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Abstract
Weeds need to be removed from the immediate areas surrounding crops as they compete for soil nutrients. Farmers cur-

rently clear weeds manually, which is both tiring and imprecise. Therefore, researchers have developed artificial intelli-

gence (AI) using deep learning or non-handcrafted methods to facilitate precise detection. However, these methods have

yet to achieve real-time inference speeds. Consequently, this study adopts a handcrafted approach that employs visual

leaf features for classification via ensemble learning. The objective is to employ feature selection and data normalization

to create an accurate and efficient machine-learning model. The experimental findings obtained in this work demonstrate

that Information Gain effectively reduces features by 50%, from 22 to 11, while maintaining accuracy. Chebyshev nor-

malization emerges as the most suitable normalization technique, as it significantly enhances classification accuracy in

ensemble learning. The accuracy obtained when using histogram gradient boosting is found to be 0.92 with an inference

time of 5.955 ms per image. These outcomes illustrate that handcrafted features achieve higher accuracy than non-hand-

crafted methods, ultimately improving efficiency and enabling real-time implementation.

Category: Artificial Intelligence
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I. INTRODUCTION

Artificial intelligence (AI) is a critical tool in modern

agriculture, as it is indispensable in accurately identifying

weeds in corn fields. Weed management must be completed

in a timely fashion since weeds are likely to significantly

reduce crop yields by competing with crops for nutrients,

light, and space [1]. The integration of AI in processing

agricultural data through images is one way that weed

and crop identification approaches are being modernized.

AI is trained on such data to recognize patterns and make

accurate and fast decisions regarding weed and crop

identification [2, 3]. Further, the use of AI in corn and

weed identification significantly reduces the application

of chemical herbicides, lowers production costs, and

promotes environmentally friendly and sustainable practices
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[4]. Overall, existing studies suggest that AI will find

increasing use in agriculture research and development as

well as real-world applications.

One application of AI for identification involves the

use of deep learning or non-handcrafted features. However,

using deep learning in the context of corn and weed

classification poses significant challenges related to data

processing speed [5]. Although deep learning techniques

are known for their ability to produce models with very

high accuracy [6], their architectural complexity and large

computational requirements often make them impractical

for field applications [7], particularly in areas with limited

computing resource availability. This is a problem because

a fast detection speed is required for weed control with

real-time detection needs. Therefore, the present research

focuses on developing lighter and faster methods using

machine learning approaches; this is why the features are

handcrafted. Using this approach, it is possible to achieve

a balance between high detection accuracy and processing

time efficiency that facilitates effective application in the

field.

There are several options among machine learning

methods. Ensemble machine learning has various advantages

over traditional machine learning, which strengthens its

predictive performance in weed detection [8-10]. Ensemble

learning is a technique that involves combining the

predictions of numerous models to generate more accurate

and robust output. This approach often outperforms the

capabilities of individual models. This method also

effectively reduces variance and bias [11], which are the

two primary sources of error in machine learning, by

integrating the strengths of various models as well as

compensating for their weaknesses. In an ensemble, it is

possible to minimize the overfitting tendencies of complex

models because errors from one model tend to be

compensated for by other models in the ensemble [12].

Therefore, the current research will use an ensemble

machine-learning approach.

One of the main difficulties in applying machine learning

with handcrafted features is selecting the features that are

most effective and efficient. This important task is due to

the complexity of image data, including the considerable

variation in shape, texture, and color that is seen in

weeds. Feature selection is a crucial step of handcrafted

approaches, as it allows for the enhancement of machine

learning accuracy and the minimization of deficiencies in

ensemble learning [13, 14]. The key aspect is determining

and selecting the most relevant features that should guide

the decision-making process. Such a process helps decrease

the data's complexity and facilitates the training time.

This process also minimizes the risk of overfitting,

thus allowing for noise or irrelevant features to be

excluded, which may lead to a case in which the machine

learning model cannot detect patterns in the feature set

learning [15]. In ensemble learning, which is characterized

by the merging of several models to ultimately make

more precise predictions, it is essential to use feature

selection to improve the quality and effectiveness of such

combinations [16]. This process also enhances the

performance of each model in the ensemble, as it only

involves the use of high-quality features. As a result,

models may focus on the most critical aspects of data to

help recognize patterns accurately. Efficient feature

selection contributes to the performance improvement

that can be achieved by ensemble learning by ensuring

that only the most relevant and effective information is

used for decision-making. As a result, systems can make

predictions with greater precision.

The features that are selected through feature selection

still contain numbers with varying scales, because they

use handcrafted color, shape, and texture features. The

obtained features may be biased at certain feature scales

[17], so it is necessary to apply data normalization. This

process helps reduce distortion caused by features with a

wide range, thus allowing the algorithm to focus more on

important patterns rather than differences in scale.

Normalization also improves the numerical stability of

the algorithm and can speed up the training process [18].

One data normalization method is distance normalization.

Using the distance normalization techniques on handcrafted

features, specifically within machine learning applications

such as corn and weed classification, offers distinct

advantages over other normalization methods. For example,

Wang et al. [19] used distance normalization before initiating

the training stage using machine learning. Distance

normalization has a very significant effect on accuracy,

and it also reduces model complexity. Therefore, this

research adopts distance normalization by evaluating

several distance algorithms.

The main objective of this research is to apply feature

selection and distance normalization on handcrafted features

to ultimately build an accurate and efficient model using

ensemble learning. It is hoped that this handcrafted

approach can obtain a model that is not excessively

complex, such that it is more efficient when carrying out

the model inference process. Distance normalization can

also increase the efficiency of the training stage. The

contributions of this research can be broadly described as

follows:

● It explores the use of distance algorithms for data

normalization to improve the accuracy and efficiency

of the training stage.
● It explores feature selection methods to search for

relevant features.
● It evaluates the different ensemble learning methods

in comparison with traditional machine learning

methods.

The rest of this paper contains the following sections:

Section II is a literature review of feature selection and

normalization methods. Section III is a research methodology

that explains data input in terms of feature selection and
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data normalization. Section IV discusses the results and

relevant insights from the research experiment. Finally,

Section V concludes this work.

II. LITERATURE REVIEW

Machine learning and computer vision techniques have

increasingly been implemented in precision agriculture

with a special emphasis on weed detection. This represents

a task of paramount importance, given that it can help

improve crop management techniques, reduce herbicide

application, and improve crop productivity. One of the

approaches to consider is the utilization of manually

designed features as well as generated and handcrafted

data features from the images to retrieve important

information regarding the visual properties of weeds

regarding crops. However, in most cases, there are two

crucial preprocessing steps that should be considered to

achieve the best results with models that use manually

designed features: data normalization and feature selection.

A. Feature Selection

The performance and significance of feature selection

in different domains, such as machine learning, data

mining, and pattern recognition, have represented some

of the critical and widely discussed topics in recent years.

The available literature suggests that, among the

numerous methods that are available, Information Gain is

superior in multiple contexts. In particular, Kilic et al.

[20] underscore the method's effectiveness in typical

feature selection techniques when compared to traditional

methods such as gain ratio, chi-square, and ReliefF.

Further, in their comparative study of correlation feature

selection using the bat algorithm (CFS-BA), Lehavi and

Kim [21] found that the model-building efficiency and

accuracy of CFS-BA are significantly high, and that they

can closely match the best random forest Information

Gain. 

This led to Information Gain being used for feature

selection to predict the performance of tumor detection

processes on microarray data [22]. The inclusion of the

described analysis method, as part of grey wolf optimization

and search, was shown to reduce the computational load

and enhancement of prediction accuracy, which was

critical to improving tumor detection. The Information

Gain method has also been shown to enhance the

accuracy of developed predictive models in the context of

epileptic seizure classification [23]. Finally, in a study

focusing on the development of household big data,

Nuanmeesri [24] highlights that the feature selection

method has superior efficacy when compared to other

methods that are used to analyze errors in the data.

Overall, the results of the described studies indicate

that the application of Information Gain for feature

selection has a significant effect in multiple research

fields, thereby enhancing model accuracy and reducing

computational load. At the same time, when implementing

the method, it is critical to test the accuracy of the model

for each level of feature ranking, as is done in other

information-based approaches, and it is also important to

make feature selection decisions that are based on

extracting attribute information from gain measurements

while considering the proper interaction between features;

therefore, it is necessary to use an iterative evaluation to

achieve the optimal balance between model complexity

and performance efficiency.

B. Data Normalization

Recent studies using pre-processing methods for data

normalization have been able to prove the significance of

this procedure in enhancing the performance of machine

learning models. The normalization methods that were

most commonly employed were min-max scaler, z-score,

MaxAbsScaler, and RobustScaler. Each of these approaches

has specific usages and benefits for tackling issues like

outliers and dissimilar feature scales. 

Min-max scaling to normalize all features to the same

range has been reported to result in compression of the

feature distribution in the presence of outliers [25]. Silva

et al. [26] employ z-score normalization as a method to

normalize the features to a mean of zero and a standard

deviation of one, thus reducing the impact of outliers.

Zhang et al. [27] use another normalization type,

RobustScaler, to address the problems with outliers that

could not be solved by min-max scaling. This method is

more suitable for datasets in which non-uniform data

dominates or extreme outlier datasets.

In this context, distance normalization is a new concern.

Lafuente et al. [28], explained the promising potential of

distance normalization in maximizing model performance.

Distance normalization tunes the data by processing the

data based on the point distances. The authors claim that,

through this process, the scaling of a feature based on

distance adjustment can better reflect the intrinsic nature

of the data. Distance normalization highly accents the

norm on distance, which is shown as an alternative distance

ratio from the starting point. Their results in recent years

indicate that these approaches to processing data structure

are useful for catering to cost and benefit preferences

[29]. The critical feature of distance normalization is that

the relationships of distances from the normalized point

remain. As a result, the model processes this information

to learn more accurately and generalize the patterns.

In summary, the use of a different number of normali-

zations returns different solutions for data pre-processing.

One of the possible approaches, distance normalization,

shows promising potential for boosting machine learning's

performance in obtaining distance information. The

current study suggests that this is in some concerns the
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superior model, particularly when the intrinsic search of

the data structure is the primary stage. However, the

question here is what distance is optimal for the weed

problem when only three handcraft features are applied:

color, shape, and texture. This is a crucial consideration

to evaluate to obtain the best machine learning accuracy.

III. RESEARCH METHODOLOGY

The classification step demands data acquisition in the

form of images of weed and corn seeds. The first pre-

processing step for uniformity across all data points

involves resizing the images. Secondly, a Gaussian blur is

applied to the images to reduce noise in the image and the

detail present. Finally, HSV color space is used, which is

appropriate for image segmentation. Segmenting the data

to identify the area of leaves involves color thresholding

for green, followed by morphological operations to clean

up the regions and then masking these regions. Handcrafted

features are then extracted in the region. Feature selection

experiments are conducted in this research to decide on

the most informative attributes, and the data values are

normalized to obtain uniformity in the feature scale.

After that, the data that have been pre-processed and

optimized for features are split into several training and

test sets. The experiment concludes with a final step of

measuring the system's performance with evaluation

metrics applied to the ensemble learning algorithm used

for classification. Fig. 1 depicts the flow of this research.

A. Data Acquisition

This research utilized a dataset that Jiang et al. [6]

compiled from a corn plant nursery in 2016 using a

Canon PowerShot SX600 HS camera. The images were

taken from a vertical perspective above the plants. This

dataset comprises five distinct classes: Cirsium setosum,

Chenopodium album, bluegrass, sedge, and corn. Each

image has a resolution of 800 × 600 pixels and is in full

RGB color. In this research, the data configuration is such

that 80% of the data is used for training and 20% is used

for testing. Table 1 presents examples from the dataset

and the proportion of each class.

B. Data Pre-processing

In this study, the initial data preprocessing stage involves

resizing the dataset images to a uniform dimension of

Fig. 1. The flow of corn-weed classification.

Table 1. Example data

Example of data Training data Testing data

Cirsium setosum

960 240

Chenopodium album

960 240

Bluegrass

960 240

Sedge

958 240

Corn

960 240
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200 × 200 pixels. This standardization is critical for

consistency in the scale of the leaf objects due to the use

of handcrafted features. After resizing, a Gaussian blur is

applied to diminish image noise. The final step in

preprocessing involves transforming the color model

from RGB to HSV, which is instrumental for the

subsequent data segmentation process, particularly the

green hues in the HSV color space.

C. Leaf Segmentation

The segmentation phase is conducted to distinguish the

leaf areas from the surrounding soil or other objects—this

study's feature extraction is only in the leaf regions, as it

utilizes handcrafted features. The segmentation leverages

a color spectrum ranging from light to dark green,

specifically within the range from (20; 20; 50) to (80;

255; 240). After the isolation within the green spectrum,

any existing holes in the leaf structures are sealed using

morphological operations. The culmination of this

segmentation process involves masking the original

image, ultimately allowing the RGB color of the leaf

areas to be utilized during the feature extraction phase.

An illustrative example of the result of segmentation is

provided in Fig. 2.

D. Feature Extraction

In machine learning for agricultural applications,

particularly in corn and weed classification, it is crucial to

extract handcrafted features to distinguish between weeds

and crops based on their visual characteristics. This

research uses handcrafted features that are categorized

into three groups: color [30], shape [31, 32], and texture

[32], each offering unique insights into the physical

attributes of the plants that can be observed through

images. The color features in this research are the mean

and standard deviation of RGB color. The shape features

are solidity, eccentricity, circularity, compactness, and Hu

moments. The texture features are angular in the second

moment, contrast, inverse different moments, entropy,

and correlation.

Color features are essential for identifying the plant

species [33], and they are calculated using the mean and

standard deviation of RGB color channels. The mean

color value measures the intensity of a particular color in

an image or segmented region. The standard deviation

reveals the color variance, which indicates the possible

colors in the region of interest. These colors are

important in corn and weed classification, as weeds have

different colors than corn. 

The shape features are related to the leaf geometry,

which is described using solidity, eccentricity, circularity,

compactness, and Hu moments. Solidity indicates the

filling degree of a region, and it therefore indicates the

extent of compression in the leaf structures. Eccentricity

measures the elongation of a region, which can be used to

differentiate corn from weeds. Circularity and compactness

represent how close a region appears to be to a circle,

which helps classify leaves with similar shapes. Hu

moments are invariant descriptors that provide a global

description of leaf shape such that they can discriminate

geometries in the presence of distortions in orientation,

scale, and position. These features all facilitate the

identification of weeds and corn based on their geometry

[34]. 

Texture features analyze the patterns and structural

differences in the surface of objects [35]. These include

angular second moment, contrast, inverse difference

moment, entropy, and correlation. The angular second

moment reveals the texture of an object as being smooth

or rough. The contrast is the color or luminance level

difference, which can make an object unique. The inverse

difference moment describes the texture homogeneity,

while entropy is the texture complexity manifesting

roughness in the surface. Correlation reflects the linearity

of pixel traces and indicates periodicity in the trace mark.

Texture features are useful in corn and weed classifi-

cation because they show the morphology of the surface

of the leaf and the stem, which can help identify corn and

weed. 

Machine learning models can differentiate between

corn and weeds because of the precise computation and

analysis of these features. This accurate knowledge

assists in the establishment of exact classification systems

to enhance weed management and corn productivity

because of the precise creation of the classification

model. Therefore, the total number of features is 22, and

Fig. 2. Example segmentation result: (a) Cirsium setosum, (b) Chenopodium album, (c) bluegrass, (d) sedge, and (e) corn.
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the analysis must be performed with a feature selection to

acquire the most significant features for the optimal

accuracy of the machine model.

F. Feature Section

Information Gain is used to select relevant handcrafted

features. In corn and weed classification, the most

important features are determined to include color, shape,

and texture attributes, which can help in the differentiation

of crop and weed instances. Selecting the most useful

features helps reduce the model's complexity and

improve its interpretability and performance. Information

Gain is one of the most used feature selection methods.

Feature selection is done using entropy values. In this

method, the features will be ranked based on their values

[36]. The largest value of the ranking is the most relevant

feature, and the relationship with the related dataset is

strong. The method will rank the features based on the

entropy value that is found using one of the classes before

and after observing the same data. The first phase

consists of finding the value of the entropy using Eq. (1):

, (1)

where S is the sample (record or total), m is the maximum

number of features, and Pi is the ratio of the number of

samples in class i to the total sample. Then, the entropy

value after weighing each feature is calculated using

Eq. (2):

, (2)

where n is the number of values in the class, Pj is the ratio

of the total sample j to the total samples in the feature,

and Ent(Sj) is the entropy value for sample j. The

Information Gain value can be obtained by reducing

Eqs. (1) and (2), as shown in Eq. (3):

. (3)

The present research incorporates a comprehensive

approach to feature selection by evaluating various

methods, alongside Information Gain, to identify the

most relevant handcrafted features for corn and weed

classification. We will conduct a comparative analysis

using different feature selection methods, namely Fisher

ratio, random forest importance, chi-square test, recursive

feature elimination (RFE), Pearson correlation, and

sequential forward selection (SFS).

1) Fisher ratio: This approach assesses the discriminatory

power of each feature by using the Fisher criterion

[37]. This criterion computes the variance ratio

between classes to the variance within subclasses

for each feature. A higher Fisher score suggests that

a trait has better discriminatory power for discrimi-

nating between different classes. This capability is

particularly useful when the features are both

normally distributed. 

2) Random forest importance: This is a technique that

measures the importance of the features based on

the Random Forest algorithm, one of the popular

ensemble learning algorithms [38]. In random forest,

one tree is formed using one bootstrap sample of the

data. The importance of features is given by the

decrease in accuracy in the out-of-bag samples that

occurs after excluding a feature. It is robust enough

to overfit and good at handling high-dimensional

data. 

3) Chi-square test: This is a statistical technique that is

used to determine whether there is a significant

association between two categorical variables [39].

It is calculated between each feature and the target

within the feature selection process. A high value

implies that the features are unlikely to be independent

of class. It is mostly used on solely positive data. 

4) Recursive feature elimination: In this backward

selection process, the least important features are

recursively discarded based on the significance given

by the model's importance scores or coefficients

[40]. This process has many applications, like in

support vector machines, which rank features based

on their effect on the model's performance.

5) Pearson correlation: This measures the linear corre-

lation between two continuous variables, which—in

feature selection—can be applied between each

feature and the target variable [41]. Features with

high absolute correlation values are considered to

be more relevant. However, it only captures linear

relationships and might miss nonlinear dependencies.

6) Sequential forward selection is a wrapper feature

selection methodology wherein a vacant model is

initially utilized. The features that yield the most

substantial enhancement in model performance are

added in order of importance until the addition

ceases to improve performance substantially [42].

Although it is computationally demanding, this

method has the potential to produce feature subsets

that are highly optimized.

By evaluating these feature selection methods in

conjunction with Information Gain, the research aims to

systematically identify the most predictive handcrafted

features for corn and weed classification, in the process

enhancing the effectiveness of the classification model

used in this domain. Each method brings a unique

perspective on feature relevance, ultimately allowing for
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a more nuanced understanding of feature importance in

the context of agricultural image analysis.

F. Data Normalization

After using feature selection to select the most relevant

features for a machine learning task, it is crucial to

normalize these features to ensure that the model treats

them equally during training and prediction. Normalization

is a procedure that involves adjusting the scales of the

features so that they have comparable ranges and

distributions [43]. This process is essential since most

features vary widely in magnitudes, units, or ranges. The

reason for the significance of this step is that features

with larger numerical values can dominate those with

smaller ones, ultimately leading to inaccurate predictions.

The results of different features might also be biased

based on the scale of the features in consideration.

Notably, distance normalization is a common type of data

normalization [19]. This is because, in many cases, the

distance between data points is used to make decisions

based on the characteristics of data points. For example,

in the case of corn and weed classification, handcrafted

features could include measurements that are related to

the color, shape, and texture of plants, among others. The

process of normalization guarantees that the distance

calculations weigh each feature in such a manner that

ensures that one category of features does not dominate

the rest due to its scale. In this research, the distance

normalizations that are considered include Euclidean,

Manhattan, Minkowski, and Chebyshev.

1) Euclidean normalization: This transforms the input

vector such that its length (or its Euclidean norm) reaches

unity. Mathematically, the Euclidean normalization of

vector x is vector , where each element  is calculated

using Eq. (4):

. (4)

2) Manhattan normalization: This transforms the input

vector so that the absolute number of its elements is one.

Eq. (5) calculates each element  of the vector .

. (5)

3) Minkowski normalization: This is a generalization

of Manhattan and Euclidean normalization, where the

Minkowski norm of a vector is defined by Eq. (6):

, (6)

where p is a parameter that determines the normalization

order. p = 1 corresponds to Manhattan normalization, and

p = 2 corresponds to Euclidean normalization. Meanwhile,

Minkowski normalization uses p = 3.

4) Chebyshev normalization adjusts the input vector by

measuring the largest distance from zero among all

vector elements. In the context of normalization, this

involves dividing each vector element by the largest

absolute value of all its elements, as shown in Eq. (7):

, (7)

where  is the maximum of the absolute values

of the elements in vector xj.

This research will also evaluate several other normali-

zation methods: min-max scaling, z-score normalization,

robust scaling, and quantile transformation. Evaluating

these methods will help determine the most effective

approach for normalizing handcrafted features for corn

and weed classification, in turn potentially improving the

accuracy and robustness of models.

G. Ensemble Machine Learning

The classification of corn and weed species is a critical

task in precision agriculture. Ensemble learning techniques,

such as histogram gradient boosting (HistGBoost),

LightGBM, and random forest, are currently the most

used methods in tackling this difficulty because of their

resilience and precision. HistGBoost enhances performance

by efficiently handling continuous features, while

LightGBM offers speed and effectiveness. Random forest

contributes to the ensemble's diversity, offering multiple

deep decision trees that prevent overfitting.

1) The HistGBoost classifier is an advanced ensemble

machine learning algorithm that builds upon the

principles of gradient boosting by using decision

trees as the base learners [44]. Fig. 3 depicts the

HistGBoost method. This method begins with

continuous handcrafted features and custom-designed

numerical input variables. These continuous features

are then subjected to a discretization process in

which they are converted into a finite number of

intervals or bins, and where they are ultimately

transformed into discretized features. This discretization

is a form of feature engineering that simplifies the

data without losing the essence of the information it

conveys. Following this discretization, feature

histograms are created for each feature. These

histograms are graphical representations showing

the frequency distribution of the data across the

defined bins. In machine learning, particularly in

the HistGBoost algorithm, these histograms allow

for efficient calculation of the best splitting points in

decision trees by quantifying the distribution of data
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points within each feature. In the final step, the

decision tree is employed to train the data. A

decision tree is a model consisting of branches and

nodes, which represent decisions that are made

based on the input attributes.

2) LightGBM, or light gradient boosting machine, is a

distributed, rapid gradient boosting framework that

is based on decision tree algorithms [45]. It stands

out due to its exceptional efficacy and speed, which

it achieves through two innovative approaches:

gradient-based one-side sampling (GOSS) and

exclusive feature bundling (EFB). GOSS allows

LightGBM to focus more on informative instances

while reducing less important ones, thus maintaining

accuracy while accelerating computation. EFB

efficiently combines mutually exclusive features,

significantly decreasing dimensionality without

compromising performance. Fig. 4 shows a comparison

between XGBoost and LightGBM. XGBoost

constructs trees using a level-wise strategy where all

nodes at a given depth are evaluated and expanded

before progressing to the next, ensuring that trees

are balanced but at the cost of reduced efficiency, as

it involves evaluating more potential splits, even if

it is ultimately better for reducing loss.

3) By contrast, LightGBM utilizes a leaf-wise growth

strategy that involves expanding only the most

promising node at each iteration, regardless of its

depth in the tree. This can lead to deeper but more

unbalanced trees. This method is more compu-

tationally efficient as it allows the algorithm to

converge faster by focusing on the splits that

provide the most significant gains in terms of loss

reduction.

4) Random forest: This is an ensemble learning method

for classification and other tasks that operates by

constructing a multitude of decision trees at training

time and outputting the class, which is the mode of

the classes (classification) of the individual trees

[46]. Fig. 5 illustrates the flow of the random forest.

The procedure commences with the initial training

dataset, which comprises several features (a, b, c, d)

along with the label of the target class (y). The

Fig. 3. Illustration of histogram gradient boosting.

Fig. 4. Difference between XGBoost and LightGBM.

Fig. 5. Illustration of random forest.



Journal of Computing Science and Engineering, Vol. 18, No. 3, September 2024, pp. 152-168

http://dx.doi.org/10.5626/JCSE.2024.18.3.152 160 Faisal Dharma Adhinata et al.

random forest algorithm generates multiple subsets

of this data through bootstrap resampling, allowing

for the creation of different data samples with

replacement, which means that some instances can

appear more than once within the same subset or

across multiple subsets. For each of these bootstrap

samples, a decision tree is grown. However, to

ensure that each of these trees is unique, the

algorithm selects a random subset of candidate

features for the best split at each node rather than

considering all features. This step infuses randomness

into the model and helps de-correlate the trees in the

forest. For instance, the first tree considers features

"a" and "b" for the best split, while the second tree

might consider features "b" and "d." Each tree is

constructed independently and fully grown to its

maximum size without pruning, ultimately ending

as a strong learner within the ensemble. When

making predictions, each tree casts a vote for a

class, and the final prediction for a new sample is

determined as a result of a majority vote from all

trees in the forest. The diagram shows individual

predictions of different trees, which are represented

by blue and green dots for classes such as bluegrass

and corn.

H. System Evaluation

In the research of corn and weed classification, a

comprehensive evaluation will be used to focus on the

accuracy and inference time of the model. Accuracy

metrics will be measured using the sklearn library in

Python, which is a standard tool for such tasks in machine

learning. The model performance will be evaluated using

various normalization techniques, including min-max

scaling, z-score normalization, robust scaling, quantile

transformation, and Euclidean normalization. Feature

selection will also be executed using different methods,

such as Fisher ratio, random forest importance, chi-

square test, RFE, Pearson correlation, and SFS.

The evaluation will examine multiple facets of this

research. First, the impact of the feature selection level

will be explored by using datasets with varying numbers

of selected features, starting from 75% of the total

available data as determined by the optimal selection

method. Distance normalization algorithms, including

Euclidean, Manhattan, Minkowski, and Chebyshev, will

be experimented with to determine their effect on

accuracy. Ensemble model configurations and prediction

speeds will be inspected to optimum accuracy and

inference time. This research will use multi-step

evaluation to classify corn and weed. A combination of

normalization techniques, feature selection, and learning

parameters will be evaluated. The aim is to enhance both

accuracy and inference time performance to contribute to

precision farming applications.

IV. RESULTS AND DISCUSSION

A. System Configuration

For corn and weed classification, this research utilizes

a workstation featuring a 6-core CPU and 8 GB of RAM

within a Core i5 processor for robust data processing and

modelling. This research also utilizes Python 3

programming language. To elaborate, this research uses

the following libraries: the numpy library is used for

array manipulation and numerical operations, the sklearn

or sci-kit-learn library is used for machine learning tasks,

and the time library is used to determine how long it will

take the model to train and infer. Light gum is also used

to implement the LightGBM algorithm. These libraries

are vital for this research, as they enable the development

and evaluation of a classification model.

B. Result of Feature Selection using Information
Gain

The outcome of the feature selection using Information

Gain has provided valuable insights for corn and weed

classification. The data has been feature-selected using

Information Gain, which uses the 10 best features based

on their ranking [47]. Based on the scores obtained in this

way, the top 10 features are found to be the most

informative in distinguishing between corn and weed

classes. Fig. 6 shows the results of feature selection using

Information Gain.

Correlation has the highest Information Gain score,

indicating its strong discriminative power in the

classification task. It is followed in order by GreenVar

and GreenMean, which suggest that variations and

average values in the green color channel are crucial for

classification. RedMean and BlueMean are also identified

as necessary, thus highlighting the significance of mean

color values in red and blue channels. Additional features

that made it into the top 10 are entropy, which assesses

the randomness and, consequently, the textural information

Fig. 6. Results of feature selection.
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in the images, and RedVar and BlueVar, which indicate

the fluctuations in the red and blue channels, respectively.

The Hu moments, specifically the H3 and inverse

difference moments, are also found to be statistically

significant, thus providing information on shape and

texture that is essential in distinguishing between

different plant species. The scores reflect the relative

importance of these features, with the chosen top 10

offering the most valuable information for the classifier.

These features are expected to be instrumental in training

accurate and robust machine learning models for the task

at hand, with the ultimate aim of achieving high

performance in separating corn plants from weeds using

handcrafted features.

C. Effect of Data Normalization on Ensemble
Learning

The results from the corn and weed classification study

compare accuracy across three different ensemble learning

models: random forest, HistGBoost, and LightGBM.

These models were evaluated using various data

normalization techniques to determine their impact on

classification accuracy. Table 2 lists the effects of data

normalization on ensemble learning accuracy.

The accuracy of classification studies employing

ensemble learning algorithms, such as random forest,

HistGBoost, and LightGBM, exhibits substantial variation

based on the data normalization technique used. The

accuracy results without data normalization using the

random forest method are 0.84, HistGBoost of 0.873, and

LightGBM of 0.871. Using min-max scaling did not

significantly improve random forest accuracy but did

result in minimal improvements for LightGBM. Using z-

score normalization showed a slight increase in accuracy,

namely in random forest of 0.842 and HistGBoost of

0.874, but in LightGBM, it decreased to 0.867. Robust

scaling provides consistent results for random forest

along with mild improvements for LightGBM. The

quantile transformation method provides almost the same

results without normalization, indicating that this

technique does not significantly change the accuracy of

the models tested. 

Taken together, these results indicate that implementing

data normalization using Euclidean normalization produces

the best accuracy in all models. Random forest improved

to 0.887, HistGBoost peaked at 0.905, and LightGBM

significantly improved to 0.897. This confirms that

selecting an appropriate normalization method is critical

in maximizing the model's potential in classification

tasks. Therefore, the following experiment uses Euclidean

normalization for pre-processing.

D. Effect of Feature Selection on Ensemble
Learning

The Fisher ratio, random forest importance, chi-square

test, RFE, Pearson correlation, SFS, and Information

Gain feature selection methods were evaluated in testing

this feature selection method. The number of features to

be taken was 10. The data normalization used was

Euclidean normalization. Table 3 lists the results of the

influence of the various feature selection methods used.

The results demonstrate the efficacy of the three

examined machine learning models, random forest,

HistGBoost, and LightGBM, in accurately categorizing

corn and weed species. The evaluation involved the use

of different feature selection strategies. All three models

were found to achieve respectable accuracy without any

feature selection, with LightGBM leading slightly at

0.863 and random forest at 0.816. The Fisher score,

which assesses features' discrimination potential, resulted

in a decrease in accuracy for random forest and

LightGBM. Using random forest importance and chi-

square as feature selection methods yielded modest

accuracy improvements over the use of the Fisher score

but did not surpass the performance of the models

without feature selection. RFE provided a slight boost to

HistGBoost and LightGBM.

At the same time, the Pearson correlation caused a

significant reduction in accuracy across all models,

implying that there is a weak linear relationship between

features and the target variable. SFS and Information

Gain emerged as the most effective feature selection

The bold font indicates the best performance of normalization method in each test.

Table 2. Results of data normalization effects

Normalization methods
Accuracy

Random forest HistGBoost LightGBM

Without normalization 0.840 0.873 0.871

Min-max scaling 0.840 0.873 0.872

Z-score normalization 0.842 0.874 0.867

Robust scaling 0.842 0.872 0.869

Quantile transformation 0.841 0.874 0.872

Euclidean normalization 0.887 0.905 0.897
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methods, as they significantly improved model accuracy.

Information Gain produced the highest accuracy scores

across all models, with a notable increase for HistGBoost

to 0.905, thus positioning it as the most beneficial feature

selection technique in this research. The method's

effectiveness in capturing the most informative features

for the classification task directly contributes to an

enhancement in the predictive performance of the model.

Therefore, the following experiment will explore the use

of information gain for feature selection.

E. Effect of Leveling in Information Gain

The use of Information Gain for feature selection

requires evaluation at each level. The output from this

feature selection process is an Information Gain value

that can be ranked. In this study, we will evaluate the use

of 16 features or select the top 75% of features based on

their ranking. The sequence of 16 features based on the

Information Gain ranking is shown in Fig. 7. This

experiment also includes an evaluation that uses

traditional machine learning algorithms, such as support

vector machine (SVM), k-nearest neighbor (KNN), and

decision tree. Fig. 8 displays the accuracy results

obtained from the Information Gain levelling experiment.

All models showed improved accuracy with an increase

in the amount of information obtained, suggesting that

having more informative features leads to higher

classification performance. All models exhibit relatively

low accuracy at the earlier levels of 1 and 2, implying

that the features used may not have been sufficiently

informative for effective discrimination between corn

and weed. However, while progressing to higher levels,

particularly from levels 4 to 13, there is a noticeable

increase in accuracy for all models, with the most

significant improvements observed in the ensemble

methods: random forest, HistGBoosting, and LightGBM.

Interesting levelling occurs at level 11, where the

HistGBoosting model reaches an accuracy of 0.912 and

LightGBM attains 0.911. The 11 most relevant features are

found to be correlation, GreenVar, GreenMean, RedMean,

BlueMean, RedVar, BlueVar, entropy, H3, inverse difference

moments, and H1. They all have comparatively high

scores, indicating robust performance in the classification

tasks. In addition, the decision tree and random forest

models demonstrate a substantial improvement at this

stage, with respective accuracies of 0.827 and 0.895. The

SVM and KNN models exhibit incremental enhancements

but fail to achieve the elevated levels of accuracy that are

demonstrated by ensemble approaches. This could be

attributable to the capacity of ensemble models to

identify and incorporate complex patterns in the data,

which is further improved by utilizing information gained

to select the most relevant features. 

The data suggests that leveraging Information Gain to

select handcrafted features can be particularly beneficial

for ensemble methods in corn and weed classification, as

The bold font indicates the best performance of feature selection method in each test

Table 3. Results of feature selection effects

Feature selection methods
Accuracy

Random forest HistGBoost LightGBM

Without feature selection 0.816 0.861 0.863

Fisher score 0.784 0.83 0.815

Random forest importance 0.805 0.823 0.830

Chi-square 0.815 0.830 0.834

Recursive feature elimination 0.807 0.840 0.835

Pearson correlation 0.559 0.588 0.590

Sequential forward selection 0.879 0.891 0.883

Information Gain 0.887 0.905 0.897

Fig. 7. Information Gain ranking results.
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these methods appear to maximize feature relevance at

higher information gain levels. Therefore, the following

experiment will use 11 handcrafted features.

F. Exploration of Distance Algorithm

This step will evaluate the use of several distance

algorithms, namely Euclidean, Manhattan, Minkowski,

and Chebyshev. The features employed consist of 11

handcrafted features resulting from the feature selection

using Information Gain. This experiment will also assess

the performance of traditional machine learning

algorithms, specifically SVM, KNN, and decision tree.

Fig. 9 displays the experimental results obtained while

utilizing variations of the distance algorithm for data

normalization.

The experiment comparing various distance algorithms

for data normalization in the classification of maize and

weed has revealed that combining the Chebyshev distance

algorithm and the HistGBoost model achieves the highest

accuracy: This combination yields an accuracy score of

0.918. When partnered with the HistGBoost model, the

Euclidean distance technique closely follows, with an

accuracy score of 0.912. The LightGBM model, which

again utilizes the Euclidean distance algorithm, also

follows closely with an accuracy of 0.911.

The Chebyshev distance contributes effectively to the

model's ability to classify the data, which could be

attributable to its emphasis on the maximum difference

between features, which might capture critical information

for this specific classification task. Table 4 presents an

example of distance normalization with the Chebyshev

algorithm. Before the normalization process, the number

scales on the features vary. For example, the GreenVar

Fig. 8. Result of levelling Information Gain.

Fig. 9. Results of distance algorithm experiments.

Table 4. Example of normalization using Chebyshev normalization

Normalization

Before After

Correlation 0.741 0.026

GreenVar 28.798 1

GreenMean 5.051 0.175

RedMean 4.074 0.141

BlueMean 3.358 0.117

RedVar 23.647 0.821

BlueVar 20.061 0.697

Entropy 0.645 0.022

H3 0.033 0.001

Inverse difference moments 0.969 0.034

H1 0.48 0.017
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and Redvar features produce large numbers of scales. The

differences are in correlation, entropy, H3, inverse

difference moment, and H1 features, where the value is

less than 1. The normalization results change the value

from 0 to 1 so that the same scale is used between features.

The results suggest that the Chebyshev distance, when

used for normalization in the HistGBoost, can achieve

enhanced predictive performance for distinguishing

between corn and weed species. 

Traditional algorithms generally show lower accuracy

compared to ensemble methods like random forest,

HistGBoosting, and LightGBM. However, they still

exhibit variability with different normalization techniques,

thus underscoring the importance of feature scaling even

when using these more basic models. The ensemble

methods, leveraging their strength in aggregating multiple

models or trees, tend to outperform these traditional

single-model approaches, particularly when paired with

the right normalization technique. Therefore, the

parameter exploration experiment here will only evaluate

ensemble learning.

G. Exploration of Parameter of Ensemble
Learning

This experiment uses a number of ensemble learning

methods, including random forest, HistGBoost, and

LightGBM. Each method is configured with the values of

relevant parameters. The n_estimators parameter in

random forest is relevant to this method since it is

responsible for the number of trees the model has in the

forest. The max_iter parameter is associated with

HistGBoost since it refers to the number of boosting

stages that the model undertakes; this parameter

influences the extent to which the model can learn the

data. The parameter n_estimators is relevant to

LightGBM as it refers to the number of boosted trees that

are constructed. This measure is crucial to LightGBM

since its capacity to address the issue is associated with

gradient boosting, which the technique applies. However,

the method also emphasizes other aspects, such as

inference time. The values of parameters of these

ensemble methods relevant to the experiment range from

60 to 100. This range is selected to assess whether there

are benefits of the performance of the model when more

trees or iterations are added to the complexity of data.

The values are measured in increments of 10. The effect

of the use of relevant parameters of ensemble learning on

performance is presented in Table 5.

Analyzing Table 5 for the ensemble learning parameter

experiment in corn and weed classification using

handcrafted features, it is evident that there are models,

random forest, HistGBoost, and LightGBM, with varying

parameters for the number of n_estimators for random

forest and LightGBM as well as max_iter for HistGBoost.

Random forest shows a slight fluctuation in accuracy,

with its highest value being 0.901, which is achieved at

several points when the n_estimators are set to 70, 80,

and 100. This indicates that there is a plateau in

performance improvement beyond a certain number of

trees, suggesting that adding more estimators does not

necessarily lead to higher accuracy. HistGBoost

consistently delivers robust performance, with accuracy

scores exceeding 0.918 across all iterations. Notably, the

model achieves its peak accuracy at 0.92 with max_iter

set to 90. There is an optimal number of iterations for this

dataset and feature set beyond which performance does

not improve and may even slightly decrease. LightGBM,

similar to random forest, does not exhibit a clear trend

with increasing n_estimators. Its accuracy hovers just

above 0.91 with minor variations; interestingly, it does

not consistently increase with more estimators. The highest

accuracy for LightGBM is 0.912, with n_estimators set to

70.

The best accuracy is obtained with HistGBoost at 0.92,

indicating its effectiveness for the given dataset. Each

model has its optimal parameters for the number of trees

or iterations, and there is no direct correlation between

the number of estimators and accuracy. These nuances

highlight the significance of parameter adjustment in

ensemble learning. This experimentation highlights that,

while the use of ensemble methods generally improves

prediction accuracy, careful tuning is critical to extracting

the best performance for specific case studies, such as

classifying corn and weed species.

H. Discussion

Handcrafted and non-handcrafted features are frequently

used in case study classifications, such as corn and weed

classification. Previous research has leaned toward deep

learning and its modified counterparts for optimal

accuracy. Each feature is handcrafted, manually crafted

based on domain expertise, or non-handcrafted, i.e.,

automatically extracted by deep learning models. Each

approach has its own set of advantages and limitations.

Table 6 presents a comparative analysis of handcrafted

versus non-handcrafted features grounded in deep learning

techniques, while highlighting how each contributes to

Table 5. Results of the parameter experiment

Number of 

estimators

Accuracy

Random forest HistGBoost LightGBM

60 0.895 0.919 0.907

70 0.901 0.919 0.912

80 0.901 0.919 0.911

90 0.900 0.920 0.911

100 0.901 0.918 0.910



Ensemble Learning Based on Feature Selection and Distance Normalization for Enhancing Corn and Weed Classification

Faisal Dharma Adhinata et al. 165 http://jcse.kiise.org

the performance and effectiveness of corn and weed

classification. We evaluate inference time using our

hardware specifications.

As can be seen in Table 6, deep learning methods like

ResNet-101 and GCN-ResNet-101 achieve higher accuracy

rates in corn and weed classification of 0.965 and 0.978,

respectively, but ensemble learning methods offer

significantly faster inference times. For instance,

HistGBoost achieves an accuracy of 0.92, which is

competitive with the deep learning models but with a

substantially lower inference time of only 5.955 ms.

LightGBM has a slightly lower accuracy of 0.912 but an

even faster inference time of 1.998 ms. Meanwhile,

random forest achieves an inference time of 3.988 ms

while maintaining an accuracy of 0.901. These results

prove that using handcrafted features with 11 relevant

features can be used to obtain results that approach the

accuracy results of the non-handcrafted approach. Still,

the model inference speed is very different and much

faster using handcrafted features.

This trade-off between accuracy and inference speed is

fundamental in real-time implementation. Although deep

learning models are frequently accurate, they usually

require high computational resources and time for

processing, which may not be optimal in a real-time

context. By contrast, ensemble learning approaches

balance inference time and accuracy by employing

feature selection with information gain and Chebyshev

normalization on handcrafted features. Consequently,

these approaches are highly suitable for real-time

conditions that require fast processing. The results

obtained through this research indicate that ensemble

models perform much better when effective normalization

techniques are included, alongside accurate feature

engineering and selection. The limitation of this research

is in selecting handcrafted features. This selection must

take place only after a great deal of experimentation, as

feature selection and data normalization inherently alter

the performance of machine learning models depending

on manually handcrafted features, an instance of which is

their quality and relevance. There is therefore a need for a

significant investment of time in the experiment to find

the most effective features.

Moreover, the appropriateness of handcrafted features

is quite specific to the exact case study or dataset in

question. Features are handcrafted with several relevant

general patterns in mind, as they do not contain overall

crucial system information that would justify their

applicability in all novel situations. The resulting models

may be quite good within the selected domain. However,

they need more generality to perform well across various

datasets. This contrasts with deep learning models, which

can adapt from data independently and demonstrate much

better generalizability across novel contexts and datasets

in many cases

V. CONCLUSION

The accurate classification of corn and weeds in

agricultural areas requires the use of accurate and real-

time performance methods. Application in the field

requires accurate results, and the method that is used

must also be capable of fast classification. Deep learning

produces high accuracy, but the speed of model inference

is very slow. Therefore, this research proposes using

handcrafted features by carrying out feature selection and

data normalization. The best results were obtained when

using a combination of Information Gain for feature

selection and Chebyshev distance for data normalization.

The resulting accuracy was 0.92, which is not very

different from the results presented in previous studies.

However, the model inference time is 72 times faster

using HistGBoost, namely 5.955 ms. When using the

LightGBM method, the inference time was 1.998 ms for

processing per image, or 217 times faster than the fastest

time presented in previous research. This achievement

means the method we propose is capable of running in

real-time. Through these results, handcrafted methods

can be implemented in real-time for weed detection in the

field. Future research can use other handcrafted features

to achieve more optimal accuracy results. However,

beyond accuracy, it is also necessary to evaluate the

inference time to facilitate real-time application.
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Table 6. Comparison between using handcrafted and non-
handcrafted features

Methods Accuracy Inference time (ms)

ResNet-101 [6] 0.965 337.5

GCN-ResNet-101 [6] 0.978 432.5

Proposed

HistGBoost 0.920 5.955

LightGBM 0.912 1.998

Random forest 0.901 3.988
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