transform a given instance of the maximum

gap problem to an instance of the min-sum two rectangular

annuli problem. Let S be a given set of n real numbers,

and we want to compute the maximum gap g(S). Without

loss of generality, we assume that 0  S is the minimum

element and let M ≥ 0 be its maximum element. Note that

this assumption can be easily achieved by finding out the

minimum element of S and subtract it from every one in S

in O(n) time, and also that M can be computed in O(n)

time. We then construct a set P of 4n + 4 points in the

plane R2 as follows:

Fig. 6 shows our construction of P. We claim that the

optimal solution to the min-sum two rectangular annuli

problem for P directly implies the exact value of g(S).

More precisely, the sum of the widths of the optimal pair

of annuli will be shown to be exactly M − g(S).

P := 0 M a+  0 M– a–  M a 0+  M– a– 0  a S   



2M 2M  2M– 2M  2M 2M–  2M– 2M–    

Fig. 6. Our construction of a set P consisting of 4n + 4 points.
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First, we show that

.

Consider any nested pair of two rectangular annuli that

encloses P. Let a < a′  S be two consecutive elements in

S that define the maximum gap, that is, g(S) = a′ − a.

Then, there exists a nested pair ( , ) of annuli such

that: the outer rectangle of  is R(P) and its inner

rectangle is the offset of R(P) whose boundary contains

four points (0, M + a′), (0, −M − a′), (M + a′, 0), (−M − a′,

0)  P; the outer rectangle of  is the offset of R(P)

whose boundary contains four points (0, M + a), (0, −M −

a), (M + a, 0), (−M − a, 0)  P and its inner rectangle is

defined by four points (0, M), (0, −M), (M, 0), (−M, 0) 

P (Fig. 7(a)). Then, the sum of widths is exactly

w(A) + w( ) = M − a′ + a = M − g(S),

and it is not difficult to see that this is the minimum

among fN(i) for all 0 ≤ i ≤ 4n + 4.

Next, we argue that the nested pair ( , ) is indeed

the optimal solution, that is,

min
i

{fH(i), fV(i), fN(i)} = M g(S)}.

To see this, consider any vertically separated pair (A1,

A2) of annuli enclosing P such that A1 = A(Ti) and A2 =

A(Ti) for some i. Since the set P is symmetric due to our

construction, we do not need to repeatedly discuss

horizontally separated pairs. Again by the symmetric

configuration of our construction P, we can assume that

i ≥ 2n + 2. So, Ti contains some points lying on the x-axis,

and also contains two topmost points (−2M, 2M), (2M,

2M)  P. Hence, the outer rectangle R(Ti) of A1 has width

4M and height at least 2M. Since Ti also contains point (0,

M)  P, the inner rectangle of A1 must be placed below

the point (0, M) and all other points of the form (0, M + a)

 P for all a  S (Fig. 7(b)). This implies that the width

of A1 is at least M, so we have

w(A1) + w(A2) ≥ M ≥ M − g(S),

as claimed.

Therefore, by Lemma 2, the nested pair ( , ) of

two rectangular annuli is an optimal solution to the min-

sum two rectangular annuli problem for P, and the linear-

time reduction is complete.

Since the min-sum problem is a special case of the

general min-cost problem, we obtain the same lower

bound as well.

COROLLARY 3. Any algorithm for the min-cost two

rectangular annuli problem requires Ω(n log n) time in

the algebraic decision tree model, when a cost function f

is part of input.

Note that the above reduction does not work for the

min-max problem or for the unimodal case of the min-

cost problem. We finish the paper by leaving the following

open question: What is the true computational complexity

of the min-max two rectangular annuli problem? Can one

solve the min-max problem faster than O(n log n) time,

or prove its matching lower bound Ω(n log n)?
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