
Copyright 2024. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 18, No. 4, December 2024, pp. 214-223

Expanding a PMD Ruleset for Mitigating Java Deserialization
Vulnerabilities
Jisun Lee and Dongsu Kang*

Department of Computer Engineering, Korea National Defense University, Nonsan, Republic of Korea

yasminn0727@gmail.com, dasekang@korea.kr

Abstract
CWE-502 vulnerabilities have been reported over 100 times each year since 2018, comprising more than 1% of all docu-

mented vulnerabilities in 2021. However, domestic research on this topic remains scarce. This study applied expanded

rules to 4 out of the 6 Rules and Recommendations in the Software Engineering Institute’s Computer Emergency

Response Team (SEI CERT) Oracle Coding Standard for Java. To mitigate this vulnerability, the PMD ruleset was

expanded by referencing the SEI CERT Coding Standard as a static analysis solution. The extended ruleset can be used

by utilizing the OWASP Top 10 attack scenarios and the OWASP Deserialization Cheat Sheet. This study emphasizes the

significance of deserialization vulnerabilities and aims to enhance the reliability testing and evaluation of system soft-

ware with Java.

Category: Privacy and Security

Keywords: PMD rule set; Static analysis; Insecure deserialization; CWE-502; Java vulnerability

I. INTRODUCTION

Although coding standards are established, they may

sometimes be overlooked to meet specific functional

requirements [1]. Additionally, the rapid pace of tech-

nological advancement underscores the growing need for

comprehensive reliability testing in software. According

to the 2024 Cyber Threat Trends Report for the first half

of the year, reported cybersecurity incidents reached 899,

a 35% rise from 664 in the same period of 2023. This

underscores the need to update reliability testing of weapon

system software to meet current security requirements.

In this study, we analyze vulnerabilities in open software,

with a focus on the most frequently occurring issue,

CWE-502. CWE-502 can result in remote code execution

(RCE) and denial-of-service (DoS) attacks. Despite its

severity and frequency, there is no domestic research on

this vulnerability, nor is CWE-502 included in vulnerability

checklists for static analysis of weapon system software.

This paper proposes a static analysis technique to mitigate

CWE-502 using non-compliant and compliant code exam-

ples provided by the Software Engineering Institute’s

Computer Emergency Response Team (SEI CERT). The

static analysis tool used for this purpose is PMD, an open-

source software.

The structure of this paper is as follows: Section II

reviews the static analysis tool PMD and CWE-502.

Section III examines the vulnerabilities of open software.

Section IV analyzes the SEI CERT Oracle Coding Standard

for Java and presents an extension of its PMD ruleset.

Section V includes an attack scenario of deserialization.

Section VI concludes.

Received 03 December 24; Accepted 12 December 24

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2024.18.4.214 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Expanding a PMD Ruleset for Mitigating Java Deserialization Vulnerabilities

Jisun Lee and Dongsu Kang 215 http://jcse.kiise.org

II. RELATED RESEARCH

A. PMD

PMD is an abbreviation for “programming mistake

detector” or “programming malicious code,” but it lacks

an official designation. PMD is a source code quality

analysis tool that identifies potential errors in the code,

such as coding style violations, unused variables, and

duplicated code, in a static environment. Developed in

2002 with support from organizations like the United

States Defense Advanced Research Projects Agency,

PMD has undergone regular updates to its diagnostic

functions and rules since release. As of 2024, it supports

diagnostic rules for 16 programming languages. For Java,

PMD offers over 283 diagnostic rules in eight categories.

PMD does not directly parse Java source code; instead,

it utilizes Java compiler compiler (JavaCC) to convert

source files into an abstract syntax tree (AST). The AST is

then used to analyze the code structure and perform static

analysis. Additionally, PMD provides an application pro-

gramming interface (API) for creating custom rules using

Java or XPath queries. XPath rules operate on the AST

by treating it as a document object model (DOM), which

is similar to extensible markup language (XML). The

DOM is a hierarchical model that represents the structure

of XML or HTML documents. By structuring the AST as

XML, XPath can be used to navigate it.

Software for the e-Government information system is

mainly developed using the e-Government framework.

FindBugs and PMD for source code analysis is advised

when implementing software with the Java-based e-

Government standard framework [2]. While FindBugs

has more diagnostic rules than PMD, it does not allow

users to customize or create their own rules. In contrast,

PMD enables users to create or extend rules for diagnosing

vulnerabilities. As this paper aims to enhance the tool for

detecting specific vulnerabilities, PMD was chosen.

B. CWE-502 (Deserialization of Untrusted Data)

1) Vulnerability Classification

As software security becomes increasingly important,

so does the need for effective vulnerability management

and classification systems. Databases such as common

vulnerabilities and exposures (CVE), common weakness

enumeration (CWE), and national vulnerability database

(NVD) are vital for managing vulnerabilities by unifying

and analyzing them, as shown in Fig. 1. The NVD assigns

common vulnerability scoring system (CVSS) scores for

CVEs. Additionally, the OWASP Top 10 and SANS Top

25 (SysAdmin, Audit, Network, Security) use CWE to

classify the most frequent or critical vulnerabilities. There

are secure coding guidelines that provide recommendations

by leveraging the structured frameworks of these systems,

including the SEI CERT guidelines and, domestically, the

Software Development Security Guide from the Ministry

of the Interior and Safety [3], along with the DAPA SCR-

G from the Defense Acquisition Program Administration

(DAPA) [4].

2) Importance of CWE-502

CWE-502 is one of the critical vulnerabilities that has

surged in frequency in recent years. Since 2017, the total

number of reported vulnerabilities has consistently

exceeded 10,000 annually, with approximately 29,000

cases reported by October 2024. Since 2018, more than

100 cases of CWE-502 have been reported each year, and

in 2021, CWE-502 accounted for over 1% of all vulne-

rabilities. Table 1 shows the CWE-502 statistic results from

the NVD, presenting the total number of vulnerabilities

and those related to CWE-502 from 2007 to the present.

CWE-502 was first discovered in 2006 but gained

prominence in 2015 due to a vulnerability in the Apache

Commons Collections library. It was entered the OWASP

Top 10 in 2017 as the 8th ranked vulnerability, retaining

this rank in the 2021 edition.

CWE-502 was ranked 15th in the 2023 SANS Top 25.

This ranking has significantly contributed to advancing

active research, focusing on various techniques and approa-

ches for preventing and mitigation of this vulnerability. It

has played a key role in fostering extensive studies. The

studies primarily address the deserialization overviews,

methods attackers use to exploit it and mitigation strategies

[1, 5-7], proposed methods for gadget chain detection and

linking [8-12], and tools or systems to detect deseriali-

zation vulnerabilities [13]. Research in this area remains

active in 2024, further advancing the understanding and

improving countermeasures for this critical issue.

3) CWE-502

CWE-502 refers to a vulnerability caused by insecure

deserialization. Serialization packages internal program

object data for external storage or transmission, typically

converting it into a binary file or byte stream. This process

enables data to be stored in a database or hard drive or

transmitted over a network. Conversely, deserialization

reconstructs the object structure from a binary file or byte

Fig. 1. International and domestic security weakness (vulnerability)
sharing systems.

Journal of Computing Science and Engineering, Vol. 18, No. 4, December 2024, pp. 214-223

http://dx.doi.org/10.5626/JCSE.2024.18.4.214 216 Jisun Lee and Dongsu Kang

stream, extracting serialized data from sequences (arrays).

The deserialization vulnerability occurs when untrusted

input source is deserialized without proper verification.

Fig. 2 shows how a serialized stream is deserialized. During

the deserialization process, an attacker can manipulate the

stream, leading to integrity compromise, RCE, or denial

of service attacks.

As the significance of CWE-502 has increased, it was

included in the 2021 version of the Software Development

Security Guide published by the Ministry of the Interior

and Safety. However, domestic research on this issue

remains insufficient. CWE-502 is also not included in the

vulnerability checklists for static tests of weapon system

software conducted by the Defense Acquisition Program

Administration. Prior to 2022, only CWE-658, CWE-

659, and CWE-660 were part of the vulnerability checks.

The updated security weakness checklist from 2022 still

does not include CWE-502. Thus, there is an urgent need

for coding rules and tools that can prevent CWE-502

vulnerabilities.

III. SOFTWARE VULNERABILITY

A. Open-Source Software

To determine how many vulnerabilities could be identi-

fied through static analysis, issues reported in the open-

source software (OSS) utilized within the United States

Department of Defense weapon systems were analyzed.

Two significant OSS projects, specifically tailored for

use and developed in Java, were selected for analysis.

The distributed common ground system (DCGS) is used

by the United States military for collecting and producing

military intelligence. The distributed data framework (DDF)

was specifically created for DCGS as an advanced data

integration framework, processing and analyzing large

scale data in Java.

The software defined radio (SDR) allows multiple

wireless communication services to operate on a single

device via software manipulation.

REDHAWK SDR, developed by the United States

Department of Defense, is an OSS framework for developing

SDR featuring a modular architecture, real-time processing,

and a graphical interface.

Out of 782 reported defect issues officially registered

in the open-source community for DDF and REDHAWK

SDR, a total of 13 remain unresolved and are classified as

“Open” issues, while 769 are resolved as “Closed” issues.

Upon analyzing the 769 Closed issues, it was discovered

that 17 of them were related to CWE, CVE, or the OWASP

Top 10.

A total of 47 CVEs were associated with these 17

issues. After eliminating duplicates, 42 unique CVEs

were identified. Of these, 28 were related to Java, and the

corresponding CWEs are listed in Table 2: CWE-400 (1

issue), CWE-20 (2 issues), CWE-502 (25 issues), CWE-

184 (4 issues), CWE-78 (1 issue), and CWE-22 (1 issue).

It was evident that CWE-502 occurred most frequently.

For the six CWEs listed in Table 3, examined whether

they were included in the essential vulnerability inspection

items for weapon system software.

As a result, CWE-22, CWE-78, and CWE-400 were

found to be included. In addition, a review of the Software

Development Security Guide [3] indicated that secure

coding guidelines exist for CWE-22, CWE-78, and

CWE-502. Specifically, CWE-22 and CWE-78 have been

addressed since 2013 edition. Park [14] expanded the

Table 1. Raw data of CWE-502

Year Matches Total Percentage (%)

2007 1 6,516 0.02

2008 0 5,632 0.00

2009 0 5,732 0.00

2010 2 4,639 0.04

2011 2 4,150 0.05

2012 3 5,288 0.06

2013 2 5,187 0.04

2014 0 7,937 0.00

2015 3 6,487 0.05

2016 9 6,447 0.14

2017 69 14,643 0.47

2018 126 16,509 0.76

2019 134 17,305 0.77

2020 157 18,349 0.86

2021 215 20,155 1.07

2022 170 25,043 0.68

2023 224 28,822 0.78

2024 170 29,318 0.58

Total 1,287 228,159 0.56

Fig. 2. Serialized object lifecycle.

Expanding a PMD Ruleset for Mitigating Java Deserialization Vulnerabilities

Jisun Lee and Dongsu Kang 217 http://jcse.kiise.org

PMD ruleset to mitigate CWE-22 and CWE-78. However,

CWE-502 has only recently gained recognition for its

significance, being added in the 2021 revision, while

domestic research remains limited.

B. CWE-502 Analysis

The analysis of 25 CVEs related to CWE-502 revealed

that 80% of the vulnerabilities were associated with

FasterXML libraries, while 20% were related to Apache

libraries. Jackson-databind, developed by FasterXML, is

primarily used for serializing and deserializing data in

JSON format. And the libraries developed by the Apache

Software Foundation (ASF) are widely utilized Java-

based open-source programs globally as shown in Fig. 3.

As shown in Table 4, the majority of vulnerabilities

posed severe security risks, with a high CVSS (v3.x)

score of 9 or even higher. Although the vulnerabilities

that most frequently occurred were linked to FasterXML

libraries, the Apache vulnerability CVE-2021-44228 received

an official Critical rating, along with a maximum CVSS

score of 10, indicating extreme severity.

The 2022 Top Routinely Exploited Vulnerabilities report

published by Cybersecurity & Infrastructure Security

Agency (CISA), CVE-2021-44228 was listed among the

top 12 most exploited by attackers and remains a significant

concern with various ongoing problems. ASF advises

updating to the latest software versions as a mitigation. If

immediate updates are not feasible or practical, the

removal of the JndiLookup class is suggested. CISA [15]

also advises disconnecting affected systems from the

network in cases where patching or mitigation remains

challenging or unachievable.

Other Apache libraries have also experienced issues

due to a lack of input validation during deserialization.

CVE-2016-8749 is a vulnerability when deserializing

with Jackson and JacksonXML in Apache Camel. CVE-

2016-6809 occurs when deserializing MATLAB files

using the JMatIO library in Apache Tika. CVE-2015-

Table 2. List of Java related CVEs and associated CWEs

No. CVE list Associated CWE

1 CVE-2021-44228 CWE-20, CWE-400, CWE-502

2 CVE-2019-17531 CWE-502

3 CVE-2019-17267 CWE-502

4 CVE-2019-16943 CWE-502

5 CVE-2019-16942 CWE-502

6 CVE-2019-16335 CWE-502

7 CVE-2019-12814 CWE-502

8 CVE-2019-12384 CWE-502

9 CVE-2019-12086 CWE-502

10 CVE-2019-10086 CWE-502

11 CVE-2019-0232 CWE-78

12 CVE-2018-19362 CWE-502

13 CVE-2018-19361 CWE-502

14 CVE-2018-19360 CWE-502

15 CVE-2018-14718 CWE-502

16 CVE-2018-12023 CWE-502

17 CVE-2018-12022 CWE-502

18 CVE-2018-11307 CWE-502

19 CVE-2018-7489 CWE-502, CWE-184

20 CVE-2018-5968 CWE-502, CWE-184

21 CVE-2018-133 CWE-22

22 CVE-2017-17485 CWE-502

23 CVE-2017-16026 CWE-20

24 CVE-2017-15095 CWE-502, CWE-184

25 CVE-2016-8749 CWE-502

26 CVE-2017-7525 CWE-502, CWE-184

27 CVE-2016-6809 CWE-502

28 CVE-2015-6420 CWE-502

Table 3. CWE list of previous research

CWE list Description

CWE-400 Uncontrolled resource consumption

CWE-20 Improper input validation

CWE-502 Deserialization of untrusted data

CWE-184 Incomplete list of disallowed inputs

CWE-78 Improper neutralization of special elements

used in an OS command

CWE-22 Improper limitation of a pathname to a

restricted directory Fig. 3. Common vulnerabilities and exposures related to CWE-
502 in distributed data framework.

Journal of Computing Science and Engineering, Vol. 18, No. 4, December 2024, pp. 214-223

http://dx.doi.org/10.5626/JCSE.2024.18.4.214 218 Jisun Lee and Dongsu Kang

6420 occurs when Apache Commons Collections is used

for deserialization in CISCO products. Mitigation measures

for these vulnerabilities include updating Apache Camel

(to 2.16.5, 2.17.5, 2.18.2, or later), updating Apache Tika

(to 1.18-1 or later), and updating Commons Collections

(to 3.2.2 or later).

Vulnerabilities related to the Jackson-databind library

from FasterXML mainly arise from processing polymorphic

types. This library deserializes specific classes when

default typing is enabled. Converting JSON or XML data

into objects, there is a risk of arbitrary code execution if

certain modules or components are present in the classpath.

For example, components related to CVE-2019-17531

is apache-log4j-extra, an Apache Log4j extension providing

additional logging features and various logging patterns.

Including apache-log4j-extra in the classpath, it poses a

potential risk of RCE during Jackson deserialization.

Mitigating FasterXML vulnerabilities requires main-

taining the latest Jackson version. Keeping software update

is crucial for security. Although various studies exist, this

paper does not detail them as they are not directly relevant.

However, a review of related research highlights

challenges in the immediate application of patches and in

identifying changes. Many companies either do not

provide the relevant source code or offer security updates

without annotations, complicating response measures.

Therefore, fundamental coding rules and countermea-

sures for CWE-502 are necessary and develop counter-

measures. Despite this urgency, research remains insu-

fficient. Consequently, this paper proposes a static analysis

method using PMD to mitigate CWE-502 vulnerabilities.

FasterXML vulnerability components are shown in Table 5.

Table 4. CVE classification and CVSS for CWE-502

Sort CVE list CVSS

Apache

Log4Shell vulnerability CVE-2021-44228 10

Commons BeanUtils CVE-2019-10086 7.3

Camel CVE-2016-8749 9.8

Tika CVE-2016-6809 9.8

FasterXML: jackson-databind CVE-2019-17531 9.8

CVE-2019-17267 9.8

CVE-2019-16943 9.8

CVE-2019-16942 9.8

CVE-2019-16335 9.8

CVE-2019-12814 5.9

CVE-2019-12384 5.9

CVE-2019-12086 7.5

CVE-2019-10086 7.3

CVE-2018-19362 9.8

CVE-2018-19361 9.8

CVE-2018-19360 9.8

CVE-2018-14718 9.8

CVE-2018-12023 7.5

CVE-2018-12022 7.5

CVE-2018-11307 9.8

CVE-2018-7489 9.8

CVE-2018-5968 8.1

CVE-2017-17485 9.8

CVE-2017-15095 9.8

CVE-2017-7525 9.8

Table 5. FasterXML vulnerability components

FasterXML

related CVE list
Associated component

CVE-2019-17531 apache-log4j-extra

CVE-2019-17267 net.sf.ehcache.hibernate.EhcacheJta

TransactionManagerLookup

CVE-2019-16943 p6spy(3.8.6) jar

CVE-2019-16942 commons-dbcp(1.4) jar

CVE-2019-16335 com.zaxxer.hikari.HikariDataSource

CVE-2019-12814 JDOM 1.x or 2.x jar

CVE-2019-12384 logback-core gadget

CVE-2019-12086 mysql-connector-java jar(8.0.14)

CVE-2019-10086 BeanIntrospector Class

CVE-2018-19362 jboss-common-core Class

CVE-2018-19361 openjpa Class

CVE-2018-19360 axis2-transport-jms Class

CVE-2018-14718 slf4j-ext Class

CVE-2018-12023 Oracle JDBC jar

CVE-2018-12022 Jodd-db jar

CVE-2018-11307 Gadget class of iBatis

CVE-2018-7489 c3p0 library, Incomplete fixes for

CVE-2017-7525

CVE-2018-5968 Limitations of the blacklist approach,

Incomplete fixes for CVE-2017-7525

and CVE-2017-17485

CVE-2017-17485 Spring library, Incomplete fixes for

CVE-2017-7525

CVE-2017-15095 Limitations of the blacklist approach,

Incomplete fixes for CVE-2017-7525

CVE-2017-7525 Sent to the readValue method of

ObjectMapper

Expanding a PMD Ruleset for Mitigating Java Deserialization Vulnerabilities

Jisun Lee and Dongsu Kang 219 http://jcse.kiise.org

IV. PMD RULESET EXPANSION

A. SEI Coding Standard

The CERT from the SEI of Carnegie Mellon University

has developed secure coding standards. These standards

provide guidelines for programmers for enhancing the

safety and security of software systems.

The SEI CERT Oracle Coding Standard for Java defines

Java coding rules to reduce security vulnerabilities from

programmer errors. It consists of Rules and Recommen-

dations.

● Rules: Violating these rules may cause defects impacting

system safety, reliability, or security.
● Recommendations: Implementing recommendations

can enhance the safety, reliability, or security of the

software system.

Six rules and recommendations related to CWE-502

are listed in Table 6.

SER01-J specifies that readObject(), writeObject(), and

readObjectNoData() must be declared as private and non-

static. Declaring these methods as public allows

invocation by untrusted code, while declaring them as

private and non-static restricts access, preventing malicious

overriding. These methods are essential during serialization

and deserialization processes; their private and non-static

declaration ensures that they cannot be accessed or over-

ridden externally, preserving object integrity and enhancing

security.

The SER03-J rule addresses the security risks associated

with sensitive data. Even if declared as private fields,

sensitive data (e.g., encryption keys, digital certificates,

or confidential information serialized into byte streams)

may still be exposed during serialization. Attackers can

reconstruct this data, posing significant risks. To mitigate

this risk, the transient keyword should be used to exclude

these fields from the serialization process.

SER06-J addresses the risk of manipulation when a

class contains private mutable objects. Mutable objects

include types such as Date, Calendar, StringBuilder,

ArrayList, HashMap, and HashSet, which can change

their internal state. If these objects are modified

externally, malicious data may be added or existing data

removed. To mitigate this risk, defensive copying should

be employed by returning a copy of the mutable object

instead of the original, thus preserving the integrity of the

original data.

SER07-J advises against using the default serialization

format for classes that are intended to be immutable, such

as Singleton classes. A singleton class is designed to have

only one instance; however, the default serialization

format can create new instances, violating the class's

immutability and compromising stability. The readResolve()

method is invoked immediately after deserialization to

ensure that any newly created object during the process is

replaced with the original instance.

SER12-J requires verifying object types before invoking

the readObject() method. The resolveClass() method

validates class information. A whitelist of allowed classes

should be set in resolveClass() to block unauthorized

class deserialization.

SEC58-J, part of Rec. 15 Platform Security (SEC), relates

to CWE-502. It advises against performing dangerous

operations (e.g., file manipulation, network connections,

or command execution) in the readObject() method. If

fields managing external resources are defined, proper

exception handling should be implemented to minimize

security risks.

B. PMD Ruleset Expansion

This study expanded the PMD ruleset by selecting four

out of five Rules and one Recommendation from the SEI

CERT Oracle Java Coding Standard. SER06-J was excluded

from this expansion due to its reliance on the use of

mutable objects, which varies depending on implementation

and design, making it unsuitable for detection using

PMD. Additionally, Recommendations were excluded as

they have a lower priority compared to Rules. Consequently,

SER01-J, SER03-J, SER07-J, and SER12-J were selected

and incorporated into the extended ruleset.

Table 6. CWE-502 related rules and recommendations

Rules and recommendations Details

Rule 14. Serialization

SER01-J Do not deviate from the proper signatures of serialization methods.

SER03-J Do not serialize unencrypted sensitive data.

SER06-J Make defensive copies of private mutable components during deserialization.

SER07-J Do not use the default serialized form for classes with implementation-defined invariants.

SER12-J Prevent deserialization of untrusted data.

Rec. 15. Platform Security

SEC58-J Deserialization methods should not perform potentially dangerous operations.

Journal of Computing Science and Engineering, Vol. 18, No. 4, December 2024, pp. 214-223

http://dx.doi.org/10.5626/JCSE.2024.18.4.214 220 Jisun Lee and Dongsu Kang

1) SER01-J Ruleset Expansion

To generate a query, the AST of the Compliant Solution

must be analyzed. This can be visually explored using

PMD's Rule Designer. The 'class' field represents the

class in which the Java rule is defined, and for XPath.

The rule implementation that matches the XML elements

can be found in Table 7.

The ‘language’ field specifies the target language as

Java. And the ‘message’ field contains the error message

displayed if the rule is violated. The ‘description’ explains

the rule, and ‘properties’ is set to xpath if XPath is used.

The ‘value’ contains the XPath query defining the diagnostic

criteria.

The 'priority' field indicates the rule's importance, ranging

from 1 (high) to 5 (low). This is based on the priority

value from the SEI CERT Oracle Coding Standard for

Java's Risk Assessment. SER01-J, with the highest score

of P27, is assigned a PMD priority of 1 (high).

2) SER03-J Ruleset Expansion Method

The value contains a query that identifying non-

serializable classes and detecting input/output stream

classes without proper exception handling.

The table omits the class, language, and properties

elements that overlap with the SER01-J XML rule

implementation. The rule is to indicate its purpose of

preventing unintended serialization. The priority reflects

the value provided in the SER03-J Risk Assessment.

Since the assigned priority is P6, the priority is set to 4

(Medium_Low). Table 8 demonstrates the implementation

of the SER03-J rule.

3) SER07-J Ruleset Expansion Method

The rule detects instances where readResolve() is

absent and the deserialized instance is not replaced with

the current valid Singleton instance.

The rule, “CheckReadResolveInSingleton,” verifies

readResolve() in Singleton classes. The value contains a

query based on the diagnostic steps detecting cases where

INSTANCE or instance exists without the declaration of

readResolve(). The priority of PMD, derived from the

SER07-J Risk Assessment, reflects a P4 assessment,

resulting in a low priority 5 (low). Table 9 presents the

SER-07 rule.

4) SER12-J Ruleset Expansion Method

Building a whitelist is challenging as it limits allowed

classes to those approved by developers. The provided

Table 7. SER01-J XML rule implementation

XML element Description

name SerializationAccessCheck

class net.sourceforge.pmd.lang.rule.XPathRule

language java

message Serialization/deserialization methods lack private and non-static declarations.

description To prevent access and overrides, readObject(), readObjectNoData(), writeObject(), and readResolve() must be private,

non-static.

properties xpath

value //ClassOrInterfaceDeclaration[ImplementsList/ClassOrInterfaceType[@Image='Serializable']]//

MethodDeclaration[MethodDeclarator[@Image='readObject' or @Image='writeObject' or @Image='readObjectNoData'

or @Image='writeReplace' or @Image='readResolve'] and (@Private='false' or @Static='true')]

priority 1

Table 8. SER03-J XML rule implementation

XML element Description

name BlockUnintendedSerialization

message Non-serializable class should throw NotSerializableException in writeObject(), readObject(), or readObjectNoData().

description Non-serializable classes must throw NotSerializableException to prevent unintended serialization of subclasses when

using ObjectOutputStream or ByteArrayOutputStream.

value //ClassOrInterfaceDeclaration[@Public='true' and not(ImplementsList/ClassOrInterfaceType[@Image='Serializable'])

and not(.//NameList/Name[@Image='NotSerializableException']) and

//ClassOrInterfaceBody//ClassOrInterfaceType[@Image='ObjectOutputStream' or @Image='ByteArrayOutputStream']]

priority 4

Expanding a PMD Ruleset for Mitigating Java Deserialization Vulnerabilities

Jisun Lee and Dongsu Kang 221 http://jcse.kiise.org

description is for reference only; the actual rule requires

careful review. The rule detects specific terms but not

their context. Tools like SWAT (Serial Whitelist Application

Trainer) aid in creating effective whitelists. The PMD

priority reflects the SER12-J Risk Assessment of P9,

assigning a priority 4 (medium-low). Table 10 shows the

SER12-J rule implementation

V. ATTACK SCENARIO

The OWASP Top 10 provides attack scenarios for each

rank. Under A08:2021 – Software and Data Integrity

Failures, Table 11 outlines “Scenario: Insecure Deseriali-

zation,” linked to CWE-502. Java serialized objects share

three traits: (1) Begin with “AC ED 00 05” in hex, (2)

Begin with “rO0” in Base64, and (3) Content-Type is set

to application/x-java-serialized-object in HTTP response

headers.

Attackers identify Java serialized objects by recognizing

the “rO0” pattern, which indicates the beginning of serialized

data in Java. This pattern helps attackers confirm that the

data is serialized. And Java serialized data in hexadecimal

format always begins with “AC ED 00 05.” Attackers can

use this signature to identify serialized data.

Another approach is to examine the HTTP response

headers. If the Content-Type is set to application/x-java-

serialized-object, it indicates that the response contains a

serialized Java object. Burp Suite can be employed to

analyze HTTP response headers. Burp Suite is a toolkit

designed to detect security vulnerabilities in web applica-

tions by analyzing requests and responses.

Table 9. SER07-J XML rule implementation

XML element Description

name CheckReadResolveInSingleton

message readResolve() is not implemented in a singleton class with an INSTANCE or instance field.

description Classes with singleton fields like instance or INSTANCE must implement readResolve() to ensure singleton pattern

safety.

value //ClassOrInterfaceDeclaration[.//VariableDeclarator/VariableDeclaratorId[@Name='INSTANCE' or

@Name='instance'] and not(.//MethodDeclaration/MethodDeclarat or [@Image='readResolve'])]

priority 5

Table 10. SER12-J XML rule implementation

XML element Description

name WhitelistCheckInDeserialization

message No whitelist exists in deserialization process.

description When declaring deserialization methods like ObjectInputStream, readObject, readResolve, and readObjectNoData,

include a whitelist.

Example whitelist: "java.lang.String", //Allow String class "java.util.ArrayList", //Allow ArrayList class

"java.lang.Integer", //Allow Integer class "java.util.HashMap", //Allow HashMap class "java.util.HashSet", //Allow

HashSet class "com.example.AllowedClass1" //Add user-defined class AllowedClass1

value //ClassOrInterfaceDeclaration[(.//MethodCall[MethodName='readObject' or MethodName='readObjectNoData' or

MethodName='readResolve'] or .//ClassOrInterfaceType[@Image='ObjectInputStream']) and not(.//

VariableDeclaratorId[contains(@Image, 'whitelist')]) and not(.//MethodDeclaration[@Name='resolveClass'])]

priority 4

Table 11. Attack scenario

Order Description

1 A react application (frontend) interacts with a Spring Boot (backend) microservice.

2 Developers aimed to maintain immutability but designed the system to serialize user state for data exchange with each request.

3 The attacker discovers repeatedly occurring serialized data. Upon finding the "rO0" Java object signature encoded in Base64,

they initiate an attack.

4 They use tools like Java Serial Killer and Ysoserial to attempt remote code execution on the application server.

Journal of Computing Science and Engineering, Vol. 18, No. 4, December 2024, pp. 214-223

http://dx.doi.org/10.5626/JCSE.2024.18.4.214 222 Jisun Lee and Dongsu Kang

According to Attack Scenario, vulnerabilities can arise

from issues occurring during the deserialization process.

These vulnerabilities can be mitigated by rules in the

expanded PMD ruleset, which validate during deseriali-

zation. The SER07-J rule detects cases where deserialized

instances are not replaced with appropriate objects. In

addition, the SER12-J rule identifies instances where

deserialized classes are not included in the whitelist.

The OWASP Cheat Sheet series was developed to

provide information on specific security topics. The

Deserialization Cheat Sheet outlines three key guidelines:

declare sensitive data using the transient keyword, prevent

deserialization of domain objects by throwing exceptions

in the readObject method, especially in applications

implementing serializable due to hierarchical structures,

and restrict allowed classes by utilizing the resolveClass

method.

While the recommendation to use the transient keyword

was presented in the first example of SER03-J, it was

excluded from the PMD ruleset extension due to the broad

scope of sensitive data. The remaining two guidelines are

addressed by the extended PMD ruleset through SER03-J

and SER12-J. The SER03-J rule detects non-compliant

code in serializable classes that fail to handle exceptions

to prevent improper serialization of subclasses. Meanwhile,

SER12-J detects cases where deserialized classes are not

included in the whitelist. The expanded PMD ruleset

improves CWE-502 vulnerability validation and is expected

to lower attack risks.

VI. CONCLUSION

This study examined software vulnerabilities in Java,

specifically identifying CWE-502 as the most commonly

occurring vulnerability. In response, we expanded the PMD

ruleset for Java to address and mitigate this vulnerability.

We proposed the extended PMD ruleset to effectively

mitigate risks associated with CWE-502. The proposed

four rules are designed to detect patterns resembling non-

compliant code examples in the SEI CERT Oracle Coding

Standard for Java. These rules aim to encourage adherence

to secure coding practices in real-world development

environments, thereby improving both code quality and

security.

CONFLICT OF INTEREST

The authors have declared that no competing interests

exist.

REFERENCES

1. A. Sabatini, “Evaluating the testability of insecure deserialization

vulnerabilities via static analysis,” 2020 [Online]. Available:

https://www.politesi.polimi.it/handle/10589/187947.

2. J. Nam, “Analysis and extension of the PMD rule-set for the

source code security strengthening of IT systems,” M.S.

thesis, Korea University, Seoul, Korea, 2015.

3. Korea Internet & Security Agency, “Software Development

Security Guide,” 2021 [Online]. Available: https://

www.kisa.or.kr/2060204/form?postSeq=5&lang_type=KO&page=1.

4. Defense Acquisition Program Administration, “Weapon

systems software development and management manual,”

2020 [Online]. Available: https://www.dapa.go.kr/dapa/na/ntt/

selectNttInfo.do?bbsId=462&nttSn=33009&menuId=335.

5. I. Sayar, A. Bartel, E. Bodden, and Y. Le Traon, “An in-

depth study of java deserialization remote-code execution

exploits and vulnerabilities,” ACM Transactions on Software

Engineering and Methodology, vol. 32, no. 1, article no. 25,

2023. https://doi.org/10.1145/3554732

6. S. F. Fingann, “Java deserialization vulnerabilities,” M.S.

thesis, University of Oslo, Oslo, Norway, 2020.

7. S. Cristalli, “Static and dynamic analyses for protecting the

java software execution environment,” Ph.D. dissertation,

University of Milano, Milano, Italy, 2020.

8. B. Chen, L. Zhang, X. Huang, Y. Cao, K. Lian, Y. Zhang, and

M. Yang, “Efficient detection of Java deserialization gadget

chains via bottom-up gadget search and dataflow-aided payload

construction,” in Proceedings of 2024 IEEE Symposium on

Security and Privacy (SP), San Francisco, CA, USA, 2024,

pp. 3961-3978. https://doi.org/10.1109/SP54263.2024.00150

9. S. Cao, X. Sun, X. Wu, L. Bo, B. Li, R. Wu, et al.,

“Improving Java deserialization gadget chain mining via

overriding-guided object generation,” in Proceedings of 2023

IEEE/ACM 45th International Conference on Software

Engineering (ICSE), Melbourne, Australia, 2023, pp. 397-

409. https://doi.org/10.1109/ICSE48619.2023.00044

10. S. Cao, B. He, X. Sun, Y. Ouyang, C. Zhang, X. Wu, et al.,

“ODDFuzz: discovering Java deserialization vulnerabilities

via structure-aware directed greybox fuzzing,” in Pro-

ceedings of 2023 IEEE Symposium on Security and Privacy

(SP), San Francisco, CA, USA, 2023, pp. 2726-2743.

https://doi.org/10.1109/SP46215.2023.10179377

11. S. Rasheed and J. Dietrich, “A hybrid analysis to detect java

serialisation vulnerabilities,” in Proceedings of the 35th

IEEE/ACM International Conference on Automated Software

Engineering, Virtual Event, Australia, 2020, pp. 1209-1213.

https://doi.org/10.1145/3324884.3418931

12. J. C. Santos, M. Mirakhorli, and A. Shokri, “Seneca:

taint-based call graph construction for Java object

deserialization,” Proceedings of the ACM on Programming

Languages, vol. 8(OOPSLA1), pp. 1125-1153, 2024.

https://doi.org/10.1145/3649851

13. Q. Zhang, Y. Xu, Z. Yin, C. Zhou, and Y. Jiang, “Automatic

policy synthesis and enforcement for protecting untrusted

deserialization,” in Proceedings of the 31st Annual Network

and Distributed System Security (NDSS) Symposium, San

Diego, CA, USA, 2024, pp. 1-18.

14. J. H. Park, “A study of security rules for checking software

weaknesses related to input validation,” M.S. thesis,

Dankook University, Yongin, Korea, 2015.

15. Cybersecurity & Infrastructure Security Agency, “Apache

Expanding a PMD Ruleset for Mitigating Java Deserialization Vulnerabilities

Jisun Lee and Dongsu Kang 223 http://jcse.kiise.org

Log4j Vulnerability Guidance,” 2022 [Online]. Available:

https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-

guidance.

Jisun Lee https://orcid.org/0009-0000-6237-6220

Jisun Lee is currently pursuing the M.S. degree in computer engineering at Korea National Defense
University, South Korea. She is also a signal officer with the Ministry of Defense, specializing in military
communications. Her current research interests include SW security testing, SW reliability, and coding rules.

Dongsu Kang https://orcid.org/0000-0001-6481-5071

Dongsu Kang is currently a professor of Computer Science and Engineering and director of the Department
of Defense Science, Korea National Defense University. His main area of expertise is software security testing,
penetration testing, AI-based systems testing, naval cyber security, weapon system software, North Korea
software, interoperability of defense system, machine learning, defense modeling and simulation, and
defense acquisition. He was the director of Defense Science Center in Research Institute for National Security
Affairs.

