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Abstract
Drug discovery is a complex, costly, and high-risk endeavor reliant on extensive experiments and clinical trials. Recent

advances in artificial intelligence (AI) are transforming biomedical research by modeling complex biological relation-

ships and accelerating therapeutic discovery. Central to these innovations are biomedical knowledge graphs (KGs),

which systematically integrate diverse, heterogeneous data, from molecular interactions and genetic profiles to drug-dis-

ease associations. In particular, heterogeneous knowledge graphs (HKGs) capture complex biological phenomena through

interconnected multi-modal data sources. This survey provides a comprehensive overview of AI-driven drug discovery

via HKGs, detailing their definitions, construction methodologies, and evaluation criteria. We further review state-of-

the-art AI algorithms from graph representation learning to hybrid reasoning approaches, and examine their applications

in key drug discovery tasks such as drug-target identification, drug repurposing, combination therapies, and integration

with large language models. Through this investigation, we highlight emerging opportunities and future directions that

aim to guide researchers in harnessing the full potential of KGs for novel therapeutic development.
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I. INTRODUCTION

Drug discovery is a complex, costly, and high-risk

endeavor, traditionally relying on extensive experiments

and clinical trials. In recent years, artificial intelligence

(AI) is reshaping biomedical research, offering powerful

approaches to model intricate biological relationships,

identify promising therapeutic candidates, and predict

clinical outcomes with unprecedented accuracy.

However, drug discovery is a very complex task that

involves various biological and medical entities, such as

drugs, genes and diseases, and their relationships, e.g.,

drug-target interactions (DTIs) and disease-gene associations.

Thus application of single or a few AI tools is not powerful

enough to address the complexity of drug discovery. To

leverage the accumulated knowledge in chemical, biological,

and medical domains, scientists worked hard to put together

such knowledge as single integrated resources, which is

known as biomedical knowledge graphs (KGs). KGs enable

the systematic integration and representation of vast,

heterogeneous biomedical data, ranging from molecular

interactions, genetic and epigenetic profiles, chemical

structures, clinical observations, to literature-derived evidence.

Specifically, heterogeneous knowledge graphs (HKGs),

which integrate multi-source, multi-modality data, play a

critical role by capturing complex biological phenomena

through interconnected entities and relationships, thereby

offering more comprehensive biological insights compared

to homogeneous or simpler graph structures.

While the promise of KGs in drug discovery is widely

recognized, the field is rapidly evolving, characterized by

diverse approaches and applications. This survey paper is

to provide a unified and comprehensive overview of the

entire spectrum of AI-driven drug discovery (AIDD)

through HKGs by systematically reviewing state-of-the-

art methodologies, data resources, and practical applications

of knowledge graphs in AI-enabled drug discovery (Fig. 1).

First, we provide a comprehensive overview of hetero-

geneous biomedical KGs, in terms of definitions, con-

struction methodologies, and evaluation criteria (Section II).

Second, we review various AI algorithms specifically

tailored for learning from knowledge graphs, including

graph representation learning, graph neural networks, and

hybrid reasoning approaches (Section III). Third, we

compile a broad spectrum of drug discovery tasks that can

be addressed with knowledge graph methods: drug-target

identification and drug response prediction, to advanced

applications such as drug repurposing, combination

therapies, multimodal data alignment, and the integration

of knowledge graphs with large language models (LLMs)

(Section IV).

Through this survey of state-of-the-art technologies in

AI-drug discovery with KGs, we hope to help researchers

find more effective use of knowledge graphs for accele-

rating the development of novel therapeutics.

II. HETEROGENEOUS KNOWLEDGE GRAPHS

A biomedical KG represents biological entities such as

drugs, genes, and diseases, along with their relationships

[1]. A HKG integrates multiple node and relationship

types, unlike a homogeneous knowledge graph, which

consists of a single type [2]. Since biomedical research

requires integrating diverse data sources, HKGs are parti-

cularly important [3]. Fig. 2 illustrates a conceptual model

of HKGs.

The key advantage of HKGs is their ability to infer

Fig. 1. Overview of AI-drug discovery with knowledge graphs (KGs). This survey integrates data sources (Section 2), algorithms (Section 3),
and applications (Section 4) for KG-based AI-drug discovery.
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knowledge by linking diverse data types. While traditional

research relied on single datasets [4, 5], HKGs facilitate

an integrative approach, improving applications such as

drug-target prediction and drug repurposing [1, 2, 3, 6].

A. Construction of Biomedical HKGs

The construction of an HKG requires defining key

entities and relationships, integrating data from multiple

sources, and ensuring a reliable graph structure [3, 6].

This section defines the key components of biomedical

HKGs, discusses the challenges encountered during their

construction, and introduces prominent existing biomedical

KGs [5].

1) Key Components of Biomedical HKGs

Biomedical data is not merely structured data but

consists of heterogeneous information, including drugs,

genes, proteins, and diseases, which are intricately inter-

connected [4, 7]. Therefore, effectively integrating these

diverse entities and relationships is essential. To achieve

this, an HKG defines key nodes and relationships that

reflect biological significance, typically comprising the

elements outlined in Table 1.

The primary nodes in a HKG are classified into four

types: drugs, genes/proteins, diseases, and biological

pathways. Drug nodes include FDA-approved drugs and

clinical candidates, while gene/protein nodes is to denote

genetic variations and protein-protein interactions. Disease

nodes provide information on specific diseases and genetic

disorders, and biological pathway nodes represent metabolic

and signaling pathways.

These nodes are interconnected through various relation-

ships, including drug–target, gene–disease, drug–disease,

and protein–protein interactions. Each relationship conveys

biologically meaningful information. Beyond serving as a

knowledge repository, HKGs enhance biomedical research

and drug discovery by data source to AI-based analysis to

uncover novel patterns and hidden associations.

2) Data Sources for Biomedical HKGs

The core aspect of HKG construction lies in the inte-

gration of diverse biomedical data sources. Table 2 compiles

major data sources commonly used in biomedical HKGs

[8-16]. These data sources provide distinct types of infor-

mation and are utilized to define relationships between

entities within a HKG.

Fig. 2. Structure of biomedical heterogeneous knowledge
graphs (HKGs). Biomedical HKGs aggregate diverse data sources
into a single graph.

Table 1. Nodes and edges of biomedical heterogeneous knowledge graph

Type Category Example

Node Drug FDA-approved drugs, clinical candidates

Gene/Protein Target genes, protein interactions

Disease Diseases, phenotype data

Pathway Metabolic pathways, signaling pathways

Edge Drug-Target Drug-target protein interactions

Gene-Disease Gene-disease associations

Drug-Disease Drug-disease therapeutic relations

Protein-Protein Protein-protein interactions

Disease-Disease Disease similarity or comorbidity relations

Pathway-Gene Gene involvement in biological pathways

Pathway-Disease Disease-related pathways

Drug-Drug Drug-drug interactions (DDI)
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B. Existing Knowledge Graphs

Various KGs have been developed to support drug

discovery, differing in data sources, entity types, and

relationship structures. Some representative KGs are as

follows:
● HetioNet [6]: A large-scale KG for drug repurposing,

integrating multiple datasets such as DrugBank, Gene

Ontology, and DisGeNET.
● PrimeKG [17]: A precision medicine KG that  incor-

porates clinical guideline texts to support AI-driven

analysis.
● CKG (clinical knowledge graph) [18]: A KG for

personalized medicine that integrates multi-omics

data and includes post-translational modification

information.
● PharMeBINet [19]: A pharmaceutical knowledge

network that facilitates drug discovery and pharma-

ceutical research.
● BioKG [20]: A KG integrating biomedical entities

from 13 data sources, including UniProt, Reactome,

and OMIM.
● DRKG (drug repurposing knowledge graph) [21]: A

KG integrating biomedical entities from 13 data

sources, including UniProt, Reactome, and OMIM.
● PharmKG [22]: A KG benchmark for drug discovery

and repurposing, including drug–disease and drug–

target interactions.

● OpenBioLink [23]: A benchmark KG for evaluating

biomedical KG completion models, incorporating

data from multiple biological databases.

Further statistics and characteristics of each KGs are

summarized in Table 3.

C. Challenges in Constructing Biomedical HKGs

The construction of a biomedical HKG faces several

challenges, including data heterogeneity, reliability,

updating difficulties, and sparsity [17, 24]. 

Data heterogeneity arises from the varied formats of

biomedical data. Genomic data are often continuous (e.g.,

sequence information), drug data are typically discrete

(e.g., molecular structures), and clinical data are frequently

in natural language, requiring different processing

techniques. Integrating these diverse data types into a

unified framework remains a key challenge [17].

Data reliability varies across sources [17, 25]. Experi-

mentally validated data are highly trustworthy but limited

in volume due to cost and time constraints. In contrast,

automatically extracted data from literature using natural

language processing (NLP) techniques are abundant but

prone to inaccuracies. Balancing data quality and quantity

is crucial for building a reliable HKG.

KG update stems from the rapid pace of biomedical

research [17, 24]. Static KGs struggle to incorporate new

discoveries, leading to outdated relationships. For example,

Table 2. List of data sources commonly utilized for construction of Biomedical heterogeneous knowledge graphs

Dataset Relations Provided Features
First 

released

Update 

frequency
Data access

Disease-related 

DisGeNET [8] Disease-Disease, Disease-Gene Evidence 2010 Annually REST API, SPARQL, 

SQL

OMIM [9] Disease-Gene Text description, 

Evidence

1987 Daily Flat file, REST API

GWAS Catalog [10] Disease-Gene, Disease-Trait Evidence 2008 Biweekly REST API, Flat file

Drug-related 

DrugBank [11] Drug-Drug, Drug-Gene, 

Drug-Disease

Text description, 

Structure, Attributes

2006 Annually Flat file, REST API

PubChem [12] Drug-Drug, Drug-Gene, 

Drug-Structure

Text description, 

Structure, Attributes

2004 As sources 

update

REST API, SPARQL, 

Flat file

Pathway-related 

KEGG [13] Protein-Protein, Gene-Pathway, 

Drug-Pathway

Graph representation, 

Text description

1995 Bi-annually REST API, Python, R

Reactome [14] Protein-Protein, Gene-Pathway, 

Drug-Pathway

Graph representation, 

Text description

2003 Annually Neo4J, Flat file

Protein-related 

STRING [15] Protein-Protein Types, Weightings 2003 Monthly Flat file, REST API

BioGRID [16] Gene-Gene, Protein-Protein Types, Weightings 2003 Monthly REST API, Flat file
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failing to add newly identified drug–target interactions

can reduce the predictive performance of AI models.

Thus the KG update frequency is the key issue in

choosing KG for drug discovery projects.

Graph sparsity is a common issue due to missing

relationships [17, 26]. Rare disease targets are often

underrepresented, and drug interactions for novel com-

pounds may not yet be recorded. This incompleteness

complicates relationship prediction and impacts AI model

performance in drug discovery and disease research.

Addressing these challenges is critical to ensuring that

biomedical HKGs remain comprehensive, reliable, and

up-to-date for AI-driven applications.

III. ALGORITHMS FOR LEARNING KNOWLEDGE
GRAPHS

A. Graph Learning AI for Knowledge Graphs

Graph AI learning technologies learn and infer patterns

from graph-structured data, making it highly relevant to

KGs. A KG represents entities (nodes) and relationships

(edges) in a structured graph format, offering a more

effective way to capture relationships than traditional

tabular data. However, simple query-based approaches

often fail to extract meaningful insights from KGs. Graph

AI enables deeper learning of hidden patterns, prediction

of new relationships, and more sophisticated knowledge

inference [27]. 

KGs are structured representation of relationships

between entities, modeled as graph-structured data. A

KG is typically represented as a directed graph and

formally defined as: G = (V, E, T ).

In this definition, V represents the set of entities

(nodes) in the graph, while E denotes the set of relations

(edges) that connect these entities. The set of triples, T,

consists of directed edges that capture relationships

between entities. Each triple (h, r, t) represents a directed

edge from a head entity h to a tail entity t via a relation r,

formally defined as T = {(h, r, t) | h, t  V, r  E}. For

example, a KG can represent information such as “Drug

A inhibits Protein B,” which can be encoded as the triple

(A, inhibits, B) [28].

To leverage KGs in machine learning models, graph-

structured data must be converted into numerical

representations. Typically, a KG is transformed into a

node feature matrix X and an adjacency matrix A.

The node feature matrix X represents the attributes of

entities within a KG. Each entity (node) v  V has distinct

properties that can be expressed as a d-dimensional

feature vector xv  R
d. The complete node feature matrix

is given as X  R
|V |×d. This transformation allows machine

learning models to process entity characteristics numerically.

The adjacency matrix A captures the relationships

between entities by defining their connections. This matrix

A has dimensions |V | × |V |, where each entry indicates

the existence of a relationship between two entities. For

KGs containing multiple types of relations, multi-

relational adjacency matrices are used, where each relation

type r is associated with an independent matrix Ar.

Structuring KG data into X and A transforms entity

attributes and relationships into numerical matrix repre-

sentations, enabling machine learning models to effectively

learn patterns and structural information within the KG.

1) Prediction on Graph AI

Graph AI performs various predictive tasks in KGs,

primarily node prediction, edge prediction, and graph

prediction [29]. 

Node-level prediction: This task involves predicting

attributes of a node in a graph f (vi) = y, where vi is a

specific node in the graph, and y represents the predicted

attribute of that node. For instance, this approach can be

used to predict the function y of an unknown protein vi.

Edge-level prediction: This involves predicting whether

an edge exists between two nodes, formulated as f (vi, vj) = y,

y   , where vi and vj are nodes in the KG, and y

represents the presence (y = 1) or absence (y = 0) of an

interaction between them. In drug discovery, this can be

Table 3. Statistics and use-cases of existing biomedical heterogeneous knowledge graphs utilized for drug discovery

HKG database Nodes Edges
Node 

types

Edge 

types
Design usecase

Last 

update

HetioNet [6] 47,031 2,250,197 11 24 Repurposing 2017

PrimeKG [17] 129,375 4,050,249 10 30 Repurposing 2022

CKG [18] 16 M 220 M 19 57 Personalized medicine 2021

PharMeBINet [19] 2,869,407 15,883,653 66 208 Drug discovery 2024

BioKG [20] 11,479,285 42,504,072 10 17 General 2024

DRKG [21] 97 K 5.7 M 13 107 Repurposing 2020

PharmKG [22] 7.6 K 500 K 3 29 Repurposing/target prediction 2021

OpenBioLink [23] 184 K 4.7 M 7 30 Benchmark 2020
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used to predict whether a candidate drug vi will bind to a

target protein vj.

Graph-level prediction: This task involves predicting

properties of an entire graph, mathematically represented

as f(G) = y, where G is the entire graph, and y represents a

specific property of the graph. In molecular graph analysis,

the structure of a chemical compound can be modeled as

a graph, and the prediction task can determine whether

the compound exhibits toxicity, where y   .

These methods allow KGs to be utilized for relationship

prediction and data analysis in drug discovery.

2) Approaches of Graph AI

The main approaches in Graph AI evolve progressively

from (1) knowledge graph embeddings (KGEs) → (2)

graph neural networks (GNNs) → (3) knowledge reasoning.

KGE transforms nodes and relationships in a KG into

vector representations, enabling efficient computation but

potentially losing structural information [30]. To address

this, GNN learns patterns by incorporating neighboring

node information, preserving graph structure but lacking

logical reasoning capabilities [31]. Finally, knowledge

reasoning enhances AI’s ability to perform logical inference

within a KG using rule-based and neural-symbolic reasoning

approaches [32, 33]. In the following sections of this

paper, each approach will be discussed individually.

B. Knowledge Graph Representation Learning

Relationship among nodes in KG is very complex and

it is very difficult to make inference on KG for specific

questions. One common technique is to make node

representations that include neighbor nodes information

or contextual information of a node under consideration

[34]. This task, known as knowledge graph representation

learning, can be broadly categorized into two approaches:

shallow embedding and KGE.

1) Shallow Embedding

Shallow embedding is a technique for representing nodes

in a KG as low-dimensional vectors, learning individual

node representations by leveraging statistical and structural

properties of the graph. Based on the learning approach,

it can be categorized into structure-based methods and

stochastic approaches. 

The structure-based approach in shallow embedding

learns node embeddings by analyzing the topological

structure of the graph and mathematically modeling

relationships between nodes.

High-order proximity embedding (HOPE) [35] is a model

that preserves node similarity in a graph when learning

embeddings. It generates a similarity-based matrix using

the Katz Index, which considers all possible paths between

nodes while assigning higher weights to shorter paths,

and then applies singular value decomposition (SVD) to

obtain low-dimensional vectors. Global graph representation

learning (GraRep) [36] is a model that captures long-

range relationships between distant nodes to learn the

global structure of the graph. It computes a k-step transition

probability matrix and applies SVD to transform it into

low-dimensional vectors. This approach not only considers

directly connected nodes but also learns relationships

between frequently co-occurring nodes over multiple steps.

However, shallow embedding techniques learn only

individual node features (e.g., drugs, proteins) and struggle

to capture hidden relationships. Additionally, since it

learns fixed patterns, it fails to account for environmental

variations affecting drug responses or side effects. Fur-

thermore, generating embeddings for all nodes in large-

scale drug discovery KGs incurs high computational

costs and lacks scalability.

The stochastic approach in Shallow Embedding learns

node embeddings through probabilistic exploration (Random

Walk) techniques, rather than directly modeling the entire

graph structure. By simulating the exploration process, this

approach efficiently scales to large KGs in drug discovery.

DeepWalk [37] generates random node sequences and

applies the Skip-gram model to predict neighboring nodes,

optimizing the objective, ,

where Ns(v) is the set of neighboring nodes of v. Node2vec

[38] improves DeepWalk by balancing breadth-first

search (BFS; local) and depth-first search (DFS; global)

exploration to capture diverse relationships. 

Personalized PageRank (PPR) [39] extends random

walks by prioritizing specific nodes through a teleport

probability , defined as , where  is

the node importance vector, A is the adjacency matrix,

and v is the preference vector. This ensures frequent

returns to key nodes, improving embedding quality.

While stochastic approaches are scalable and flexible,

they do not explicitly capture relationships between nodes,

limiting their ability to infer new connections in complex

biological networks. KGE techniques address this by

jointly learning node and relationship representations,

which will be discussed in the next section.

2) Knowledge Graph Embedding

A KG represents entities and relationships in a structured

format, but its high-dimensional and sparse nature makes

effective utilization challenging. Traditional shallow

embedding methods learn node representations based on

structural patterns but fail to explicitly capture relationships,

limiting their ability to model relational dependencies [40].

In contrast, KGE jointly learns entity and relationship

representations, preserving both structural and semantic

information, thereby enabling more precise reasoning

and prediction within the KG. KGE methods can be

categorized into translational distance-based and semantic

matching-based approaches, depending on how they model

relationships.

Translational distance-based models represent relationships

as translation operations in a continuous vector space,

maxv V u N
s
v   log P u v;  

 1 – A v+=
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mapping both entities and relations into the same em-

bedding space. Relations act as transformations between

entity vectors, with TransE [41], TransH [28], and TransR

[42] being the most well-known models.

TransE [41] enforces , meaning that applying

relation r to entity h should result in entity t. It optimizes a

margin-based ranking loss to distinguish correct triples from

incorrect ones: 

, where d(x, y) is the distance metric,  is the

margin hyperparameter, and D, D represent valid and

corrupted triples. While efficient, TransE struggles with

one-to-many, many-to-one, and many-to-many relations,

as it assumes a simple translation.

TransH [28] mitigates this by projecting entity vectors

onto relation-specific hyperplanes, allowing for better

multi-relational modeling. TransR [42] further extends

this by separating entity and relation spaces unlike

previous models that represent both in the same space,

using a relation-specific transformation matrix Mr to map

entities before applying translation.

Semantic matching-based models represent entities and

relations using matrix operations or tensor decomposition,

directly modeling relationships through mathematical opera-

tions rather than minimizing distances like translational

distance-based models. This enables more precise modeling

of entity interactions. Key models in this category include

DistMult [43], ComplEx [44], and RotatE [45].

DistMult [43] represents relations as diagonal matrices

and scores triples (h, r, t) using the inner product:

f(h, r, t) = h Rt. While computationally efficient, DistMult

assumes all relationships are symmetric, which limits its

applicability in real-world KGs. This means that relations

such as “Drug A inhibits Drug B” and “Drug B inhibits

Drug A” are treated as identical. 

ComplEx [44] addresses this by introducing complex-

valued representations, using the real part of the following

computation: f(h, r, t) = Re(h R ), where  is the complex

conjugate of entity vector t. By leveraging imaginary

components, ComplEx can model both symmetric and

asymmetric relations but at a higher computational cost.

RotatE [45] extends ComplEx by modeling relationships

as rotations in complex space, defining the transformation

as: t = h ○ eir, where eir is a complex rotation matrix defined

by Euler’s formula. This allows RotatE to naturally

capture relational directionality, making it effective for

cyclic and transitive relationships. However, it still

struggles with high-dimensional, complex relations.

Semantic matching-based models capture complex

relationships using structured mathematical operations

but rely on static embeddings. To address their limitations,

GNNs dynamically aggregate relational information,

which will be explored next.

C. Graph Neural Networks 

Traditional KGE methods are limited in fully capturing

the structural properties and dynamic changes of the

graph. They also require retraining whenever new entities

or relationships are introduced [46]. To address these

limitations, GNNs have been introduced. GNNs update

embeddings dynamically through neighborhood aggregation,

capturing both direct and indirect dependencies within

the graph [47, 48]. Additionally, they can adapt to newly

introduced entities and relationships, overcoming the

rigidity of KGE models [49]. This section explores GNN

models including GCN [50], GAT [51], and heterogeneous

GNN (HGNN) [52].

1) Basic Concept of GNN

GNNs dynamically update entity embeddings by

aggregating neighboring node information, which is

effective in capturing both direct and indirect depen-

dencies.  The  general  update  rule  is  defined  as  follows

[48]: . In this equation, 

represents the node embedding at layer k. The trainable

weight matrix W(k) is responsible for transforming node

information at each layer. Neighboring nodes N(v) are

aggregated to update v’s embedding. The activation

function , such as ReLU or sigmoid, adds nonlinearity

to enhance expressiveness.

This formula explains how neighboring node informa-

tion propagates sequentially across layers, progressively

refining node representations. The deeper the GNN

model, the farther each node can receive information

from its neighbors, ultimately incorporating global structural

properties of the entire graph.

2) Existing GNN Architectures

GNNs have several variations that allow them to learn

different types of graph structures, making them appli-

cable to KGs. While traditional GNNs are optimized for

homogeneous graphs, KGs contain various entity types

and relation types, making them heterogeneous graphs.

Therefore, specialized GNN models have been developed

to better capture the structural complexity of KGs. This

section describes key GNN models and their mechanisms

in the context of KGs.

The graph convolutional network (GCN) [50] extends

the concept of local filters in convolutional neural networks

(CNNs) [53] to graph data, making it an efficient neural

network model for incorporating information from

neighboring nodes. While traditional KGE models represent

relationships between entities as static vectors, GCN

leverages the structural properties of graphs to learn more

refined relationships between nodes. The core concept of

GCN is spectral graph convolution, where each node

aggregates information from its connected neighbors to

update its own embedding.

GCNs aggregate features from neighboring nodes to

update node embeddings following update rules:

h r t+

L  h,r,t  D  h,r,t  D max 0,  d+ h r,t+  =

d– h r,t+ 

t t

hv

k 
 W

k 
u N v 

1

N v 
-------------hu

k 1–  
 = hv

k 
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. (1)

In Eq. (1),  represents the node representation at

layer k. The term  denotes the adjacency matrix

with self-loops. The matrix  is the degree normalization

matrix. 

Specifically, GCNs employ a normalized degree matrix

, which adjusts the information flow within the graph

and ensures balanced message passing.

GCNs are structurally simple and computationally

efficient, but they are primarily designed for standard graphs

and require further extensions for graphs with diverse

relationships, such as KGs. To address this limitation, the

relational GCN (R-GCN) [54] was introduced as an

extension GCN for multi-relational graphs, applying

different weight matrices for each relationship type and

thus enabling the propagation of information while

distinguishing between various relationships.

Graph attention network (GAT) [51] is a GNN model

that enhances node feature aggregation by incorporating

an attention mechanism. Unlike traditional models such

as GCN, which assign uniform weights to neighboring

nodes, GAT dynamically adjusts the importance of each

neighbor using self-attention. This allows the model to

prioritize more relevant nodes in real-world graphs where

neighbor significance varies. 

GAT computes attention scores between node pairs and

normalizes them using a softmax function to determine

attention weights. 

A key advantage of GAT is its adaptability to different

graph structures. Unlike GCN, which relies on a fixed

adjacency matrix, GAT learns an optimal neighborhood

weighting dynamically. This flexibility makes it particularly

effective for a wide range of graph-based learning tasks.

HGNNs [52] are designed to learn from heterogeneous

graphs, which consist of multiple types of nodes (e.g.,

drugs, proteins, diseases) and multiple types of relationships

(e.g., binding, inhibition, expression). Unlike traditional

GNN models such as GCN and GAT, which treat all

nodes and edges uniformly, HGNN incorporates meta-

paths to capture relational transitions and assigns different

importance to each type of relationship, enabling more

refined graph learning. 

While R-GCN handles multi-relational graphs by learning

separate weight matrices for each relation type, HGNN

goes beyond simple relation-specific weight assignments.

Instead, it models relational transitions, utilizes meta-

paths for information aggregation, and applies attention

mechanisms to extract meaningful insights. This allows

HGNN to effectively learn the complex interactions among

drugs, proteins, genes, and diseases in KGs for drug

discovery, where multiple entity types and complex rela-

tionships exist. 

D. Knowledge Reasoning and Hybrid Approaches

Knowledge reasoning enables AI to infer implicit

relationships and complete incomplete KGs, going beyond

KGE and GNN for deeper knowledge understanding. For

instance, even if a drug-protein interaction is missing in a

KG, AI can infer it by analyzing similar drugs, biological

pathways, and relational patterns. However, a single

approach (KGE or GNN) is insufficient to fully capture

KG complexity. This is mainly due to the heterogeneous

graph nature of KG, i.e., multiple node types and complex

interactions or edge types among nodes. Hybrid approaches

combine multiple techniques to enhance reasoning and

improve accuracy. This section explores knowledge rea-

soning methods and hybrid AI approaches.

1) Knowledge Reasoning Approaches

Knowledge reasoning is the process of inferring hidden

relationships and patterns within a KG to generate new

knowledge. A KG is a structured dataset composed of

entities (nodes) and relations (edges), making it more

effective at representing structural relationships compared

to traditional tabular data. However, simple query-based

retrieval methods often fail to extract meaningful hidden

insights. By leveraging knowledge reasoning, it is possible

to perform logical inference based on the structural

information of the KG and predict new relationships through

data-driven learning. Knowledge reasoning approaches

can be broadly categorized into rule-based reasoning and

neural-based reasoning.

The first approach, rule-based reasoning, applies explicit

logical rules to generate new relationships within a KG. These

methods perform deductive reasoning, where conclusions

are logically derived based on predefined rules. First-

order logic (FOL) [55] represents relationships between

entities using logical rules to facilitate inference, while

rule-based inference engines [56] perform inference based

on predefined rules specified by users. Ontology-based

reasoning (OWL, RDF schema) [57] utilizes hierarchical

relationships to expand knowledge. Rule-based reasoning

provides high explainability and follows explicit logical

rules, making it a reliable inference meth in automatically

learning complex patterns.

The second approach, neural-based reasoning, utilizes

machine learning and deep learning models to automatically

learn patterns within the KG and predict hidden relationships.

While rule-based reasoning relies on human-defined logic,

neural-based reasoning derives new relationships by

analyzing data. This approach employs inductive reasoning

and probabilistic reasoning, making it more scalable and

effective for large-scale KGs. 

2) Hybrid Approaches for Knowledge Graphs

Hybrid approaches combine graph AI with deep learning

models to enable more sophisticated reasoning and

prediction. While standalone models such as KGE and
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GNN each offer distinct advantages, they also exhibit

limitations when used independently. To overcome these

challenges, recent research has introduced various hybrid

approaches, including graph-based hybrid models that

combine GNN and KGE, contextual graph models that

integrate GNN with Transformer, and knowledge-augmented

AI that fuses LLM with KG.

Two primary methods for learning structural information

within a KG are KGE and GNN. By combining these two

approaches, GNN and KGE models, such as CompGCN

[58], can jointly leverage both structural (GNN) and semantic

(KGE) information, leading to more powerful relationship

prediction.

While GNN excels at learning relationships between

entities in a graph, Transformer-based models are optimized

for understanding natural language context. However,

KGs lack contextual information, making it difficult to

extract nuanced meanings, whereas Transformers, despite

their strong contextual understanding, struggle to learn

structural relationships directly. By integrating GNN with

Transformer, models such as heterogeneous graph trans-

former (HGT) [59], which dynamically learns relation-

specific weights, and Graphormer [60], which enhances

graph relational representation using Transformer mecha-

nisms, make it possible to learn both the structural

information of a KG and the contextual meaning of

natural language, enabling more refined reasoning.

Among hybrid approaches, integrating LLM with KG

is emerging as the most powerful knowledge reasoning

model. KGs provide structured relational information that

serves as a reliable knowledge base, but they lack a natural

language interface for question-answering. Conversely,

LLMs possess robust capabilities for understanding and

generating natural language but often suffer from factual

inconsistencies and hallucinations. By integrating KG with

LLMs, logically curated information can be incorporated

into model training, allowing LLMs to generate more

accurate responses while preserving contextual coherence.

One prominent method for achieving LLM-KG integra-

tion is retrieval-augmented generation for graphs (Graph

RAG) [61]. In this approach, a user query is processed as

follows: 

First, the LLM converts the user’s natural language

query into a graph query (e.g., Cypher, SPARQL), then

the query retrieves structured information from the KG.

Lastly, the retrieved structured data is fed into the LLM,

which synthesizes the information and generates response.

By leveraging structured knowledge from the KG,

Graph RAG enhances response reliability and reduces

hallucination issues, making it a far superior approach

compared to conventional retrieval-based methods that

rely solely on textual data. Ultimately, it enables more

powerful reasoning than simply searching documents

without utilizing a KG.

Overall, the introduced hybrid approaches bridge the

limitations of individual techniques by combining KGs

with AI models to enable more sophisticated reasoning.

IV. KNOWLEDGE GRAPH LEARNING TASKS
FOR DRUG DISCOVERY

While previous sections examined the fundamental

structure of heterogeneous biomedical networks and the

technical approaches to learning from networks, this

section explores the practical applications of KGs for

AIDD. Each subsection explores a different pharmaceutical

task where the KG paradigm offers unique advantages

beyond traditional methods. Unlike traditional methods,

KG based approaches are capable of integrating diverse

data types—from molecular structures to genetic

expressions to clinical outcomes—while preserving the

natural relationships between biological entities. The key

focus areas includes: drug target identification and

interaction prediction, drug repurposing, drug combination

prediction, multimodal alignment, and integration with

large language models.

A. Drug Target Identification and Interaction
Prediction

Drug target identification and interaction prediction is

the process of discovering and validating specific biological

molecules (like proteins, genes, or receptors) that can be

modulated by drugs to produce therapeutic effects, and

then predicting how potential drug compounds will bind

to and interact with these targets to help and establish

drug design and development strategies.

KGs enhance molecular interaction predictions by

integrating protein-protein interaction networks with drug

chemical structures. They improve accuracy by incorpo-

rating both structural and functional protein information,

uncover binding mechanisms through graph patterns, and

enhance off-target predictions via network proximity

analysis.

Several models leverage KGs for DTI prediction. DTINet

[62] applies a random walk with restart on heterogeneous

KGs, using network diffusion patterns to identify func-

tionally similar drugs and targets. KGENFM [63] learns

drug and target embeddings from a heterogeneous KG

and combines them with neural factorization machines,

improving interaction prediction for novel targets. TriModel

[64] treats DTI prediction as a direct link prediction task,

using tensor factorization with three embedding vectors

per entity to capture complex interaction patterns and

handle sparse data. NeoDTI [65] utilizes neural message

passing across different edge types, updating node

embeddings by aggregating neighborhood information

while preserving network topology through reconstruction

objectives. These models demonstrate the power of KGs

in improving DTI prediction, offering more effective

strategies for drug discovery.
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B. Drug Repurposing

Drug repurposing identifies new therapeutic applications

for approved drugs to treat diseases that are not approved

when drug was approved. If successful, drug repositioning

can accelerate drug development timelines and reduce

drug development costs because many characteristics of

existing drugs, e.g., toxicity and PK/PD, are already well

supported. Thus, this approach is particularly valuable for

rare diseases, pandemic responses, and conditions with

limited treatment options.

KGs enhance drug repurposing by structuring complex

drug-target-disease interactions into an interconnected

network. Traditional methods struggle with the vast com-

binatorial space of genes, pathways, and drugs, making

systematic evaluation challenging. KGs overcome this by

capturing biomedical relationships in an interpretable

framework, allowing algorithms to uncover hidden

associations and efficiently traverse molecular-to-clinical

interactions.

Several KG-based models have demonstrated success.

For example, KG-Predict [66] integrates genotypic and

phenotypic data to predict novel drug-disease associations.

DREAMwalk [67] employs a multi-layer semantic strategy

to analyze similarity patterns in drug-gene-disease networks.

Project Rephetio [6] systematically analyzes network

patterns from 29 public datasets to identify treatment

candidates. Zhang et al. [68] applied KG completion

techniques to prioritize potential COVID-19 treatments,

showcasing the method’s ability to rapidly navigate complex

biomedical landscapes. These approaches highlight the

potential of KGs in accelerating drug repurposing by

systematically leveraging existing biomedical knowledge.

C. Drug Combination Prediction

Drug combination prediction identifies effective drug

pairs that enhance therapeutic outcomes beyond single-

drug treatments. This approach is crucial for overcoming

treatment resistance and addressing complex diseases

while minimizing side effects and reducing the time and

cost of traditional trial-and-error experiments. Use of

already approved drugs has advantages for avoiding

toxicity and better PK/PD results, compared to traditional

trial-and-error experimental approaches for developing

new drugs.

KGs offer a powerful framework for predicting drug

interactions by capturing the complex relationships among

drugs, targets, pathways, and side effects. Unlike traditional

models that treat drug combinations as isolated pairs,

KGs provide a holistic view of the biomedical landscape,

enabling the identification of synergistic effects and

potential adverse interactions. By representing biological

entities as interconnected nodes, KGs allow researchers

to analyze shared or complementary pathways, revealing

mechanisms that drive drug synergy or antagonism. 

Several innovative approaches support the effectiveness

of KG-based drug combination prediction. Decagon [69]

integrates protein-protein interactions and drug-protein

targets to improve polypharmacy side effect prediction

by 69% over baseline methods. Gu et al. [70] employ

supervised contrastive learning to enhance drug-drug

interaction modeling, particularly in addressing the

challenge of negative sample scarcity. KG2ECapsule [71]

expands beyond binary classification by modeling diverse

drug-drug relationships, while SimVec [72] mitigates the

“cold start” problem for unseen drugs by leveraging

structure-aware node initialization and weighted similarity

edges. Other notable approaches include Bean et al.’s

model [73] for adverse reaction prediction, which examines

molecular targets and pathway effects, and tumor-

biomarker KG [74], which uncovers mechanistic insights

into drug interactions. These methods not only predict

effective or harmful drug combinations but also provide

interpretable insights through graph-based reasoning,

making them highly valuable for clinical decision-making.

D. Multimodal Alignment for Harmonized
Data Integration

Multimodal alignment in drug discovery refers to the

harmonization of diverse data sources, including genomic,

protein structural, clinical, and chemical information, to

enhance drug efficacy and toxicity predictions. This

comprehensive approach reduces development time and

costs while improving success rates by capturing complex

biological interactions that single-modal methods often

overlook. 

Traditional models struggle to bridge the gap between

molecular structures and functional properties while

preserving chemical validity. KGs address this challenge

by structuring chemical domain knowledge, acting as a

semantic bridge between different modalities. For example,

KANO [75] employs KG-guided graph augmentation

during contrastive learning, linking atomic structures to

functional properties through KG-derived prompts, thereby

improving both predictive performance and interpretability.

Expanding on this idea, KEDD [76] integrates structured

and unstructured knowledge sources using feature fusion

techniques, effectively handling missing modality issues

and creating a more robust drug discovery framework.

E. Knowledge Graph-Augmented LLMs

Drug discovery begins to benefit from the remarkable

advances in LLMs. Integration of KGs with LLMs has

become a new powerful approach to improving molecular

understanding and biomedical reasoning. KGs provide

structured representations of biomedical relationships,

while LLMs process and interpret unstructured textual

knowledge. Their integration bridges the gap between

relational data and natural language, enabling more
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comprehensive drug discovery insights.

A hybrid KG-LLM systems, BioBRIDGE, aligns

independently trained biomedical foundation models

across proteins, molecules, and text using transformation

modules learned from relational triplets in PrimeKG,

facilitating DTI prediction and disease-driven drug

discovery without fine-tuning.

CLADD, in contrast, employs RAG to dynamically

retrieve biomedical knowledge from KGs, molecular

databases, and predictive tools, generating contextualized

insights for drug-target prediction, molecular annotation,

and toxicity assessment. These models illustrate the

potential of KG-LLM integration to improve interpreta-

bility, scalability, and adaptability in AI-driven biomedical

research.

V. CONCLUSION

Biomedical KGs, alongside AI frameworks, are powerful

and promising tools for drug discovery by systematically

harnessing diverse biological data sources and uncovering

complex biomedical relationships that traditional methods

alone cannot reveal. In this survey, we provided a

comprehensive overview of biomedical HKGs, detailed

key methodologies for their construction, evaluation, and

representation learning, and thoroughly reviewed state-

of-the-art AI algorithms and drug discovery applications.

Through KG methodologies, including graph represen-

tation learning, GNNs, knowledge reasoning, and hybrid

approaches, researchers have substantially advanced

crucial drug discovery tasks such as DTI prediction, drug

repurposing, drug response analysis, and multimodal

alignment for harmonized data integration. The integration

of HKGs with emerging LLMs further extends the

potential of KG, enabling richer insights, more accurate

predictions, and innovative discoveries. 

However, significant challenges remain. Issues

concerning data quality, completeness, interpretability,

computational scalability, and standardized evaluation

frameworks must be addressed to fully realize the

promise of KGs. Future research directions should focus

on enhancing HKG methodologies, developing more robust

multimodal learning strategies, improving transparency

and interpretability of AI models, and expanding the

integration of KGs with advanced language models and

reasoning frameworks. 

In conclusion, the combination of KGs and AI is

transforming biomedical research and accelerating

development of therapeutics. Continued interdisciplinary

collaboration among bioinformatics researchers, AI

practitioners, domain experts, and clinical professionals

will be essential to overcoming current challenges and

fully exploiting the remarkable opportunities KGs present

for the future of drug discovery.

CONFLICT OF INTEREST

The authors have declared that no competing interests

exist.

ACKNOWLEDGEMENTS

This research was supported by the Bio & Medical

Technology Development Program of the National Research

Foundation (NRF), funded by the Ministry of Science and

ICT, Republic of Korea (Grant No.  RS-2022-NR067933),

Institute of Information & communications Technology

Planning & Evaluation (IITP) grant funded by the Korea

government (MSIT) (No. RS-2021-II211343, Artificial

Intelligence Graduate School Program; Seoul National

University) and AIGENDRUG Co. Ltd.

REFERENCES

1. A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. D.

Melo, C. Gutierrez, et al., “Knowledge graphs,” ACM

Computing Surveys (Csur), viol. 54, no. 4, article no. 71,

2021. https://doi.org/10.1145/3447772

2. Jupp, J. Malone, J. Bolleman, M. Brandizi, M. Davies, L.

Garcia, et al., “The EBI RDF platform: linked open data for

the life sciences,” Bioinformatics, vol. 30, no. 9, pp. 1338-

1339, 2014. https://doi.org/10.1093/bioinformatics/btt765

3. T. Gaudelet, B. Day, A. R. Jamasb, J. Soman, C. Regep, G. Liu,

et al., “Utilizing graph machine learning within drug discovery

and development,” Briefings in Bioinformatics, vol. 22, no. 6,

article no. bbab159, 2021. https://doi.org/10.1093/bib/bbab159

4. T. J. Rintala, A. Ghosh, and V. Fortino, “Network

approaches for modeling the effect of drugs and diseases,”

Briefings in Bioinformatics, vol. 23, no. 4, article no.

bbac229, 2022. https://doi.org/10.1093/bib/bbac229

5. D. J. Rigden and X. M. Fernandez, “The 27th annual

Nucleic Acids Research database issue and molecular

biology database collection,” Nucleic Acids Research, vol. 48,

no. D1, pp. D1-D8, 2020. https://doi.org/10.1093/nar/gkz1161

6. D. S. Himmelstein, A. Lizee, C. Hessler, L. Brueggeman, S.

L. Chen, D. Hadley, A. Green, P. Khankhanian, and S. E.

Baranzini, “Systematic integration of biomedical knowledge

prioritizes drugs for repurposing,” eLife, vol. 6, article no.

e26726, 2017. https://doi.org/10.7554/eLife.26726

7. H. Chen, L. Ding, Z. Wu, T. Yu, L. Dhanapalan, and J. Y.

Chen, “Semantic web for integrated network analysis in

biomedicine,” Briefings in Bioinformatics, vol. 10, no. 2, pp.

177-192, 2009. https://doi.org/10.1093/bib/bbp002

8. J. Pinero, J. M. Ramirez-Anguita, J. Sauch-Pitarch, F.

Ronzano, E. Centeno, F. Sanz, and L. I. Furlong, “The

DisGeNET knowledge platform for disease genomics: 2019

update,” Nucleic Acids Research, vol. 48, no. D1, pp. D845-

D855, 2020. https://doi.org/10.1093/nar/gkz1021

9. J. S. Amberger, C. A. Bocchini, A. F. Scott, and A. Hamosh,

“OMIM.org: leveraging knowledge across phenotype–gene

relationships,” Nucleic Acids Research, vol. 47, no. D1, pp.



Journal of Computing Science and Engineering, Vol. 19, No. 1, March 2025, pp. 1-15

http://dx.doi.org/10.5626/JCSE.2025.19.1.1 12 Daeun Kong et al.

D1038-D1043, 2019. https://doi.org/10.1093/nar/gky1151

10. A. Buniello, J. A. L. MacArthur, M. Cerezo, L. W. Harris, J.

Hayhurst, C. Malangone, et al., “The NHGRI-EBI GWAS

Catalog of published genome-wide association studies,

targeted arrays and summary statistics 2019,” Nucleic

Acids Research, vol. 47, no. D1, pp. D1005-D1012, 2019.

https://doi.org/10.1093/nar/gky1120

11. D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu,

J. R. Grant, et al., “DrugBank 5.0: a major update to the DrugBank

database for 2018,” Nucleic Acids Research, vol. 46, no. D1,

pp. D1074-D1082, 2018. https://doi.org/10.1093/nar/gkx1037

12. S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, et al.,

“PubChem in 2021: new data content and improved web

interfaces,” Nucleic Acids Research, vol. 49, no. D1, pp.

D1388-D1395, 2021. https://doi.org/10.1093/nar/gkaa971

13. M. Kanehisa, M. Furumichi, Y. Sato, M. Ishiguro-Watanabe,

and M. Tanabe, “KEGG: integrating viruses and cellular

organisms,” Nucleic Acids Research, vol. 49, no. D1, pp.

D545-D551, 2021. https://doi.org/10.1093/nar/gkaa970

14. B. Jassal, L. Matthews, G. Viteri, C. Gong, P. Lorente, A.

Fabregat, et al., “The reactome pathway knowledgebase,”

Nucleic Acids Research, vol. 48, no. D1, pp. D498-D503,

2020. https://doi.org/10.1093/nar/gkz1031

15. D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J.

Huerta-Cepas, et al., “STRING v11: protein–protein association

networks with increased coverage, supporting functional

discovery in genome-wide experimental datasets,” Nucleic

Acids Research, vol. 47, no. D1, pp. D607-D613, 2019.

https://doi.org/10.1093/nar/gky1131

16. C. Stark, B. J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz,

and M. Tyers, “BioGRID: a general repository for interaction

datasets,” Nucleic Acids Research, vol. 34(suppl_1), pp.

D535-D539, 2006. https://doi.org/10.1093/nar/gkj109

17. P. Chandak, K. Huang, and M. Zitnik, “Building a knowledge

graph to enable precision medicine,” Scientific Data, vol. 10,

article no. 67, 2023. https://doi.org/10.1038/s41597-023-01960-3

18. A. Santos, A. R. Colaço, A. B. Nielsen, L. Niu, P. E. Geyer, F.

Coscia, et al., “Clinical knowledge graph integrates proteomics

data into clinical decision-making,” bioRxiv, 2020 [Online].

Available: https://doi.org/10.1101/2020.05.09.084897.

19. C. Konigs, M. Friedrichs, and T. Dietrich, “The hetero-

geneous pharmacological medical biochemical network

PharMeBINet,” Scientific Data, vol. 9, article no. 393, 2022.

https://doi.org/10.1038/s41597-022-01510-3

20. Q. Wang, M. Li, X. Wang, N. Parulian, G. Han, J. Ma, et al.,

“COVID-19 literature knowledge graph construction and

drug repurposing report generation,” 2020 [Online].

Available: https://arxiv.org/abs/2007.00576v1.

21. R. Zhang, D. Hristovski, D. Schutte, A. Kastrin, M.

Fiszman, and H. Kilicoglu, “Drug repurposing for COVID-

19 via knowledge graph completion,” 2020 [Online].

Available: https://arxiv.org/abs/2010.09600v1.

22. S. Zheng, J. Rao, Y. Song, J. Zhang, X. Xiao, E. F. Fang,

Y. Yang and Z. Niu, “PharmKG: a dedicated knowledge

graph benchmark for bomedical data mining. Briefings in

Bioinformatics, vol. 22, no. 4, article no. bbaa344, 2021.

https://doi.org/10.1093/bib/bbaa344

23. A. Breit, S. Ott, A. Agibetov, and M. Samwald, “OpenBioLink:

a benchmarking framework for large-scale biomedical link

prediction,” Bioinformatics, vol. 36, no. 13, pp. 4097-4098,

2020. https://doi.org/10.1093/bioinformatics/btaa274

24. K. Hansel, S. N. Dudgeon, K. H. Cheung, T. J. Durant,

and W. L. Schulz, “From data to wisdom: biomedical

knowledge graphs for real-world data insights,” Journal

of Medical Systems, vol. 47, no. 1, article no. 65, 2023.

https://doi.org/10.1007/s10916-023-01951-2

25. C. Su, Y. Hou, M. Zhou, S. Rajendran, J. R. Maasch, Z. Abedi,

et al., “Biomedical discovery through the integrative biomedical

knowledge hub (iBKH),” Iscience, vol. 26, no. 4, article no.

106460, 2023. https://doi.org/10.1016/j.isci.2023.106460

26. A. Jimenez, M. J. Merino, J. Parras, and S. Zazo, “Explainable

drug repurposing via path based knowledge graph completion,”

Scientific Reports, vol. 14, no. 1, article no. 16587, 2024.

https://doi.org/10.1038/s41598-024-67163-x

27. C. Peng, F. Xia, M. Naseriparsa, and F. Osborne,

“Knowledge graphs: opportunities and challenges,” Artificial

Intelligence Review, vol. 56, no. 11, pp. 13071-13102, 2023.

https://doi.org/10.1007/s10462-023-10465-9

28. Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph

embedding by translating on hyperplanes,” Proceedings of

the AAAI Conference on Artificial Intelligence, vol. 28, no. 1,

pp. 1112-1119, 2014. https://doi.org/10.1609/aaai.v28i1.8870

29. R. Johnson, M. M. Li, A. Noori, O. Queen, and M. Zitnik,

“Graph artificial intelligence in medicine,” Annual Review

of Biomedical Data Science, vol. 7, pp. 345-368, 2024.

https://doi.org/10.1146/annurev-biodatasci-110723-024625

30. C. Wang, Y. Yang, J. Song, and X. Nan, “Research

progresses and applications of knowledge graph embedding

technique in chemistry,” Journal of Chemical Information

and Modeling, vol. 64, no. 19, pp. 7189-7213, 2024.

https://doi.org/10.1021/acs.jcim.4c00791

31. Z. Zhang, P. Cui, J. Pei, X. Wang, and W. Zhu, “Eigen-GNN:

a graph structure preserving plug-in for GNNs,” IEEE

Transactions on Knowledge and Data Engineering, vol. 35, no. 3,

pp. 2544-2555, 2023. https://doi.org/10.1109/TKDE.2021.3112746

32. Z. Zeng, Q. Cheng, and Y. Si, “Logical rule-based

knowledge graph reasoning: a comprehensive survey,”

Mathematics, vol. 11, no. 21, article no. 4486, 2023.

https://doi.org/10.3390/math11214486

33. L. N. DeLong, R. F. Mir, and J. D. Fleuriot,

“Neurosymbolic AI for reasoning over knowledge graphs: a

survey,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 36, no. 5, pp. 7822-7842, 2025.

https://doi.org/10.1109/TNNLS.2024.3420218

34. G. A. Gesese, R. Biswas, M. Alam, and H. Sack, “A survey

on knowledge graph embeddings with literals: Which model

links better literal-ly?,” Semantic Web, vol. 12, no. 4, pp.

617-647, 2020. https://doi.org/10.3233/SW-200404

35. M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric

transitivity preserving graph embedding,” in Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, San Francisco, CA, USA, 2016,

pp. 1105-1114. https://doi.org/10.1145/2939672.2939751

36. S. Cao, W. Lu, and Q. Xu, “GraRep: learning graph represen-

tations with global structural information,” in Proceedings of

the 24th ACM International on Conference on Information

and Knowledge Management, Melbourne, Australia, 2015,

pp. 891-900. https://doi.org/10.1145/2806416.2806512



Survey on AI-Drug Discovery with Knowledge Graphs: Data, Algorithm, and Application

Daeun Kong et al. 13 http://jcse.kiise.org

37. B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: online

learning of social representations,” in Proceedings of the

20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, New York, NY, USA, 2014, pp.

701-710. https://doi.org/10.1145/2623330.2623732

38. A. Grover and J. Leskovec, “node2vec: scalable feature

learning for networks,” in Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining, San Francisco, CA, USA, 2016, pp. 855-

864. https://doi.org/10.1145/2939672.2939754

39. S. Brin and L. Page, “The anatomy of a large-scale

hypertextual web search engine,” Computer Networks and

ISDN Systems, vol. 30, no. 1-7, pp. 107-117, 1998.

https://doi.org/10.1016/S0169-7552(98)00110-X

40. L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec:

learning node representations from structural identity,” in

Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Halifax, Canada,

2017, pp. 385-394. https://doi.org/10.1145/3097983.3098061

41. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O.

Yakhnenko, “Translating embeddings for modeling multi-

relational data,” Advances in Neural Information Processing

Systems, vol. 26, pp. 2787-2795, 2013. 

42. Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning

entity and relation embeddings for knowledge graph

completion,” Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 29, no. 1, pp. 2181-2187, 2015.

https://doi.org/10.1609/aaai.v29i1.9491

43. B. Yang, W. T. Yih, X. He, J. Gao, and L. Deng,

“Embedding entities and relations for learning and

inference in knowledge bases,” 2014 [Online]. Available:

https://arxiv.org/abs/1412.6575v1.

44. T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G.

Bouchard, “Complex embeddings for simple link prediction,”

Proceedings of Machine Learning Research, vol. 48, pp.

2071-2080, 2016.

45. Z. Sun, Z. H. Deng, J. Y. Nie, and J. Tang, “RotatE: knowledge

graph embedding by relational rotation in complex space,”

2019 [Online]. Available: https://arxiv.org/abs/1902.10197.

46. R. Biswas, L. A. Kaffee, M. Cochez, S. Dumbrava, T. E. Jendal,

M. Lissandrini, M., ... & De Melo, G. (2023). “Knowledge

graph embeddings: open challenges and opportunities,”

Transactions on Graph Data and Knowledge, vol. 1, no. 1,

article no. 4, 2023. https://dx.doi.org/10.4230/TGDK.1.1.4

47. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G.

E. Dahl, “Neural message passing for quantum chemistry,”

Proceedings of Machine Learning Research, vol. 70, pp.

1263-1272, 2017. 

48. K. Xu, C. Li, Y. Tian, T. Sonobe, K. I. Kawarabayashi,

and S. Jegelka, “Representation learning on graphs with

jumping knowledge networks,” Proceedings of Machine

Learning Research, vol. 80, pp. 5453-5462, 2018.

49. T. Hamaguchi, H. Oiwa, M. Shimbo, and Y. Matsumoto,

“Knowledge transfer for out-of-knowledge-base entities: a

graph neural network approach,” 2017 [Online]. Available:

https://arxiv.org/abs/1706.05674.

50. T. N. Kipf and M. Welling, “Semi-supervised classification

with graph convolutional networks,” 2016 [Online].

Available: https://arxiv.org/abs/1609.02907v1.

51. P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio,

and Y. Bengio, “Graph attention networks,” 2017 [Online].

Available: https://arxiv.org/abs/1710.10903v1.

52. C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla,

“Heterogeneous graph neural network,” in Proceedings of the

25th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Anchorage, AK, USA, 2019,

pp. 793-803. https://doi.org/10.1145/3292500.3330961

53. K. O'shea and R. Nash, “An introduction to con-

volutional neural networks,” 2015 [Online]. Available:

https://arxiv.org/abs/1511.08458.

54. M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den

Berg, I. Titov, and M. Welling, “Modeling relational data

with graph convolutional networks,” in The Semantic

Web. Cham, Switzerland: Springer, 2018, pp. 593-607.

https://doi.org/10.1007/978-3-319-93417-4_38

55. S. N. Artemov and T. Yavorskaya, “First-order logic of proofs,”

2011 [Online]. Available: https://academicworks.cuny.edu/

cgi/viewcontent.cgi?article=1354&context=gc_cs_tr.

56. D. Carral, I. Dragoste, L. Gonzalez, C. Jacobs, M. Krotzsch,

and J. Urbani, “VLog: a rule engine for knowledge graphs,”

in The Semantic Web. Cham, Switzerland: Springer, 2019,

pp. 19-35. https://doi.org/10.1007/978-3-030-30796-7_2

57. A. Polleres, A. Hogan, R. Delbru, and J. Umbrich, “RDFS and

OWL reasoning for linked data,” in Reasoning Web International

Summer School. Heidelberg, Germany: Springer, 2013, pp.

91-149. https://doi.org/10.1007/978-3-642-39784-4_2

58. S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar, “Composition-

based multi-relational graph convolutional networks,” 2019

[Online]. Available: https://arxiv.org/abs/1911.03082v1.

59. Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous

graph transformer,” in Proceedings of the Web

Conference 2020, Taipei, Taiwan, 2020, pp. 2704-2710.

https://doi.org/10.1145/3366423.3380027

60. C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen,

and T. Y. Liu, “Do transformers really perform badly for

graph representation?,” Advances in Neural Information

Processing Systems, vol. 34, pp. 28877-28888, 2021.

61. D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao, A. Mody,

S. Truitt, and J. Larson, “From local to global: A graph rag

approach to query-focused summarization,” 2024 [Online].

Available: https://arxiv.org/abs/2404.16130v1.

62. Y. Luo, X. Zhao, J. Zhou, J. Yang, Y. Zhang, W. Kuang, J.

Peng, L. Chen, and J. Zeng, “A network integration

approach for drug-target interaction prediction and

computational drug repositioning from heterogeneous

information,” Nature Communications, vol. 8, article no.

573, 2017. https://doi.org/10.1038/s41467-017-00680-8

63. Q. Ye, C. Y. Hsieh, Z. Yang, Y. Kang, J. Chen, D. Cao, S

He, and T. Hou, “A unified drug–target interaction prediction

framework based on knowledge graph and recommendation

system,” Nature Communications, vol. 12, article no. 6775,

2021. https://doi.org/10.1038/s41467-021-27137-3

64. S. K. Mohamed, V. Novacek, and A. Nounu,

“Discovering protein drug targets using knowledge graph

embeddings,” Bioinformatics, vol. 36, no. 2, pp. 603-610,

2020. https://doi.org/10.1093/bioinformatics/btz600

65. F. Wan, L. Hong, A. Xiao, T. Jiang, and J. Zeng, “NeoDTI:

neural integration of neighbor information from a



Journal of Computing Science and Engineering, Vol. 19, No. 1, March 2025, pp. 1-15

http://dx.doi.org/10.5626/JCSE.2025.19.1.1 14 Daeun Kong et al.

heterogeneous network for discovering new drug–target

interactions,” Bioinformatics, vol. 35, no. 1, pp. 104-111,

2019. https://doi.org/10.1093/bioinformatics/bty543

66. Z. Gao, P. Ding, and R. Xu, “KG-Predict: a knowledge

graph computational framework for drug repurposing,”

Journal of Biomedical Informatics, vol. 132, article no.

104133, 2022. https://doi.org/10.1016/j.jbi.2022.104133

67. D. Bang, S. Lim, S. Lee, and S. Kim, “Biomedical knowledge

graph learning for drug repurposing by extending guilt-by-

association to multiple layers,” Nature Communications, vol. 14,

article no. 3570, 2023. https://doi.org/10.1038/s41467-023-39301-y

68. R. Zhang, D. Hristovski, D. Schutte, A. Kastrin, M. Fiszman,

and H. Kilicoglu, “Drug repurposing for COVID-19 via knowledge

graph completion,” Journal of Biomedical Informatics, vol. 115,

article no. 103696, 2021. https://doi.org/10.1016/j.jbi.2021.103696

69. M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling

polypharmacy side effects with graph convolutional

networks,” Bioinformatics, vol. 34, no. 13, pp. i457-i466,

2018. https://doi.org/10.1093/bioinformatics/bty294

70. J. Gu, D. Bang, J. Yi, S. Lee, D. K. Kim, and S. Kim, “A

model-agnostic framework to enhance knowledge graph-

based drug combination prediction with drug–drug

interaction data and supervised contrastive learning,”

Briefings in Bioinformatics, vol. 24, no. 5, article no.

bbad285, 2023. https://doi.org/10.1093/bib/bbad285

71. X. Su, Z. You, D. Huang, L. Wang, L. Wong, B. Ji, and B.

Zhao, “Biomedical knowledge graph embedding with

capsule network for multi-label drug-drug interaction

prediction,” IEEE Transactions on Knowledge and

Data Engineering, vol. 35, no. 6, pp. 5640-5651, 2023.

https://doi.org/10.1109/TKDE.2022.3154792

72. N. Lukashina, E. Kartysheva, O. Spjuth, E. Virko, and A.

Shpilman, “SimVec: predicting polypharmacy side effects for

new drugs,” Journal of Cheminformatics, vol. 14, article no.

49, 2022. https://doi.org/10.1186/s13321-022-00632-5

73. D. M. Bean, H. Wu, E. Iqbal, O. Dzahini, Z. M.

Ibrahim, M. Broadbent, R. Stewart, and R. J. B.

Dobson, “Knowledge graph prediction of unknown

adverse drug reactions and validation in electronic health

records,” Scientific Reports, vol. 7, article no. 16416, 2017.

https://doi.org/10.1038/s41598-017-16674-x

74. M. Wang, X. Ma, J. Si, H. Tang, H. Wang, T. Li, et al.,

“Adverse drug reaction discovery using a tumor-biomarker

knowledge graph,” Frontiers in Genetics, vol. 11, article no.

625659, 2021. https://doi.org/10.3389/fgene.2020.625659

75. Y. Fang, Q. Zhang, N. Zhang, Z. Chen, X. Zhuang, X. Shao,

X. Fan, and H. Chen, “Knowledge graph-enhanced

molecular contrastive learning with functional prompt,”

Nature Machine Intelligence, vol. 5, no. 5, pp. 542-553,

2023. https://doi.org/10.1038/s42256-023-00654-0

76. Y. Luo, X. Y. Liu, K. Yang, K. Huang, M. Hong, J. Zhang,

Y. Wu, and Z. Nie, “Toward unified AI drug discovery with

multimodal knowledge,” Health Data Science, vol. 4, article

no. 0113, 2024. https://doi.org/10.34133/hds.0113    

Daeun Kong

Daeun Kong received her bachelor's degrees in Mathematics and Software & Computer Engineering from
Ajou University in 2025. Since 2024, she has been working at AIGENDRUG Co. Ltd., where she has been
involved in research related to the use of AI in drug development.

Yoojin Ha https://orcid.org/0009-0008-2976-9792

Yoojin Ha received her bachelor's degree in Computer Education from Sungkyunkwan University in 2025.
She is currently pursuing a master's degree in the Interdisciplinary Program in Artificial Intelligence at Seoul
National University. Her research interests include bioinformatics and machine learning.



Survey on AI-Drug Discovery with Knowledge Graphs: Data, Algorithm, and Application

Daeun Kong et al. 15 http://jcse.kiise.org

HaEun Yoo

HaEun Yoo is currently an undergraduate student in the Department of Computer Science and Engineering
at Seoul National University and a research intern at the BHI lab under Professor Sun Kim. Her research
interests include bioinformatics, biomedical engineering, and machine learning.

Dongmin Bang https://orcid.org/0000-0001-9217-8380

Dongmin Bang is currently a PhD candidate in Bioinformatics at Seoul National University advised by Prof.
Sun Kim and a senior research scientist at AIGENDRUG Co., Ltd. He received his received his Pharm.D. degree
from Chung-Ang University. His research interests include precision medicine, intelligent knowledge
integration and AI-augmented drug discovery.

Sun Kim https://orcid.org/0000-0001-5385-9546

Sun Kim received the Ph.D. degree in computer science from University of Iowa, in 1997. He is currently a
professor with the School of Computer Science and Engineering, and an affiliated faculty of Interdisciplinary
Program in bioinformatics with Seoul National University. Prof. Kim also is the co-founder of AIGENDRUG Co.
Ltd. His research interests include bioinformatics, computational biology, machine learning, and data
mining.


