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Abstract
Computer vision has been automatically performing challenging tasks such as image classification, object detection and

recognition, and image segmentation due to the rapid development in the industry and performing beyond human capa-

bilities. As social expectations and interests grow in computer vision, there is a growing tendency to utilize computer

vision technologies in several other fields such as defense, finance, education, and other related industries. However,

many computer vision products are often underutilized for several reasons after they are developed. The important prob-

lem is that researchers are less interested in the knowing the cause of this. Even though many studies have been con-

ducted to improve computer vision technology, studies that focus on quality of the computer vision products that people

use are insufficient. Hence, this paper discusses the quality of computer vision products. Through a requirement engi-

neering approach, we analyze the efficiency requirements that mostly affect the quality of computer vision products and

identify the trends in related technologies. Through this, we present the relevant technical limitations and ways to over-

come them.
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I. INTRODUCTION

Computer vision (CV) techniques are performing well

in image recognition and classification, object detection,

image segmentation, and more, with advancements in

machine learning (ML) that contribute to CV. However,

many CV products are developed and rarely used because

the customer's requirements are not properly understood

in the early stages of product development [1]. 

Since CV is a technology that predicts outcomes based

on data, it requires a different approach to quality control

than traditional software (SW). However, requirements

engineering (RE) studies for CV products are very scarce.

As a result, even when CV products are developed, they

are often underutilized.

This paper analyzes techniques related to efficiency

requirements among non-functional requirements (NFR)

for improving CV product quality. It draws meaningful

conclusions that should be of interest to CV developers

and researchers.

In Section II, we explain the research questions (RQ)

that were set and what scientific process was used to

conduct the survey. Section III discusses why efficiency

requirements are important for CV products. In Section

IV, we identify and characterize the trends in technologies

that can improve efficiency. In Section V, we provide a

logical explanation for the importance of domain knowledge

based on the results of the technology trend analysis.
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II. RESEARCH METHOD

For a systematic literature review, this paper follows

the method suggested by Kitchenham [2]. This method is

more useful when the number of papers is large, as it

efficiently verifies that the papers have been thoroughly

researched.

Our study has been performed in a sequence as shown

in Fig. 1.

A. Research Questions

1) RQ1: Importance of Efficiency

From previous studies, we found that there is a lack of

research on RE compared to the societal interest in CV

products. Through various surveys, we found that the

study of efficiency requirements should be prioritized to

improve CV quality. RQ1 explains why we focus on

analyzing efficiency requirements.

2) RQ2: Techniques for Efficiency

As a result of RQ1, we found that efficiency is a critical

factor in improving CV quality. RQ2 identifies trends in

technology to improve efficiency. 

3) RQ3: The Key to Efficiency

In analyzing the technology trends in RQ2, we found

an important fact: the importance of domain knowledge

has become even greater than that in traditional SW

development. In RQ3, we explain this logically. 

B. Search Strategy

We first checked the surveys and summarized the relevant

information. This is because it gives us indirect access to

many papers in a short time, with little effort. We

primarily used Google Scholar to search for papers from

a variety of sources. The search keywords are shown in

Table 1 [3-18]. Each line is joined by an OR condition.

For example, keywords = line1 AND line2 AND line3,

where line1 = survey OR review OR analysis.

Search keywords allow for many paper results. Therefore,

we set the following exclusion rules. Non-English papers

were excluded. We excluded papers with duplicate

content. Papers that were published in journals after the

conference were removed based on the author's name.

We excluded papers that were not directly related to CVs.

The time period for the papers was set to 2017–2024. We

prioritized highly cited articles in our search.

For each survey, we set the core content and related

papers as a startset. From these startsets, we used a

snowballing approach [19] to expand the scope of the

study from baseline to the present. Table 2 summarizes

the surveys.

III. IMPORTANCE OF EFFICIENCY

A. Previous Studies

Research on RE for ML first started in 2019 and has

been going on ever since [3]. However, till now, there is

no clear practice for ML development [4, 20]. Recent

survey results show that the number of papers on NFRs

for ML is very limited [4]. The development of RE is

slow due to the lack of academic interest on the same.

The researchers are trying to find answers through

interviews, case studies, and literature reviews. It is not a

quantitative analysis, but more of a conceptual conclusion.
Fig. 1. Chain of research questions and process.

Table 1. Search keyword combination

Keywords

1 Survey; Review; Analysis

2 Machine learning; Computer vision; Artificial intelligence

3 Requirement engineering; MLOps; Data cleaning; Data 

augment; Continuous learning; Light weight
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Masuda et al. [7] analyzed technical keywords for ML

quality. It shows that there is a wide range of technologies

being developed, but it only covers specific parts of the

field, not all of them.

The main stakeholders of CV development are data

scientists [3, 4, 10]. Data scientists are important because

securing the right data is key to ML development. Kumeno

[8] emphasize that data acquisition is the most difficult

part of the entire process.

To analyze ML testing methods, Zhang et al. [21]

divided ML into workflows, components, and properties,

and found that correct data collection is the most

important. Previous studies have shown that data is the

most important thing in improving the quality of CV

products. So we identify efficiency requirements that are

directly related to data.

B. The Challenge of CV Development

Requirements are critical to the entire SW engineering

process; most SW failures are caused by incomplete and

inaccurate requirements (64.7%) [9]. Currently, there is

no requirement elicitation practice for CV development.

In [22], there is no standardized model for MLOps.

Table 2. Summary of survey on CV quality

Category Study Year Method Main contributions

Computer 

vision

Guo et al. [5] 2021 M -Categorize and analyze attention by how it works: channel, spatial, branch, 

temporal, etc. to see the difference between each technique

Bi et al. [6] 2022 L -Domain knowledge needs make content extraction from CV difficult 

-Identify evolutionary computer vision techniques to easily extract content

Software 

engineering

Masuda et al. [7] 2018 L -Identify testing practices to improve ML quality 

-More research is needed in areas such as fault localization and prediction

Kumeno [8] 2019 L -Broadly describes challenges for ML applications and attempts to map them 

to knowledge areas in Software Engineering Body of Knowledge 

(SWEBOK)

Atoum et al. [9] 2021 L -Analyzed 19 validation technologies and 27 tools

-Define the relationship between validation technologies and SW domains

Requirement 

engineering

Vogelsang & Borg 

[3]

2019 I -First RE for ML paper, interviews with 4 data scientists 

-Categorize RE for ML activities based on criteria classified in the 

SWEBOK 

Pei et al. [10] 2022 L -Identifies RE for ML challenges focusing on stakeholders (business 

experts, required engineers, SW engineers, domain experts, and data 

scientists)

Gjorgjevikj et al. [4] 2023 C -Snowballing paper reviews and case studies to draw conclusions 

-No basic practices for eliciting requirements for ML

Data cleaning Chalapathy & 

Chawla [11]

2019 L -Systematically categorize anomaly detection techniques 

-Analyze the effectiveness of each technology

Pang et al. [12] 2020 M -Categorize outlier detection from a modeling perspective and check tech-

niques for problem identification

Data Augment Zhang et al. [13] 2020 M -Showing how using Mixup helps with model robustness

-Explain why it is robust against multiple types of adversarial attacks

Park et al. [14] 2022 M -It provides a theoretical analysis of mixed sample data augmentation and 

provides a high level of understanding of how different design choices work

Continuous 

learning

Guo et al. [15] 2017 M -Evaluate the performance of different post-processing calibration methods 

-Temperature scaling works well

Van de Ven & Tolias 

[16]

2019 C -Categorize Continual Learning methods into three scenarios 

-See the effects of applying techniques in different scenarios

Light weight Sanchez-Iborra & 

Skarmeta [17]

2020 E -Investigate the TinyML framework available for integrating ML algorithms 

within microcontroller units

Ray [18] 2022 L -Identify tool sets and components to support TinyML 

-Present the state of the art on the TinyML framework

L: literature review, C: case study, E: experiment, M: mathematical analysis, I: interview.
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Therefore, each industry plans and applies its own

development process. With MLOps, it is important to

identify the initial business problem and identify the

correct dataset. MLOps are represented as end-to-end

processes, where the workflow is repetitive and automation

is emphasized. If the wrong data is used, it affects the

whole thing because the process is chained.

We know that every industry has its own applicable

workflows. The important thing is that continuous learning

is essential for CV product development in any industry,

which is why it is necessary to use clean data.

C. Efficiency Requirements for Quality

Software requirements are mainly classified into

functional requirements and non-functional requirements.

NFR includes everything related to quality. NFRs can be

classified in various ways depending on their perspectives.

In this paper, we interpret efficiency requirements by

referring to software engineering textbooks [23]. Efficiency

requirements are separated into performance requirements

and space requirements.

To improve the quality of ML products, it is important

to pay attention to data. The data development process is

divided into data collection, labeling, preparation, reduction,

and augmentation. Of these, data cleaning and augmentation

require a significant amount of engineering work [24].

Successful artificial intelligence (AI) essentially requires

research in two areas: first, the ability to clean up dirty

datasets into clean labels, and second, the ability to

automatically generate new, high-quality data. This is the

part that directly affects performance.

Meanwhile, CV has become multimodal and very large

in size. The latest trend is for companies to miniaturize

these large models. In addition, lightweight models can

be run on mobile devices, expanding their application area.

This is why space requirements are needed for recent CV

products. For this reason, we considered efficiency

requirements to be the key NFR. Performance and space

are important to achieve efficiency in CV products.

IV. TECHNIQUES FOR EFFICIENCY

A. Performance Requirements

Improving CV performance is directly related to data.

Techniques for this include how to improve data quality

and quantity and retraining models with new data. Check

technology trends for this. 

1) Data Cleaning for Single Class

Anomaly detection is a technique for checking whether

a training dataset contains anomalous data. Unnecessary

training with anomalous data reduces the performance of

the model. Anomaly detection can also be applied to

various fields such as cyber-intrusion detection, medical

anomaly detection, and video surveillance [11]. 

When training, anomaly detection is classified as

supervised, semi-supervised, and unsupervised, depending

on whether the data is labeled or not. We categorized the

techniques according to the data features used and

identified the features as shown in Table 3.

Supervised anomaly detection ensures that all labels

are present in the given data. It is more accurate than the

other methods. However, in the real world, where anomaly

detection is applied, there is much less anomalous data,

resulting in a data imbalance.

Semi-supervised anomaly detection uses two methods

to overcome this imbalance: using only normal data and

using a small number of labeled data. Since it is a real-

world application, this is a relatively active area of research

[25]. The density-based method is simple to implement

and highly effective. For example, SPADE [26] collects

Table 3. Taxonomy of anomaly detection

Category Data Description Method

Supervised

 Binary classification O,X Apply when labelled for normal and abnormal 

data

-Over/under sampling 

-Weight optimization

-Hybrid method

Semi-supervised

One-class classification O Use only normal data to detect differences 

between the normal and outlier

-Density-based

-Classification-based 

-Reconstruction-based, etc.

 Distribution mismatch O,X,U Use when domains between labeled/unlabeled 

data are different

-Uncertainty-aware-self distillation 

-Open-set-semi-supervised learning

Unsupervised U Detect outliers using only unlabeled data with-

out label information

-Deep unsupervised anomaly detection 

-Self-supervised, Refine, Repeat

O: normal, X: abnormal, U: unlabeled
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the features of normal data and creates a global average

pooling and uses it as an anomaly score. PaDiM [27]

identifies anomaly data by calculating the Mahalanobis

distance between normal and anomalous data distributions.

Semi-supervised anomaly detection studies have mainly

used MNIST and CIFAR-10 datasets [28]. It is somewhat

unnatural because the datasets were not originally created

for anomaly detection. Since the numbers 0 and 1–9 are

easily distinguishable by humans, there is a limitation

that even if the dataset shows good performance, it is not

practical [29].

For practical research, researchers have begun using

the MVTec anomaly detection dataset introduced in

CVPR2019 [30]. As shown in Fig. 2, studies using the

MVTec dataset continue to improve the performance [31].

The state-of-the-art method achieved an AUROC score of

99.8%, indicating excellent detection performance [32].

Despite the sophistication of semi-supervised anomaly

detection, it still suffers from low anomaly detection recall

rates on real-world data [12]. Reducing false positives

and increasing recall rates still require data scientists’

involvement and validation.

Unsupervised anomaly detection is a label-free learning

method that assumes that most of the data is normal.

Autoencoder-based methods extract features of normal

data through important information in the compressed data

during the encoding process and use them to distinguish

between normal and abnormal data [33]. Unsupervised

anomaly detection does not require a labelling process,

but it has the disadvantage of poor judgement accuracy

and sensitivity to hyperparameters. 

Semi-supervised anomaly detection is well researched,

and the next challenge is to increase the performance of

unsupervised anomaly detection with unlabeled data.

2) Data Cleaning for Multiple Class

CV products often require the ability to classify multiple

classes, not just a single class. In the open world, there

are various classes that CV has not learned. This can lead

to performance degradation and sustainability degradation.

Data that is not trained on multiple classes is called out-

of-distribution. The methods for handling out-of-distribution

data can be broadly classified into classifier-based methods

and generative-based methods.

Hendrycks and Gimpel [29] is the first paper to address

out-of-distribution detection and propose an experimental

protocol using maximum softmax probability. The proposed

metrics, AUROC curve and area under the precision-recall

(AUPR) curve, have been widely used in subsequent papers.

The follow-up paper, ODIN [34], uses the previously

proposed methods of temperature scaling and input

preprocessing appropriately to find the out-of-distribution

without learning. In [35], under the assumption that the

features of the trained network follow a class-conditional

Gaussian distribution, Mahalanobis distance is obtained

and used as a confidence score. Outlier exposure [36]

improves the performance of out-of-distribution detection

by adding independent auxiliary data sets.

Generative-based methods assume that feeding out-of-

distribution samples into a density estimator will result in

lower likelihood values. In early studies, the likelihood

values obtained from the generative model did not

distinguish between in-distribution and out-of-distribution

datasets well.

Choi et al. [37] observed an inconsistent phenomenon

when training with CIFAR-10 and testing with traffic

sign and SVHN; where the generative model had higher

likelihood values for SVHN, an out-of-distribution dataset,

than for CIFAR-10, an in-distribution dataset. Later, they

found that the higher the complexity of the input image,

the lower the likelihood was observed, and proposed a

method to utilize the complexity of the input as the out-

of-distribution score [38].

Fig. 3 shows the performance trends of generative-

based and classifier-based methods on the CIFAR-10 (in-

distribution) and SVHN (out-of-distribution) datasets [39].

The performance is similar, but the generative-based

method greatly depends on the dataset. For generative-

based performance, the dataset used must be as realistic

as possible [36].

Recently, it has been recognized that studies on out-of-

distribution detection are not suitable for the real world.

Therefore, a new concept of out-of-model-scope has been

Fig. 2. Performance graph of anomaly detection using MVTec
[31]. Fig. 3. Out-of-distribution performance graph [39]. IN: CIFAR10,

OUT: SVHN.
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defined to reflect more appropriate problem settings. For

realistic out-of-model-scope use, developers need to

study the domain of the product.

3) Data Augmentation

With the development of deep learning, CV has a large

number of parameters compared to the amount of data.

This leads to the problem of overfitting the training data.

Overfitted models have significantly lower prediction

performance on new data not seen in training [40].

The method of data augmentation should be chosen

according to the purpose of CV. For example, classification

typically produces a single correct label for an image,

whereas segmentation involves assigning a class label to

each pixel. To improve segmentation performance, image

data augmentation techniques are commonly used. These

include basic manipulations (e.g., flipping, rotation) and

deep learning-based approaches. Both are increasingly

being integrated into meta-learning frameworks that can

be applied without requiring domain-specific knowledge.

By manipulating the images by flipping, rotating,

zooming, etc., they have the effect of imposing variety on

the data. It’s also very simple to apply. These methods

improve model performance by diversifying the data just

by manipulating the original image [41].

However, flipping and rotation are inappropriate for

semantic segmentation and stereo matching, which require

spatial information. For example, a flipped image of the

sky is not real-world data. However, a military fighter jet

may need a flipped sky image. Therefore, these methods

should be considered in the domain of the CV product.

Mix-up is a technique that generates new samples through

linear interpolations from two data samples. This technique

not only produces a smooth decision boundary and good

prediction performance, but also shows robustness against

adversarial attacks [40]. It is still being used in various

research fields because it guarantees good generalization

performance even with simple operating principles [14, 42].

CV tends to become overconfident as its prediction

performance improves [15]. This makes it difficult to

control product quality during development. Studies have

shown that calibrating with Mix-up is effective against

over-confidence.

Thulasidasan et al. [43] explain that Mix-up help

improve performance because they learn new samples

each time. Zhang et al. [15] proved mathematically that

Mix-up can reduce the upper bound of adversarial loss.

Despite the effectiveness of Mix-up, the technique has

limitations. In the process of utilizing the data, unnecessary

information can be used for training [44]. To improve this

limitation, researchers are actively working on finding

information in the important regions of the data [45-48].

Ensuring the safety of AI systems requires adversarial

training, which improves their ability to resist attacks by

incorporating adversarial examples during the learning

process [49]. However, since adversarial examples are

data that does not exist in the real world, they show

distributional mismatches with clean data, leading to

poor performance [50], i.e., they can be less accurate

compared to using only clean data [50-52].

Xie et al. [53] developed AdvProp using auxiliary batch

normalization to control the distribution of different

inputs. This is the first benchmark that improves the

performance of the model using only adversarial examples.

Despite this improvement, the increase in training

computation makes adversarial training unsuitable for

industrial-scale production [54].

Recently, researchers have been investigating ways to

improve generalization and robustness simultaneously. To

reduce the bottleneck caused by batch normalization, it has

also been proposed to remove the batch normalization

and proceed with adversarial training [55].

Mix-up and adversarial training, as well as the basic

methods, require an understanding of the nature of the

training data and the domain context to perform well.

AutoAugment is the first attempt to study how to

effectively enrich data without domain knowledge [56].

The disadvantage of this approach is the increase in

computation. It is difficult to expect a significant perfor-

mance improvement for many computations.

To overcome this problem, advances such as PBA,

Fast AA, RandAugment, and Uniform-Augment have

been made. However, there is no significant performance

improvement compared to TrivialAugment, which fixes

the variants in a single operation [57].

Fig. 4 shows the improvement of data augmentation

using ImageNet data [58]. Dividing by model shows a

slow rate of improvement in accuracy. Realistically, data

augmentation in CV requires domain knowledge.

4) Continuous Training

CV suffer from poor inference performance on untrained

data. Since the trained model does not accumulate

knowledge about new data, it is difficult to respond to the

reality.

To solve these problems, Incremental learning is used.

Incremental learning refers to maintaining or improving

the performance of multiple sequential tasks with one

Fig. 4. Data augmentation performance graph [58]. 
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network. It accepts a data stream and accumulates it in a

knowledge base [59].

The challenge of Incremental learning is to minimize

forgetting, which is the loss of information about previous

tasks [16]. The methods of incremental learning are being

developed by dividing them into regularization, distillation,

and dynamic structure as shown in Fig. 5.

Incremental learning was first developed as a regulari-

zation method. When learning a new task, it regulates the

change of model parameters to avoid forgetting the existing

knowledge. 

The first paper, elastic weight consolidation (EWC)

[60], uses the fisher information to reduce the amount of

change in the parameters when learning a new task, and

as a result, it preserves existing knowledge. Memory aware

synapses (MAS) [61] uses a gradient to identify important

knowledge and regulate the change.

Distillation methods transfer knowledge from past tasks

to new tasks. The first paper, less-forgetting learning (LFL)

[62], applies Euclidean loss so that the old and new

models have the same features. This method has a

memory issue: as the number of tasks increases, the size

of the train set that needs to be stored increases. To solve

this problem, the Distillation+Memory method has been

proposed, which stores and uses only some important data.

iCaRL [63] uses parts of previous tasks as exemplars

to learn new tasks. In classification, classes are separated

by the closest distance to the mean of the class feature

vector. Deep generative replay (DGR) [64] utilizes

generative adversarial networks to implement previous

task data. This data is called exemplar, which is found to

be highly biased when learning new tasks. BiC finds that

removing the bias alone improves performance. Methods

to correct the bias were subsequently studied [65].

Dynamic structure is a method of learning by mani-

pulating the model, such as pruning or masking. PackNet

[66] prunes the model to leave parameters for learning

the next task. Packing-and-expanding (PAE) [67] expands

after pruning to accommodate more parameters.

In the early days, regularization-based methods were

mainly studied, and more recently, a mix of methods has

been developed [68]. DualNet [69] introduces a concept

from brain science to distinguish between fast-net and

slow-net. Slow-net extracts general features from the data

and passes them to fast-net. The fast-net learns by utilizing

the received features and the current task. 

Despite various attempts and achievements, incremental

learning studies only assume simple scenarios. However,

more diverse scenarios are needed to continuously train

CV products in reality.

B. Space Requirements

As giant multimodal services such as GPT-4 [70] have

become a trend in the industry, developers are increasingly

concerned about inference latency, server load, and

power. In addition, as the use of IoT devices such as

drones and robots increases, CV products that require

limited computational power and memory power are

required [17, 18].

Currently applicable lightweight technologies are light

weight architecture, pruning, and quantization. Although

there has been a lot of progress, academic results still only

suggest possibilities and are not realizable by themselves,

so multiple attempts are needed to develop ML products.

1) Light Weight Architecture

CV uses convolution for feature extraction. Light

weight architecture is to lighten the network itself by

using convolution. CV models like AlexNet and ResNet

utilized convolution to significantly improve performance,

but suffered from the problem of requiring a lot of

computation.

Therefore, various structures have been studied to

reduce the number of networks. Techniques for changing

the initial model structure have been extended to the

study of reducing the amount of computation and the

number of variables while training channels separately.

SqueezeNet [71] proposed the fire module structure,

which reduced the number of parameters by nearly 50

times compared to AlexNet. Xception [72] uses a depth-

wise separable convolution layer to compute cross-channel

correlations and spatial correlations independently. In

MobileNet [73], a conventional convolutional filter is first

depth-wise convolved on a channel-by-channel basis, and

the result is divided into a pointwise convolution

performed on a single point. When the length of the filter

is 3, the gain is about 9 times. 

The choice of architecture determines the space require-

ments of the product, so developers need to choose a

good architecture. The problem is that the optimal

architecture depends on the dataset and task. CV products

that use neural networks have a slow learning speed, so it

Fig. 5. Evolution and taxonomy of incremental learning.
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is difficult to find the optimal architecture.

To solve this problem, neural architecture search directly

searches for network structures in a defined search space.

MNasNet [74] explicitly includes speed information in

the main reward function of the search algorithm in a

mobile environment for architecture exploration to find a

model that balances accuracy and speed, and can find a

model that runs 2.4 times faster than the existing NasNet.

These lightweight architecture methods are constantly

being researched and developed because they can solve

fundamental computational challenges in networks.

2) Quantization and Binarization

Quantization and binarization are aimed at reducing the

number of floating points in a traditional neural network.

Quantization reduces the size of the model by expressing

weight values as 16-bit floating point or 8-bit integer

instead of 32-bit floating point by lowering the bit band

[75]. Quantization can be used in conjunction with pruning

techniques as they do not harm each other’s accuracy [76].

Most deep learning frameworks, such as TensorFlow and

MXNet, support 16-bit floating point and 8-bit integer

quantization, making it easy and fast to use in the industry.

Binarization is a technique that converts the inputs

between the weights and layers of a neural network into

binary values of -1 or +1 depending on the sign, which

greatly compresses the capacity and computation compared

to conventional neural networks using floating points

[77]. On the other hand, the low bit-width greatly limits

the range of numbers that can be represented, which leads

to loss of accuracy. Therefore, the goal in performing

quantization is to minimize the loss of accuracy.

Stock et al. [78] proposed a binarization technique for

the weights of a model and then introduced a method to

binarize both the weights and activation outputs, which

allows to replace matrix multiplication operations which

are essential for model training and inference, with bitwise

operations.

3) Pruning

Pruning starts with the observation that not all parameters

in a model have the same impact on inference. Han et al.

[79] proposed to reduce the total number of parameters

by setting a certain threshold, removing neurons with

lower values and their connections layer by layer, and

repeating the retraining. The result was an accuracy loss

of only 0.1%p (42.78% vs. 42.77%), but a nearly 9-fold

reduction in the number of parameters, from 61M to 6.7M.

The accuracy of over-parameterized networks can be

improved by pruning [80]. Tung and Mori [81] applied a

quantization technique that prunes unnecessary parameters,

clusters them, and replaces the existing parameters with

the centroid of the cluster. This improved the accuracy of

the original ResNet-50 model by only 0.6% while reducing

the size of the original model from 102.5 MB to 6.7 MB,

which is about 15 times lighter.

Subsequent studies have focused on fine-tuning the

neural network in such a way that the accuracy can be

increased through a retraining process after weight

pruning. In addition to the general weighting approach,

researchers are also working on compressing the model by

selecting channels and pruning unnecessary channels [76].

V. THE KEY TO EFFICIENCY

In RQ2, techniques for improving efficiency requirements

were analyzed. Various approaches are being attempted

and many achievements are being made. However, there

is a limit to performance improvement, including the case

with automation. From this, it is clear that quality

improvement is only possible with domain knowledge.

A. Domain Knowledge

To improve the cost-effectiveness of CV products, it is

important to make it easy to collect the right data. To

Table 4. Need for domain knowledge

Explain the need for each technology

Data cleaning -Unsupervised anomaly detection does not require a labeling process, but it is less accurate.

-In order to apply realistic Out-of-Model-Scope detection, it is necessary to study the environment and 

users of CV products. 

-When using generative-based methods, the dataset must be as realistic as possible to improve the 

performance.

Data augmentation -For semantic segmentation or stereo matching that requires information about location, utilize 

appropriate techniques that take into account the domain. 

-Mix-up uses information about important areas of the data. 

-Adversarial training is a trade-off between accuracy and robustness, so generalization is necessary by 

checking image information.

Incremental learning -Requires domain knowledge of the CV product to train in various scenarios.

Light weight architecture -Lightweight models by choosing the right architecture for their domain without sacrificing performance.
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train an CV with the desired performance, it is necessary

to preprocess the collected data to create high-quality

training data. To do this, it is important to know the

meaning contained in the data and how to reorganize it to

achieve the desired goal. Domain knowledge is expertise

and experience in a domain where the CV product is

used. Table 4 describes the need for domain knowledge.

Utilizing domain knowledge in the CV development

process has several benefits. First, it can be used by

transforming the data into a form that better represents its

features. It can also reduce the variance of the input data

through preprocessing. By utilizing a variety of pre-

trained models, model development time can be reduced.

B. Future for CV Product

It's no exaggeration to say that 2023 was the year of

generative AI, with leading AI models such as ChatGPT,

a conversational AI service developed by OpenAI, and

Stable Diffusion, which advances the performance of

image AI, gaining public attention.

It's 2025 now, and AI is becoming a part of human life

by being fully adopted and commercialized in businesses.

In recent years, "human-centered AI" has become a

buzzword in business. AI should be a means of putting

humanity first, expanding human capabilities and improving

the well-being of individuals and society. 

Meanwhile, requirements should be documented and

synthesized from stakeholder opinions. There are many

different modeling languages to express them. It is

necessary to develop a modeling language that reflects

the characteristics of AI and humans. In the future,

human-computer interaction/user experience (HCI/UX)

professionals will play an increasingly important role,

and more research is needed on user testing.

VI. CONCLUSION

Despite the growing societal interest and expectations

on AI, there is a lack of research on the quality of CV

products, so we conducted a study to find out how to

improve the quality of CV products. We studied what we

should focus on to improve the quality of CV products

and concluded that developers should be aware of the

domain knowledge related to the product.

This paper contributes to future research in this under-

researched area by suggesting what is needed to manage

CV product quality. We expect that as CV products are

utilized more and more in the future, research on quality

will become increasingly interesting. We hope that this

study will provide important preliminary research on

improving the quality of ML products.
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