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Abstract
Substitution ciphers—where characters are systematically replaced with different ones—have represented a vital tool in

safeguarding sensitive information for centuries, eventually laying the foundation for modern encryption techniques.

Despite their large key space, substitution ciphers are susceptible to frequency analysis that leverages common English

letter patterns. While existing research has suggested certain methods that can improve decryption accuracy using n-

gram frequencies, these methods face difficulties when used with short ciphertexts due to incomplete letter distribution

representation. The present study examines the limitations of current frequency analysis in decrypting short ciphertexts,

with the results revealing that deterministic bigram approaches can reduce accuracy in certain cases. To address this

shortcoming, we introduce a novel algorithm that uses randomized index selection based on letter distribution to generate

multiple candidate keys. We also present a word-level key guessing method using these candidates that maps prominent

English words to uncover a secret key. The results of tests with 200 ciphertexts of varying lengths showed an average

decryption accuracy of 84.1% for 200-character ciphertexts, an improvement of 147.1% over existing methods. In exper-

iments without dictionary-based decryption, an accuracy of 77.6% was achieved with a decryption time of approximately

0.27 seconds, which is a reasonable completion time. Altogether, these results highlight the efficiency and practicality of

our approach for decrypting short ciphertexts.
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I. INTRODUCTION

Classical ciphers are a foundational aspect of crypto-

graphy, and they serve as the bases for various encryption

methods that have been used for centuries to secure

sensitive information. These ciphers, which are rooted in

ancient cryptographic techniques, have paved the way for

the development of modern cryptographic algorithms and

protocols. The allure of classical ciphers lies not only in

their historical significance but also in their inherent

simplicity. They are commonly categorized into two

groups based on their operational methods: transposition

ciphers and substitution ciphers.

In transposition ciphers, the letters of the plaintext are

rearranged, while in substitution ciphers, the plaintext

letters are replaced with other letters, numbers, or

symbols [1]. The security of substitution ciphers relies on

the size of the key space, which, for a simple substitution
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cipher, corresponds to the number of possible permutations

of the alphabet. Despite the use of a large key space,

substitution ciphers are particularly vulnerable to letter

frequency analysis [2]. This cryptanalytic technique uses

the frequency of letters in the ciphertext to deduce the

original plaintext. For example, certain letters appear more

frequently than others in certain languages, such as the letter

‘E’ in English. This method can be used to effectively

break substitution ciphers by matching the frequency

patterns of the ciphertext with those of the plaintext.

Recognizing the effectiveness of this technique, many

studies have proposed various algorithms that can be used

to strengthen such ciphers against this technique [3-9].

Several studies [7-9] have proposed a decryption technique

that considers the frequency of letter pairs (bigrams) to

overcome the limitations of single-letter frequency

analysis, which can be inaccurate due to factors such as

the writing style of the ciphertext. While these techniques

lead to significant performance improvements, they still

face limitations in decryption accuracy when used with

short ciphertexts due to the insufficient representation of

letter distributions.

The rest of this paper aims to explore the limitations of

existing letter frequency analyses in decrypting short

ciphertexts. Through a comprehensive investigation, we

have confirmed that the algorithm applying bigram

distribution that has been used in previous studies does

not achieve high decryption accuracy when used with

short ciphertexts. This paper then examines deterministic

bigram combinations, which are shown to lead to a

decrease in decryption accuracy in some ciphertexts,

even after numerous iterations. To address this issue, we

propose a novel algorithm that selects random indices

based on letter distribution to extract multiple candidate

keys. We also suggest a word-level key guessing approach

based on these candidate keys. Our algorithm traverses

the ciphertext in word token units, mapping the highest-

ranking English words to ultimately uncover the secret

key.

To evaluate the effectiveness of our proposed method,

we implemented a prototype using a dictionary API and

measured its decryption accuracy and performance

overhead. To this end, we tested 200 ciphertexts of lengths

varying from 100 to 400 characters. The results showed

that the average decryption accuracy achieved for a 200-

character ciphertext was 84.1%, representing a 147.1%

improvement when compared to an existing decryption

method [7]. The execution overhead for decrypting a

200-character ciphertext took 3.9 minutes longer, which

can be primarily attributed to the dictionary search.

Omitting the dictionary lookup resulted in only a minor

loss in accuracy (approximately 6.53%) while allowing

for decryption within a very reasonable execution time

(0.27 seconds). Altogether, these results demonstrate that

our proposed method is highly effective and practical for

decrypting short ciphertexts.

II. BACKGROUND

A. Classical Ciphers

Classical categories are based on their methods of operation:

transposition ciphers and substitution ciphers. Transposition

ciphers operate by altering the arrangement of characters

within a plaintext message to obscure its original meaning.

Meanwhile, substitution ciphers involve replacing each

character in the plaintext with another character or

symbol according to a predetermined table or key. One of

the earliest known substitution ciphers is the Caesar

cipher [10], which shifts each character in the plaintext

by a fixed number of positions along the alphabet. While

Caesar ciphers are straightforward to implement, they are

less secure as they are susceptible to brute force attacks,

which involve trying every possible key, especially since

there are only 25 potential shifts for alphabetic characters.

A monoalphabetic substitution cipher entails replacing

each letter in the plaintext with another letter according to

a predetermined mapping [11]. Fig. 1 illustrates this

encryption process using a key derived from a randomly

shuffled alphabet. In this instance, characters “A” and

“B” are substituted with “S” and “A,” respectively,

resulting in the formation of the ciphertext. Utilizing this

approach, the key space for alphabetic characters yields

26 factorial (over 400 sextillion), meaning it is resistant

to brute force attacks within a polynomial time. The

monoalphabetic substitution method also offers the

additional advantages of simplicity and efficiency in both

encryption and decryption procedures.

Fig. 1. Example of a monoalphabetic substitution cipher.
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B. Letter Frequency Analysis

Despite the vastness of the key space, monoalphabetic

substitution ciphers are susceptible to letter frequency

analysis [2]. This technique relies on the observation that

certain letters occur more frequently than others in

natural language texts, with certain notable examples

occurring in English. Within the context of decryption,

letter frequency analysis involves counting the occurrence

of each letter in the ciphertext and comparing it to the

expected frequency distribution of letters in the plaintext

language. The most commonly used letter in English is

the letter “E,” followed in order by “T” and “A.” The

grey bar in Fig. 2 presents the frequency of each letter in

the entire alphabet. By examining the frequency

distribution of letters in the ciphertext, cryptanalysts can

infer plausible correspondences between letters in the

ciphertext and those in the plaintext.

While letter frequency analysis may seem robust, it

encounters a significant limitation in practice. Although

certain letters like “E,” “T,” “A,” and “O” are indeed

more common in English text, their frequency distribution

can vary based on factors such as the text's genre and

writing style. Moreover, some characters may not appear

in some short texts, resulting in a less predictable frequency

distribution. The green plot in Fig. 2 demonstrates that

the letter frequencies between established statistics and

those observed in the example text shown in Fig. 1 do not

match perfectly. This discrepancy poses challenges in

accurately deducing the substitution key based solely on

letter frequencies.

III. RELATED WORK

Early studies have highlighted that distributions of n-

grams (sequences of n letters) are effective tools for

decrypting monoalphabetic ciphers [3-9, 11, 12]. For

example, Jakobsen [7] demonstrated that leveraging the

distribution of bigrams (two-letter sequences) enhances

decryption accuracy for monoalphabetic ciphers. Uddin

and Youssef [8] also utilized bigram distributions along

with particle swarm optimization. This approach adjusts

potential solutions based on individual and collective

experiences, while using unigram and bigram statistics in

its cost function. However, it exhibits low decryption

performance on ciphertexts that are shorter than 300

characters. Vobbilisetty et al. [9] employed hidden

Markov models (HMMs) for cryptanalysis, modeling the

sequences of observed ciphertexts and determining

transition probabilities between hidden states based on

bigram statistics derived from training data. This

approach achieved nearly 70% decryption accuracy on

200-character texts; however, it required about 100,000

HMM training restarts, resulting in significant overhead.

In summary, while these methods aid in quickly

uncovering secret keys, their effectiveness in decrypting

short ciphertexts remains a subject of ongoing

investigation. Our present study distinguishes itself from

prior research by addressing the inherent difficulties

involved in analyzing short encrypted messages and

enhancing the precision of decryption outcomes.

IV. ANALYSIS OF BIGRAM STRATEGIES

In this section, we introduce an algorithm that utilizes

bigram statistics to decrypt substitution ciphers and

explore its limitations. Jakobsen [7] initially proposed a

frequency analysis method based on two-letter

combinations in an attempt to overcome the challenges

associated with single-letter frequency analysis in

substitution cipher decryption. This method begins by

taking ciphertext as input, then counting the frequency of

individual characters, and lastly creating an initial key

using the established frequency of English letters, as

illustrated in Fig. 2. It then determines whether to update

the key using the following equation for the initial key:

(1)

where D(t) and E are 26 × 26 matrices representing the

bigram frequencies of a given text t and the common

bigram frequencies of English letters, respectively. The

key updating procedure described in [7] iteratively

compares these frequencies by traversing the matrix

indices and updating the key if f(t) decreases. In other

words, if the bigram frequency of a tested combination is

found to be closer to the established frequency (thus

resulting in a lower f(t)), the key is swapped. This process

is repeated a specified number of times (e.g., 3000 times)

until f(t) converges.

Since f(t) captures bigram frequency in a given

ciphertext, it is generally inversely correlated with

decryption accuracy. However, our experiment indicates

that short ciphertexts still struggle to provide an adequate

f t  Dij t  Eij–
i j

=

Fig. 2. Letter frequency comparison between known statistics
and sample data. 
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distribution of English letter frequencies, making it

difficult for f(t) to capture them accurately. Fig. 3 shows

the relationship between changes in f(t) and decryption

accuracy with increasing iterations for ciphertexts

comprised of 171 and 302 characters, respectively. For

the 302-character ciphertext (refer to Fig. 3(a)), the result

shows the expected symmetrical representation of f(t) and

decryption accuracy. By contrast, for the 171-character

ciphertext (refer to Fig. 3(b)), f(t) decreases with more

iterations, while there is no increase in decryption

accuracy. This trend is often observed in texts that are

shorter than 250 characters, thus emphasizing that a low

f(t) does not always correlate with high decryption

accuracy for short ciphertexts. This ultimately suggests

the need for a new letter frequency analysis technique for

short ciphertexts.

V. OUR APPROACH

Inspired by the trends discussed in Section IV, our

research aims to develop a new method that ensures high

decryption accuracy for short ciphertexts. To achieve

this, we assume the presence of a known cipher attacker

who has obtained arbitrary ciphertext and is attempting to

discover the secret key without having any time

limitations. We also assume that the secret key is updated

infrequently, making the proposed method applicable to

multiple ciphertexts. Focusing on improving decryption

accuracy for short ciphertexts presents distinct challenges

that necessitate the use of alternative strategies to ensure

effective decryption. Our objective is to enhance the

robustness and reliability of decryption techniques under

these specific conditions.

The core of the proposed method lies in generating

multiple candidate keys to decrypt the cipher with

reference to English words. Fig. 4 depicts the entire

process of this approach. First, the frequency of

individual letters in the input ciphertext is analyzed to

establish an initial key, based on which the proposed

bigram cryptanalysis algorithm generates 10 candidate

keys (V-A). Next, each word token in the ciphertext is

decrypted with the candidate keys to select the key

combination that most closely resembles English words

(V-B). The following sections provide detailed explanations

of each phase.

A. Phase 1: Generating Candidate Keys

In this section, we present a method for generating

Fig. 3. f(t) score and accuracy percentage for ciphertexts of different lengths: (a) 302-character ciphertext t and (b) 171-character
ciphertext t. 

Fig. 4. Overview of the proposed decryption method.
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candidate keys through bigram analysis. As discussed in

Section IV, traditional bigram analysis methods often

have certain limitations in optimization, as they only

examine fixed character combinations, even when

iterated indefinitely. To overcome this drawback, we

propose a new index selection algorithm for updating an

initial key. This algorithm randomly selects indices from

a list that is weighted by single-letter frequencies under

the assumption that characters with higher frequencies in

single-letter analysis will also be prevalent in bigrams.

The algorithm operates as follows: 

1. First, an initial key is generated using single-letter

frequency analysis. Each character is listed multiple

times based on its occurrence frequency and then

assigned an index in ascending order.

2. Two indices are randomly chosen from a discrete

uniform distribution to form a bigram combination.

3. If the f(t) from Eq. (1) improves with this new

character combination, the initial key is updated.

Through multiple experiments, we have observed that

iterating the above process more than around 3,000 times

tends to converge f(t). Therefore, we repeated the

procedure 3,000 times, ultimately resulting in the

creation of one candidate key.

We note that the proposed algorithm produces non-

deterministic outcomes due to the randomness in index

selection, which results in varied candidate keys. Fig. 5

shows the average decryption accuracy of n candidate

keys (n = 10, 20, 30, 40, and 50) generated by both [7]

and our algorithm for a given ciphertext of length 171.

Compared to Jakobsen's method, which consistently

shows the same decryption accuracy, our algorithm's

results exhibit a larger standard deviation. Notably, the

average decryption accuracy does not significantly

change with an increasing number of keys. Therefore, we

generate ten candidate keys, including the one from [7],

as it demonstrates stable performance on longer texts.

B. Phase 2: Finding Secret Key via Dictionary
API

Once the candidate keys are generated, we use them to

identify the secret key that the attacker is seeking. First,

we replace all non-alphabetic characters (e.g., quotation

marks) in the ciphertext with spaces (‘ ’), then we split

the ciphertext using spaces to create word tokens (T
c
).

Next, we decrypt each token using the candidate keys to

produce options, which are later then ranked collectively

to determine the secret key. The number of options may

be fewer than 10, since some candidate keys might

produce the same result for a given word token. We use

the dictionary API [13] to map paronyms (words that are

pronounced or written in a similar way) to each option

and identify the best word among the recommended

words. 

To achieve this, we referenced the ranking method

from information retrieval theory [14] to devise a

formula. Fig. 6 illustrates the process that we used to

select the optimal word for a given token. The value S,

which represents the recommendation score for each

word, is calculated as follows:

S = count × (1 + log10(reputation)) × length. (2)

Here, count represents the number of times the word is

found; if a particular word appears multiple times across

several options, it is given more weight. The reputation

Fig. 5. Accuracy percentage comparison between Jakobsen's
method and the proposed index selection algorithm.

Fig. 6. Process of selecting the optimal word Tp based on
options for a given token Tc. 



A Robust Decryption Technique Using Letter Frequency Analysis for Short Monoalphabetic Substitution Ciphers

Dayeong Kang and Jiyeon Lee 149 http://jcse.kiise.org

indicates the popularity of the word as provided by the

dictionary API. The length of the word is also considered,

as longer words tend to provide more specific results,

thus giving them higher weight [15]. Finally, the word

with the highest S is designated as T
p
.

The S values are compared with those of other tokens

to prioritize key updates. To manage this process

efficiently, we store tuples of (S, T
c
, and T

p
) in a max

heap. We also create an empty list to store the resulting

key and update it by sequentially extracting tokens from

the max heap. If the length of the token being examined

is less than 4, we initially postpone updating the key by

adding it to the end of the queue, as immediate updates

might lead to collisions in subsequent operations. For

other cases, we convert T
c
 to T

p
 and update the key if

there is no conflict with the key that has been thus far

determined. If a key conflict occurs, we leave the conflicting

characters as unknown values and attempt additional

word searches for the token. Finally, the characters are

converted into a new recommended word composed of

non-conflicting characters.

There may still be unresolved characters after finishing

this procedure. In such cases, we complete the procedure

by arbitrarily assigning unused letters in the key, thus

ensuring that there are no conflicts with the key. For

example, if there are no corresponding keys for A, B, and

C in the ciphertext and the unused letters in the key are x,

y, and z, we sequentially map A to x, B to y, and C to z.

Finally, the completed secret key and the plaintext

decrypted with this key are printed, and the program is

terminated.

VI. EVALUATION

To assess the effectiveness of the proposed cryptanalysis

technique, we employ two evaluation metrics: decryption

accuracy and performance overhead. We implemented

both Jakobsen's method and our approach using Python,

NLTK [16], and NumPy [17], and we conducted a

comparative analysis of performance. For the experiments,

we randomly selected 50 sentences of varying lengths

(100, 200, 300, and 400 characters) from the book,

Alice's Adventures in Wonderland [18]. We generated

secret keys using a random function to encrypt these

sentences, ultimately resulting in a total of 200

ciphertexts used in our experiments. We decrypted these

ciphertexts using keys that were obtained from both

techniques and evaluated the similarity between the

deciphered text and the plaintext by calculating accuracy,

which was defined here as the number of characters

matching the plaintext after decryption divided by the

total length of the string. We also measured the execution

time of both techniques to assess the performance

overhead of the decryption process. All experiments were

conducted on a machine equipped with a 3.20 GHz CPU

(Intel Core i9-14900K) and 32 GB RAM.

A. Decryption Accuracy

Fig. 7 shows the decryption accuracy of both methods

across ciphertext lengths ranging from 100 to 400

characters. Each plot represents the average accuracy

calculated from 50 ciphertexts. As shown in Fig. 7, our

approach (labeled as OURS) achieves decryption

accuracies of 54.6% and 84.1% for ciphertext lengths of

100 and 200 characters, respectively. This surpasses the

performance of Jakobsen's method (labeled as Jakobsen)

by up to 26.9%. We note that, in Phase 2 (as described in

Section V-B), it is possible that human intervention can

improve decryption accuracy and speed, depending on

the decryptor's language proficiency. However, due to

variability in human language skills, our evaluation

focuses on the automated version, which demonstrates

sufficiently high accuracy for plaintext interpretation.

For a more comprehensive understanding, we assessed

the decryption accuracy at each phase of our method.

Fig. 7 presents OURS-Phase1-only, thus showing the

decryption accuracy achieved using the key with the

lowest f(x) after Phase 1. Remarkably, executing Phase 1

alone results in a significant performance improvement

when compared to Jakobsen's method. This highlights

that examining a broader range of bigram combinations

can effectively boost decryption accuracy. Further,

applying Phase 2 (OURS) yielded an increase of

accuracy up to 6.5% when compared to OURS-Phase1-

only for ciphertexts of length 200. By contrast,

incorporating Phase 2 in Jakobsen's method (labeled as

Jakobsen-with-Phase2) led to a marginal improvement

(up to a 1.6% increase) when compared to Jakobsen.

These results suggest that leveraging multiple candidate

keys in Phase 2 significantly influences decryption

performance.

B. Performance Overhead

Fig. 7. Comparison of accuracy percentages between our
proposed method and others. 
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We now discuss the performance overhead of the

decryption process. Table 1 presents the comparison of

execution times between the two techniques. As can be

seen in the results, the most significant overhead occurs

during Phase 2. Decrypting a ciphertext of length 100

took approximately 2.45 minutes, while the time needed

to decrypt a ciphertext of length 400 increased to a

maximum of 5.11 minutes. This is primarily attributable

to the time spent querying the dictionary API; decrypting

more tokens or frequently re-queuing tokens results in

longer processing times. The results of execution time for

Phase 1 (referred to as OURS-Phase1-only) show that our

index selection algorithm takes about 10 times longer

than Jakobsen's method due to the time taken in

generating multiple candidate keys. Nevertheless, it

maintains a reasonable execution time of approximately

0.28 seconds for the longest ciphertext length. Therefore,

attackers who are constrained by decryption time can

selectively choose from different attack procedures to

mitigate performance overhead.

VII. CONCLUSION

In this paper, we focused on substitution ciphers and

proposed an effective decryption method that is tailored

to short sentences, thus addressing the limitations of

traditional letter frequency analysis methods. Through

empirical experiments, we found that existing approaches

diminish decryption performance by considering

deterministic letter combinations when analyzing bigram

frequencies. To overcome this challenge, we have

introduced a new index selection algorithm and proposed

a novel dictionary-based decryption technique. We

generated multiple candidate keys through bigram

analysis and selected the most prominent word from

these candidates to decrypt the text. Our proposed

method ultimately achieved a decryption accuracy of

84.1% for short ciphertexts of length 200, representing a

147.1% improvement over existing methods. The

decrypted text obtained from our method is deemed to be

sufficiently interpretable by human cognition, thus

validating its efficiency for use with short ciphertexts.
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