
Copyright 2012. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 6, No. 2, June 2012, pp. 89-104

Dominance-Based Service Selection Scheme with Concurrent
Requests

Chaogang Tang*

Department of Computer Science and Technology, University of Science and Technology of China, Hefei;

Department of Computer Science, City University of Hong Kong, Hong Kong, China tcg@mail.ustc.edu.cn

Qing Li

Department of Computer Science, City University of Hong Kong, Hong Kong, China itqli@cityu.edu.hk

Yan Xiong and Shiting Wen

Department of Computer Science and Technology, University of Science and Technology of China, Hefei, China

yxiong@ustc.edu.cn, wst1029@mail.ustc.edu.cn

An Liu

Department of Computer Science and Technology, University of Science and Technology of China, Hefei;

State Key Laboratory of Software Engineering, Wuhan University, China liuan@ustc.edu

Farong Zhong

Department of Computer Science, Zhejiang Normal University, Jinhua, China zfr@zjnu.cn

Abstract
In dynamic Web service environments, the performance of the Internet is unpredictable; the reliability and effectiveness

of remote Web services are also unclear. Therefore, it can hardly be guaranteed that the quality of Web service (QoWS)

attributes of Web services do not fluctuate with the dynamic Web service environments. When a composite service is

planned in the context of dynamic service environments, there is another aspect which has not been taken into account by

existing works, namely, concurrency - the fact that multiple requests to a composite service may arrive at the same time.

Considering the dynamics of Web service environments and concurrency of requests, we propose in this paper a service

selection scheme which adopts top-k dominating queries to generate a composition solution rather than only select the

best composition solution for a given request. The experimental results have investigated the efficiency and effectiveness

of our approach and shown that it outperforms baseline and traditional methods for service selection.

Category: Ubiquitous computing

Keywords: Dynamics; Dominance; top-k; Concurrency; Service selection

Received 17 March 2012, Revised 8 April 2012, Accepted 10 April 2012

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2012.6.2.89 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 6, No. 2, June 2012, pp. 89-104

http://dx.doi.org/10.5626/JCSE.2012.6.2.89 90 Chaogang Tang et al.

I. INTRODUCTION

Web services are web-enabled, platform-independent,

loosely coupled, self-contained, and programmable appli-

cations that can be described, published, discovered, coor-

dinated, and configured using extensible markup language

(XML) artifacts (open standards), for the purpose of

developing distributed interoperable applications. Due to

the wide application of service-oriented architecture

(SOA), large quantities of Web services have been

deployed over the Internet or the Web for service users.

As the requirements from service users become more and

more complicated, an atomic service often can not handle

a request by itself, due to its own limited capability. This

calls for composite services to combine existing distrib-

uted atomic services, thus enabling the performance of

more complicated functionalities. The selection of com-

ponent services (atomic services) for a composite service

is a vital yet arduous process. This is because on one

hand, the number of alternative Web services which pro-

vide the same functionality but differ in quality parame-

ters is growing quickly; while on the other hand,

inappropriate selection of component services can result

in the degradation of a composite service in terms of the

quality of service (QoS). For example, for a composite

service that contains a parallel structure, the response

time of the composite service is dependent on the compo-

nent service having the maximum response time (denoted

as cmmax) rather than the other ones within the parallel

module. Therefore the service selection in the parallel

module is designed to make sure the response time of the

cmmax is as small as possible. If we take into account the

dynamics of Web service environments, the service selec-

tion will become even more complicated. This is because

the “current-best” candidate service for a component ser-

vice may not be the best at a later time. In dynamic Web

service environments, the performance of the Internet is

unpredictable; the reliability and effectiveness of remote

Web services are also unclear. Therefore, it cannot be

guaranteed that the QoS attributes of Web services will

not fluctuate with the dynamic Web service environments.

Specifically, we will list three reasons for this dynamic

fluctuation: 1) Overwhelming service requests: an overload

of the service server will give rise to a fluctuation of the

overall performance of a provided service, and usually

this fluctuation turns into QoS degradation (e.g., a longer

response time); 2) Network performance: some QoS

attributes (e.g., response times) may vary or are subject to

the quality of the network (e.g., long latency, network dis-

connection, etc.); 3) Intentional behaviors: sometimes service

providers intentionally do not deliver their claimed QoS, in

order to, for example, reduce costs or for other purposes.

In this paper, we focus on the two former reasons that

may lead to QoS fluctuation. One serious consequence of

the aforementioned QoS degradation is the increase in

response time. As an important metric of QoS criteria, the

growth of response time, meaning service users need to

wait for a longer time than they expect, may even result

in an unacceptable completion time. Thus in turn results

in considerable losses to service users (e.g., lost business

revenue, time, or penalties incurred by missing contrac-

tual deadlines).

A. Motivation

We observe that in the context of dynamic service

environments, few works have taken concurrency into

consideration when a composite service is planned. By

concurrency we mean here that multiple requests to a

composite service arrive simultaneously. We demonstrate

our work with a classic example in the Web services

world, i.e., TripPlanning process (composite service) as

shown in Fig. 1. This TripPlanning process can be com-

posed using several tasks, such as flight booking, hotel

booking, payment, and so on. Each task can be performed

by a concrete service, as denoted by the dashed directed

lines which connect the tasks and corresponding services.

When a user request arrives at the TripPlanning service,

the composite service takes charge of deciding how to

offer a satisfactory composition solution for this request.

Specifically, this composite service should designate the

most desirable concrete service to perform the functional-

ity of each task, thereby accomplishing the user’s request.

According to the traditional service selection scheme, the

composition solution, which is based on a utility function

and aggregates all the values from all the dimensions

with respect to QoS into a single value, decides the most

desirable candidate services for a given request.

For simplicity sake, we will only consider two services

Fig. 1. The TripPlanning process (composite service).

Dominance-Based Service Selection Scheme with Concurrent Requests

Chaogang Tang et al. 91 http://jcse.kiise.org

in this example, namely; flight service (S2) and hotel ser-

vice (S3). Assume that there are three candidate services

(s21, s22, and s23) which can perform the functionality of

flight service and two candidate services (s31 and s32)

which can do the same for hotel service. Let us further

assume that the best composition scheme of the TripPlan-

ning process for the flight service and hotel service,

respectively, is selected so that when this composite ser-

vice receives a request, it will employ s21 and s31 to exe-

cute the functionalities of flight service and hotel service.

So far in the industry there have been a lot of real-time

systems such as real-time ticket ordering systems, stock

trading systems, navigational driving guides, etc., which

have been characterized by timeliness and lots of concur-

rent requests. In this context, the arrival frequency of

requests is sometimes much higher than the update fre-

quency of the QoS. Suppose for our example that there

are 1,000 requests to the TripPlanning process arriving

concurrently after this composite service has begun to

execute a request. If one were to utilize the existing ser-

vice selection scheme, in order to accomplish the func-

tionalities of flight service and hotel service, the component

services s21 and s31 would be employed and executed to

deliver these services 1,000 times. However, this kind of

service selection scheme may not be appropriate when

we take into consideration the arrival of requests at the

same time or within a short time period. The server work-

load for each component service, during a certain time

period is limited and prone to overload when it has to

respond to lots of requests. The average response time

from service servers may increase accordingly, which means

the QoS of the composite service degrades to some extent.

Thus, such a service selection scheme renders two serious

consequences: 1) Later requests out of the above-men-

tioned 1,000 requests will not be assigned to the current-

best component service(s) as expected due to the degra-

dation of the QoS; 2) Many requests must wait in line,

which may result in an unacceptable completion time and

possibly result in considerable losses to service users.

B. Contributions and Organization of the
Paper

To tackle the afore-mentioned problem, we propose in

this paper a top-k dominance-based approach to make

service selections in service composition. Usually, a com-

posite service is constituted of several component ser-

vices which include atomic services or even nested

composite services. Accordingly, the execution of a com-

posite service lies on the circular execution of its compo-

nent services. As the motivating example shows, the

selection of component services is crucial to the compos-

ite service. Compared to the widely adopted (traditional)

service selection scheme in which only the best candidate

service in each service class (i.e., the component service)

is considered, our approach differs by obtaining k out-

standing candidate services for each service class so as to

avoid/reduce the performance degradation problem. Then

the selected component services can constitute the com-

posite service so as to execute the user’s request. Specifi-

cally, for each incoming request q, we designate randomly

one service from the k possible solutions for each compo-

nent service and further generate a composition solution

to respond to q. The top-k dominating query technique

has attracted significant attention in recent years, espe-

cially in the database community [1-6]. Given a d-dimen-

sional data set, a point p (p1,...,pd) dominates another

point q (q1,...,qd), if and only if pi qi (we use

 to denote better than and to denote better than or

equal to.). A service can also be regarded as a d-dimen-

sional point in terms of the QoS attributes, so we can

apply this top-k dominating query technique for our pur-

pose, in the context of Web services. Such a top-k domi-

nating query retrieves k services, which dominate the

highest number of services in an abstract service class,

exhibiting a natural solution since this query provides

data analysts with an intuitive way for finding significant

services. Moreover, a big advantage (over the traditional

approaches) is that it does not require any utility function

or other ranking functions to be specified by users. In this

paper, we present algorithms to retrieve top-k services

and then conduct extensive experiments to validate our

approach. The experimental results show that our approach

outperforms the baseline and traditional approaches.

The rest of this paper is organized as follows: Section II

surveys some related works. Section III introduces some

preliminaries of spatial indexing and formally describes

the top-k dominating query of Web services. Section IV

presents our approach for retrieving the top-k dominating

services, followed by the experimental reports in Section V.

The conclusion and future work finally come in Section VI.

II. RELATED WORK

In this section, we examine some related works in the

areas of Web services, top-k dominating queries and sky-

lines. Skyline provides a unique perspective on domi-

nance relationship and it totally depends on the intrinsic

characteristics of the data. Given a d-dimensional data

set, a point p is a skyline if and only if p is not dominated

by other points in the data set. Skyline queries, which

gather together all special data objects that are not domi-

nated by one another in a data set, have received signifi-

cant attention over recent years. The first general, efficient

skyline algorithm, block-nested-loop (BNL), was proposed

by Borzsonyi et al. [7]; BNL scans over a data set by

comparing each object with every other object and

retrieves a data object only if this object is not dominated

by any other object in the data set. The sort-filter skyline

(SFS) [8] and linear elimination sort for skyline (LESS)

[9] algorithms were later proposed, in order to improve

i 1 d,[],∈∀

Journal of Computing Science and Engineering, Vol. 6, No. 2, June 2012, pp. 89-104

http://dx.doi.org/10.5626/JCSE.2012.6.2.89 92 Chaogang Tang et al.

the efficiency of BNL. Other algorithms like [10-13] were

also proposed to compute the skylines.

Contemporaneously, the top-k dominating query has

also played an increasingly significant role in applica-

tions such as multi-criteria decision making, data clean-

ing, data integration [14] and so on. However, top-k

dominating queries are a little different from their skyline

counterparts. Given a data set, the data object in a top-k

dominating query is not always a skyline of this data set,

but it is guaranteed that the top-1 dominating data object

must be a skyline. This is because the data object which

dominates the largest number of other data objects can’t

be dominated by any other data object, so it must be a

skyline. Fig. 2 shows an example where nine data points

are located in a 2-dimensional space. Assume that a point

p dominates another point q when p has smaller coordi-

nates than q in both dimensions. We can observe that p1

and p3 in Fig. 2 are skylines, and that they dominate

seven and five points respectively. However, given a top-

2 dominating query, we can also observe that p1 and p2

are the top-2 dominating points instead of p1 and p3, the

reason being that p1 obviously dominates the largest num-

ber of points and p2 dominates the second largest number

of points (i.e., six points). This is more than the number

of points dominated by p3 (i.e., five points).

Most of the existing works have so far concentrated on

addressing how to retrieve the top-k dominating data

objects [1-3, 5, 6]. The authors in [6] proposed a skyline-

based top-k dominating algorithm (skyline-based top-k

dominating, STD) for top-k dominating queries, where

the data is indexed by R-tree [15]. It first retrieves the

skylines of a data set, and then outputs the skyline (say, o)

which dominates the largest number of data objects in

this skyline set as the top-1 dominating data object. After

this it removes o from the data set and repeats the above

process k times. Web services, as a key technique for

implementing service-oriented architecture (SOA), have

had more and more importance attached to them. With

the rapid development of Web services, quite a few ser-

vices are emerging which provide the same functionality

but may differ in the QoS. Therefore, subsequent works

have focused on how to select the most desirable service

from all functionality-similar services. In [16], a frame-

work to evaluate the QoS from a vast number of Web ser-

vices is constructed, with an aim to enable quality-driven

Web service selection. The proposed QoS computation

model includes not only generic criteria (e.g., price,

response time, availability, etc.), but also domain specific

criteria, which vary with different application back-

grounds. The work in [17] mainly focuses on the trust

level between service users and service providers. For the

reasons that the service users lack enough experience to

obtain the best selection of Web services according to its

QoS, and that no guaranteed level of QoS can be offered

by service providers, they introduce a third party certifi-

cation entity to verify the conformity of the trust level, as

well as the consistency of the QoS claimed by service

providers. The authors of [18, 19] propose to employ sky-

line and top-k dominating techniques respectively to

tackle the drawbacks of the traditional method, namely,

to require service users to assign weights to each QoS

attribute. However, all the above works have considered

neither the nature of the Web service environments (i.e.,

dynamics) nor concurrence. In [20], the authors propose

to compute skyline services for Web service composition.

In order to reduce computational costs, they preprocess

each component service in a composite service. In other

words they skip those candidate services in each service

which cannot belong to skylines in Web service composi-

tion. In order to identify the best candidate semantic Web

services given the description of a requested service, the

authors of [21] adopt skyline query techniques to solve

this problem. In their works, they only focus on the func-

tional part of the Web service, such as inputs, outputs,

preconditions and effects. However, the nonfunctional

part of Web service (i.e., QoS) also plays an important

role in identifying good Web services. Although the work

of [22] has taken into consideration the dynamics of the

Web services, their judgment on whether a service pro-

vider S can currently provide a better service than another

provider T is implicitly based only on the corresponding

transactions which occurred in the past. Such an implica-

tion, however, does not always hold in the very dynamic

Web service environments.

III. PRELIMINARIES

In this section, we firstly give a rough description on

our service selection scheme. Then we formally describe

the top-k dominating query of Web services. Finally we

discuss the data structure to be used in this paper for

multi-dimensional spatial access.

A. Service Selection Description

For some services which are deployed over real-time

systems such as real-time ticket ordering services, there

Fig. 2. Comparison of skylines and top-k dominating queries.

Dominance-Based Service Selection Scheme with Concurrent Requests

Chaogang Tang et al. 93 http://jcse.kiise.org

may be multiple requests arriving during a small time slot

or even at the same time. If these requests are designated

to the same service as shown in the motivating example,

the performance with regards to some QoS criterion such

as response time may degrade. Besides, the composite

service is also confronted with another situation, in which

a component service provided by some standalone orga-

nization in one composite service may be requested by

another composite service. These composite services don’t

own component services (e.g., these two kinds of ser-

vices are provided by different providers), and they also

need to invoke these component services in line with

some service language specification such as Web services

business process execution language (WS-BPEL). If we

take into account the dynamics of Web service environ-

ments, the situation may become more complicated. On

one hand, for some standalone component services, they

may be invoked at the same time from different compos-

ite services; on the other hand, for a composite service, it

does not accomplish users’ requests until all of its com-

ponent services finish. If there are multiple requests

arriving or some component service is invoked at the

same time by another composite service, then overall per-

formance of the composite service may also degrade. In

order to avoid the aforementioned situation, we propose

in this paper to select component services in a random

manner. Given a user request for a composite service, we

first preselect k outstanding candidate services for each

component, then we randomly select one candidate ser-

vice for each component from these preselected services

and finally we combine these selected services into a

composite service to respond to user’ requests. These

works can be accomplished by the service brokers

deployed for each service class (i.e., the set of services

which have the same or similar functionality). As far as

one composite service is concerned, it avoids employing

the same candidate service as the traditional service

selection scheme does (e.g., s21 and s31 in the motivating

example) in response to multiple requests. For some stan-

dalone component service invoked by multiple composite

services, it also has sufficient power to designate appro-

priate candidate services to handle the requests passed on

from multiple composite services (i.e., faced by multiple

user requests). We model our service selection problem

as a top-k dominating query problem. In the next section,

we describe our problem formulation and then discuss

some foundations of the data structure to be used for

multi-dimensional spatial access.

B. Problem Formulation

Let S be an abstract service class with n services,

where each service has d attributes with regards to the

QoS. We use si.attrk to denote the k-th dimensional value

of the QoS for the service si such that si can be repre-

sented as si = < si.attr1, si.attr2,..., si.attrd >.

DEFINITION 1 (Service domination) A service si domi-

nates another service sj if and only if si.attrk sj.attrk for

1 k d and there exists at least one dimension λ

(1 λ d) such that si.attrλ > sj.attrλ.

Note that the QoS parameters have different taxono-

mies reflecting their different perspectives. In [23], the

authors distinguished two types of QoS parameters: posi-

tive and negative. For a positive QoS parameter, a higher

value means higher quality. For a negative QoS parame-

ter, a higher value means lower quality. For example, reli-

ability is positive while response time is negative. In

order to make the comparison in Definition 1 unambigu-

ous and uniform, we need to normalize the QoS parame-

ters. Given a service with QoS parameters, we convert

the negative parameters into positive parameters using

the inverse of the negative parameters. For example, in

terms of response time (the negative parameter), a service

s1 with a response time of 100 ms is better than another

service s2 with a response time of 200 ms. Since the

response time of s1 is smaller than that of s2, after conver-

sion, s1 is still better than s2 with regards to response time

as the response time of s1 (1/100 ms) is larger than that of

s2 (1/200 ms).

PROPERTY 1. If a service si dominates another service sj
and sj dominates sk, then si dominates sk. That is, if si sj
and sj sk, then si sk.

This property is obvious by Definition 1, so the proof

is omitted. Despite its intuitiveness, it is very effective for

pruning the search space.

DEFINITION 2 (Dominating score). Given a service s, we

can define its dominating score, denoted by ψ(s), as: ψ(s)

= |{s'|s s', s' and s belong to the same service class}.

In order to retrieve the top-k dominating services, we only

need to obtain k services whose dominating scores are

larger than those of the remaining services. We will detail

how to calculate the dominating scores in the next section.

PROPERTY 2. Given two services s and s', if s dominates

s', then the dominating score of s is larger than that of s'.

That is, s s' ψ(s) > ψ(s').

PROOF: According to Property 1, s will dominate any

service which is dominated by s' if s dominates s'. In

other words, the dominating score of s is at least larger

than or equal to that of s' plus one, since s dominates s'.

Hence, ψ(s) > ψ(s').

However, if ψ(s) > ψ(s') holds, it does not mean that s

must dominate s'. Consider points p2 and p3 in Fig. 2. For

example, though ψ(p2) (i.e., 6) is larger than ψ(p3) (i.e., 5),

p2 does not dominate p3.

C. Data Structure for Multi-dimensional Space
Indexing

Given an abstract service class S with n services which

 ⇒

Journal of Computing Science and Engineering, Vol. 6, No. 2, June 2012, pp. 89-104

http://dx.doi.org/10.5626/JCSE.2012.6.2.89 94 Chaogang Tang et al.

have the same functionality, we want to retrieve the top-k

dominating services. Obviously, a naive way to obtain

these services is as follows: For each service si in S, we

compare it to the remaining services one by one also in S,

and obtain the number of services dominated by si.

Clearly, this nested loop method is very expensive in

terms of both CPU and I/O’s, since it requires quadratic

cost with regards to the service class size |S|. A service

can be viewed as a d-dimensional data point in terms of

QoS attributes. In order to quickly obtain the top-k domi-

nating services, we adopt a multi-dimensional index aR-

tree [5, 24, 25] over the d-dimensional services in a ser-

vice class, which can provide faster access to data points

than the sequential scan. R-trees have attracted signifi-

cant attention in spatial databases because they provide

effective access methods for multi-dimensional data and

for processing spatial queries, such as range queries and

skyline queries. The aR-tree, a variant of an R-tree, aug-

ments to each non-leaf entry of the R-tree an aggregate

measure of all data points in the subtree pointed by it.

Fig. 3 shows an example of an aR-tree in 2-dimensional

space where each non-leaf entry records the number of

data points contained in the subtree pointed by it. For

instance, entry e1 in the root node contains four data

points tagged with the number “4” around the entry and

entry e3 contains two data points. Through the aR-tree,

we can effectively and efficiently prune the search space.

Assume that given a query Q, we want to find out the

number of all data points covered by Q. Firstly, we search

the root node and find that entry e1 intersects Q and e2

does not. Then we only need to search the subtree pointed

by e1 and can prune away the subtree pointed by e2, the

reason being that any data point indexed by the subtree of

e2 can not be covered by Q. Finally, we find that both

entries e3 and e4 are spatially covered by Q, so data points

contained by e3 and e4 must also be contained by Q. The

answer (4) to the query can at last be returned by using

the aR-tree directly without requiring an inspection of

each data point for Q. Before proceeding further, we go

through some notations below which will be used later.

For an aR-tree entry ei, (i.e., a minimum bounding rectan-

gle (MBR) [5, 15]), we represent it in the j-th dimension

using the interval [LB(ei, j), UB(ei, j)], where LB(ei, j) and

UB(ei, j) are the lower and upper bounds of ei in the j-th

dimension, respectively. We can obtain LB(ei, j) and

UB(ei, j) from the projection of ei in the j-th dimension.

Therefore, the lower and upper bounds of ei can be repre-

sented as:

LB(ei)=(LB(e1,1), LB(ei,2)..., LB(ei,d))

UB(ei)=(UB(e1,1), UB(ei,2)..., UB(ei,d))

Note that both LB(ei) and UB(ei) are virtual (concep-

tual) data points, which means they do not correspond to

actual data points. However, through the lower and upper

bounds of an entry, we can better understand the domi-

nance relationship between data points and MBRs. Let us

look at Fig. 4 (in the 2-dimensional space) as an example.

For the sake of consistency and clear presentation, we

make the same assumption that we did in Fig. 2. There-

fore, for each entry the lower bound dominates the upper

bound, i.e., LB(e1) UB(e1), LB(e2) UB(e2), and so on.

As can be seen from Fig. 4:

1. There exists no dominance relationship between the

entry and a data point. We use to denote this no-

Fig. 3. An example of an aR-tree.

Fig. 4. Illustration of the dominance relationship.

Dominance-Based Service Selection Scheme with Concurrent Requests

Chaogang Tang et al. 95 http://jcse.kiise.org

dominance relationship, so we have p6 UB(e3) (or

LB(e3));

2. If some data point p dominates the lower bound of

an entry e (i.e., p LB(e)), p then must dominate all

data points indexed under e (for instance, since p1

LB(e2), p1 must dominate p2 and p3 which are indexed

under e2);

3. If some data point p dominates the upper bound but

does not dominate the lower bound of an entry, p

may then not dominate any data points indexed

under that entry (for instance, since p3 dominates

UB(e2) and p3 does not dominate LB(e2), p3 can dom-

inate p6, but p3 cannot dominate p2); and

4. If some data point p is dominated by the upper

bound of the entry, all the data points indexed under

e dominate p (for example, since UB(e3) dominates

p5, p4 dominates p5).

IV. COMPUTING TOP-K DOMINATING
SERVICES

In this section, we present aR-tree based algorithms

for efficiently computing the top-k dominating services.

Assume that the services have already been indexed by

an aR-tree, in which all the entries in the leaf nodes

record the references to the services.

A. Calculating ψ(s)

As explained earlier, the naïve method is prohibitive

due to quadratic cost with regards to the service class size

|S|, in terms of both CPU and I/O’s. Instead, we may

avoid comparing each service to all other services by

using an aR-tree. For example in Fig. 4, if we know that

p1 LB(e2), then there is no need to further examine the

dominance relationships between p1 and the data points

indexed under e2 because it is already known that p1 dom-

inates all data points indexed under e2, according to the

lower and upper bounds of entry. The details on how to

obtain the dominating score for each service are shown in

ALGORITHM 1, called the dominating score algorithm

(DSA). This algorithm takes two parameters: the current

aR-tree node Z and the service set I, in which the domi-

nating score ψ of all the services will be counted. Note

that the elements in I may or may not come from the ser-

vices which are indexed by the aR-tree denoted by the

first parameter. For instance, the set I sometimes consists

of lower and upper bounds of entries, as will be discussed

later in our next algorithm.

Recall that there are four cases of dominance relation-

ships between an entry e and other services (ref. III-C). In

our approach, we aim to find out the services which dom-

inate LB(e) (assume that LB(e) UB(e)) when entry e is

examined. As for those services which are dominated by

UB(e), the dominating scores of them can not be calcu-

lated with the help of e. Initially, Z is set to the root node

of the tree and ψ(s) is set to 0 for each service . Let e

be the current entry in Z to be examined. For each service

, we traverse the aR-tree to find out how many ser-

vices indexed by the aR-tree are dominated by s (i.e.,

ψ(s)). If e is a non-leaf entry (line 3) and the s which is

currently being examined satisfies the condition of

s LB(e), then we increase the dominating score of s by

COUNT(e) which is the number of services indexed

under e (lines 4-5). If e is a non-leaf entry and the domi-

nance relationship between e and s belongs to one of the

two cases where (1) s UB(e) and s LB(e), or (2)

s UB(e) and LB(e) s, then s may dominate some ser-

vices indexed under e. However, this cannot guarantee

that s will dominate all of the services indexed under e,

since there does not exist a dominance relationship

between s and LB(e) in (1), and even with LB(e) s in

(2) there still does not exist exact dominance relation-

ships between s and the other services indexed under e.

Take Fig. 3 for example. Let s be p1 and e be e6, respec-

tively. We can see that s UB(e) and LB(e) s, but we

still do not know the exact dominance relationship between

s and p2 (or p3) without comparing them. Therefore, it is

not easy for us to immediately deduce the number of ser-

vices in e dominated by s. In this situation, we need to

invoke the algorithm recursively on the child nodes

pointed by e (lines 8-9). Lastly, if Z is a leaf node (i.e., e

is a leaf entry), we just need to increase the dominating

score of any service that dominates LB(e) by COUNT(e)

(line 12).

Note that DSA can correctly calculate the dominating

scores ψ for all services through a single traversal

of the tree. Suppose that component services are already

indexed by an aR-tree as in Fig. 3, where the data points

represent the services. The service set I is composed of

s I∈

s I∈

s I∈

Journal of Computing Science and Engineering, Vol. 6, No. 2, June 2012, pp. 89-104

http://dx.doi.org/10.5626/JCSE.2012.6.2.89 96 Chaogang Tang et al.

p1, p2, and p3. Now we calculate the dominating scores of

the services in I step by step. According to DSA, for p1,

entry e1 should first be examined, and e3 is then next, due

to the fact that p1 UB(e1) and p1 LB(e1). Because p1

dominates LB(e3), the dominating score of p1 (i.e., ψ(p1))

is increased by COUNT(e3) (i.e., 2). Then e4 is examined,

and ψ(p1) is increased by COUNT(e4) since p1 also domi-

nates LB(e4). When e2 is examined, DSA will recursively

examine its child node entries, i.e., e5 and e6, respectively,

due to the fact that p1 UB(e2) and p1 LB(e2). When e6

is examined, since LB(e6) p1 UB(e6), DSA will exam-

ine the child node pointed by e6. The child node is a leaf

node, so the dominance relationships between p1 and

other services (i.e., p2 and p3) are examined by comparing

them with p1. The situation can be handled similarly

when the entry e5 is examined. Therefore, the dominating

score of p1 can be counted correctly. Finally, p2 and p3 can

also be counted correctly in the same way as p1 was.

B. Retrieving the Top-k Dominating Services

Note that we can obtain the top-k services by using

only DSA, because after the score for each service is cal-

culated, we just need to select the k services whose domi-

nating scores are larger than the others’. However, if the

number of services is very large, say, thousands of ser-

vices in I, it is quite time-consuming to calculate the

dominating scores, as the algorithm needs to exhaustively

check all services in I each time. To avoid such a situa-

tion, we present below a depth first retrieving (DFR)

algorithm, as shown in ALGORITHM 2, with the aim to

greatly reduce the number of services in I when calculat-

ing the dominating scores. In particular, we adopt the

idea proposed in [3] by using the data points which have

been pruned to further prune the search space, and com-

bine it with DSA to retrieve the top-k services. When tra-

versing the entries from the root node of the tree denoted

by “R.root” in Algorithm 2, we employ a max-heap H to

store the dominating scores of the lower bounds of entries

in the current node (line 5). By doing this, we can prefer-

entially search and calculate the services which dominate

more services than others do (lines 7-8). In order to fur-

ther prune the search space, a list is maintained, to

store the pruned services and their corresponding domi-

nating scores. Specifically, the services in are not

dominated by each other. If there exists some service l in

, such that l dominates the lower bound of entry e, then

we do not need to check the services indexed under e, and

can thus abandon e directly without putting it into H. This

is because according to Property 1, all the services

indexed under e are dominated by l. When extracting the

top entry from H and beginning its traversal, we employ

another condition to control the repetition (line 6), in

addition to checking whether H is empty. The variable ρ

represents the k-th highest dominating score which has

been found so far. If the top entry’s dominating score

from H is lower than ρ, we can stop extracting entries

from H. Finally we maintain a min-heap h that stores the

top-k dominating services. Note that h, and ρ are

updated in time after the indexed services are traversed

(lines 16-33).

C. Analytical Study

We can retrieve the top-k dominating services by both

DSA and DFR. However, there exist some differences in

terms of their performance. In this subsection, we analyze

and compare the two algorithms with regard to time com-

plexity. In finding the dominating score of each service in

a given service set, we note that both DSA and DFR in

essence traverse the aR-tree node by node. Nevertheless,

L

L

L

L

Dominance-Based Service Selection Scheme with Concurrent Requests

Chaogang Tang et al. 97 http://jcse.kiise.org

the differences lie in that. On the one hand, DSA just

obtains the dominating score of each service in a given

service set without directly fetching the top-k dominating

services and it must further cooperate with a sorting algo-

rithm to gain the desired services, while DFR can obtain

the top-k dominating services directly. On the other hand,

when DSA is used alone, the second parameter (i.e., the

service set I) should contain all the services which are

indexed by the aR-tree. The outer for-loop (line 1 in

DSA) therefore will incur relatively large computational

overheads. Let the aR-tree nodes have an average fanout

m, i.e., the number of entries in one node. Suppose that

the number of services which are indexed by the aR-tree

is n. Then the tree height h can be estimated by h =

 − 1 and the number of nodes ni at level i (with

the leaf level being zero) can also be estimated by ni = n/

mi+1. We use T(n) = O(f(n)) to represent the time com-

plexity of DSA and DFR. For each service s from the ser-

vice set I, the worst case scenario of DSA is that s needs

to be compared with every entry in the aR-tree. There-

fore, f(n) can be represented as follows:

However, in DFR, we can have:

where, O(n log n) denotes the time complexity of the heap-

sort algorithm used to sort the entries and retrieve top-k

dominating services (ref. line 7 and line 21 of Algorithm

2). Accordingly, when the number of indexed services is

very large, DFR has an obvious advantage over DSA.

V. EXPERIMENTAL EVALUATION

In this section, we demonstrate the efficiency and effec-

tiveness of our approach by conducting extensive experi-

ments. In the first experiment, we study the relationships

between response time and the workload of the service

server. Then a series of experiments are conducted to ver-

ify the advantages of our approach over baseline and tra-

ditional methods for service selection when responding to

a large number of concurrent requests. Finally we study the

influences of certain parameters over our service selection

scheme, including the size of the service class, the num-

ber of service classes in a composite service and so on.

A. Experimental Setup

We run our experiments on a PC with a 2.2 GHz Intel

Pentium Duo2 CPU, 2,048 M of RAM, Microsoft Win-

dows XP Operating System, J2SDK 1.6. It is worth not-

ing that the aR-tree we use to index services is completely

dynamic [15], which mean that inserts and deletes are

intermixed with searches and no periodic reorganization

is required. All the services are pre-indexed by an aR-tree

structure before they start responding to any requests.

B. Response Time vs. No. of Requests

As we discussed earlier, the QoS attributes of services

may sometimes degrade due to the overload of servers

and the dynamics of Web service environments. Accord-

ing to the M/M/1 model and the method proposed in [26],

we can estimate the average response time as follows:

(1)

where,

● F: average file size
● R: client network bandwidth
● λ: network arrival rate
● S: server network bandwidth
● U: file read rate

Formula (1) indicates that with the increment of the

network arrival rate (i.e., λ), the average response time

from a Web server also increases. However, this cannot

be directly applied to obtaining the average response time

for Web services because the response time denoted in

this equation usually means the round trip time of getting

some files which are stored on the Web server (rather

than the service server), such as videos or audios con-

tained in Web pages. Nevertheless, we still get the idea

from the equation that the average response time from a

service server could increase sharply if the number of

concurrent requests increases. To the best of our knowl-

edge, there is no existing work which elaborates on the

relationship between the response time and the workload

of the Web service server. In order to analyze this rela-

tionship fairly and objectively, we conducted the first

experiment by examining the performance of a general

real-life service with regards to its response time under a

differing number of concurrent requests.

Fig. 5 shows the variation in the average response time

for a service with different numbers of requests. Given a

request, the normal (advertised) response time of the ser-

vice we choose is within and around 100 ms in this exper-

iment. As can be seen from Fig. 5, although the average

logmn

f n() n* m*
n

m
i 1+

i 0=

h

∑⎝ ⎠
⎛ ⎞ n

2

*
1

m
i

i 0=

h

∑ n
2

m 1 1
m

h 1+

–⎝ ⎠
⎛ ⎞

m 1–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= = =

n
2

m 1 1
m

log
m
n

–⎝ ⎠
⎛ ⎞

m 1–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

n
2

m 1 1
m

log
m

n 1+()

–⎝ ⎠
⎛ ⎞

m 1–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

≈=

n
2

n m
m 1–
-----------⎝ ⎠
⎛ ⎞– O n

2()==

f n() O n 1

m
i 1–

i 0=

h

∑⎝ ⎠
⎛ ⎞ O n log n()+ O n log n()= =

T F
R
--- F

S λF–
-------------- F

U λF–
---------------+ +=

Journal of Computing Science and Engineering, Vol. 6, No. 2, June 2012, pp. 89-104

http://dx.doi.org/10.5626/JCSE.2012.6.2.89 98 Chaogang Tang et al.

response time of the given service approximates in a lin-

ear fashion as the number of concurrent request increases,

the curve takes on two different variations with the

increasing number of concurrent requests. For instance,

when the number of concurrent requests varies between

10 and 60, the average response time increases slowly.

This is because other requests should wait in line while

the current request is being accomplished so the capabili-

ties of the service server do not reach beyond maximum.

However, when the number of concurrent requests

exceeds 60 and continues to increase, we can see that the

response time increases very fast. This is because large

quantities of concurrent requests result in the overload of

the service server, which gives rise to the fluctuation of

the overall performance for the provided service, and

usually this fluctuation turns into QoS degradation such

as longer response time. In other words, in this experi-

ment the capabilities of handling 60 concurrent requests

almost creates a workload bottleneck in the service server.

C. Performance Comparison

In our next set of experiments, we evaluate the perfor-

mance of our composition approach by comparing it with

two other methods. One is the traditional method based

on a utility function (UF) as described in Section I and

the other is the random method as the baseline. In our

approach, we first use the algorithm DFR to obtain top-k

services for each component service of a composite ser-

vice. For an incoming request, a composition solution

which consists of services randomly chosen from top-k

dominating services from each component service class

is created to respond to the request. In the traditional

method, the composition solution having the maximum

value of UF is always chosen and designated for respond-

ing to the request. The random method, however, always

selects a composition solution that consists of services

randomly chosen from each component service class, as

opposed to being chosen from top-k dominating services.

First, we design a composite service which comprises

several component services. In the next experiments, we

study the influences of the number of component services

in a composite service as well as the number of candidate

services in a service class over our service selection

scheme. In this subsection, we assume that the composite

service includes four component services, and each com-

ponent service contains 10,000 candidate services. Then

we employ the aR-tree structure to index these services.

We conduct the following experiment afterwards. In par-

ticular, we employ different composition solutions (i.e.,

top-k, traditional and random) to respond to the incoming

concurrent requests. Fig. 6 shows the performance com-

parison amongst the three methods. Note that the X-axis

represents the number of concurrent requests where the

maximum number of such requests is 300. The Y-axis

represents the average response time for each service

selection scheme. We set the value of the variable k to 2,

5, 10, and 50, respectively, in order to thoroughly study

the performance of our approach under different values

for k. For both our approach and the traditional method,

when the number of concurrent requests increases, the

average utility value (with respect to the average response

time) also becomes larger, which conforms to the result

from Fig. 5. As for the random method, the performance

is not stable, as the QoS of services chosen randomly is

uncertain. We also observe that no matter which value the

variable k is set to be, our approach always performs bet-

ter than the traditional method. Compared to the tradi-

tional method it is useful to observe that the advantage of

our top-k approach is even more apparent when the num-

ber of concurrent requests increases. Meanwhile, we can

also see that the performance of our approach improves

as the value of k increases. Nevertheless, it does not

always mean that the higher the value of k, the better the

performance of our approach. This is because the over-

heads of our approach include not only the response time

(incurred from performing the requests), but also the cost

of retrieving the top-k dominating services.

The latter however depends on the number of candi-

date services in each component service class. Although

we can retrieve the top-k dominating services off-line, it

is only fair to take this part of our overheads into account

when comparing our approach with the others objec-

tively. Table 1 shows different overheads on time (mea-

sured by “ms”) under different numbers of services in a

Fig. 5. The average response time vs. number of requests.

Table 1. Overheads on time with the variation of k (ms)

S 10
3

10
4

10
5

10
6

M
T O R T O R T O R T O R

k

2 0 0 0 2 3 0 5 63 3 16 891 5

5 0 0 0 5 8 0 5 62 2 15 890 4

10 0 8 0 4 4 0 7 63 2 15 788 3

50 0 10 0 3 3 0 8 63 3 16 899 4

100 0 9 0 10 12 3 9 62 2 32 991 4

Dominance-Based Service Selection Scheme with Concurrent Requests

Chaogang Tang et al. 99 http://jcse.kiise.org

service class. Note that in Table 1, “T” denotes the tradi-

tional selection method, “R” denotes the random selec-

tion method and “O” denotes our approach. In order to

ensure the fairness and accuracy of our measure, given a

different number of services, we run each of the three

methods under different k values 1,000 times, and then

we obtain the mean time overheads for each method. We

can observe that for our approach no matter which value

k is, when the number of services in the service class

increases the corresponding overhead also increases. This

is because DFR (ALGORITHM 2) which is employed to

retrieve the top-k dominating services is not independent

of service class scale. When the service class scale is set-

tled and the number of services is not so large (say, 103,

104 or 105), the overhead of our approach is almost the

same as that of the other two methods. When the number

of services is very large (e.g., 106), the difference in terms

of overheads between our approach and the other two

methods becomes more notable, even though the results

are still acceptable in practice. To the best of our knowl-

edge, there exist few service classes which contain more

than 105 services in most real-life applications. Also, we

can retrieve the top-k dominating services off-line so that

we only need to re-calculate the top-k dominating ser-

vices when the information about the QoS needs to be

updated. From Table 1, we can also see that the random

method takes almost the same amount of time when com-

pared to the other two methods, whether the number of

services increases or not. This is expected since the ran-

dom method chooses k services from each service class

randomly, for which the time complexity is O(1).

D. Studies on Parameters

In this subsection, we turn our attention to three parame-

ters which have some influence over our approach. In

particular, we take into account the parameters of service

class size (i.e., the number of candidate services in a ser-

vice class) denoted by SSize, the number of service

classes in a composite service (denoted by CSize), and

the value k denoted by top-k, respectively. In order to

study the effects of these parameters, we conduct three

sets of experiments, where we fix two of the parameters

and then vary the remaining one. To fix the parameters

(i.e., SSize, CSize, top-k), we set the default values to

1,000, 4, 10, respectively.

1) top-k

To study the impact of the top-k approach, we have

conducted a series of experiments with different scales in

terms of the number of concurrent requests. Namely, we

vary the number of concurrent requests between 100 and

Fig. 6. Performance comparison.

Journal of Computing Science and Engineering, Vol. 6, No. 2, June 2012, pp. 89-104

http://dx.doi.org/10.5626/JCSE.2012.6.2.89 100 Chaogang Tang et al.

103 with a step value of 100, and between 103 and 104

with a step value of 103, respectively. The corresponding

values of SSize and CSize are the default values. Fig. 7

shows the experimental results. Specifically, Figs. 7a, b

depict the variations in the average response time under

different values for k when the number of concurrent

requests vary between 100 and 1,000; Figs. 7c, d depict

the variations in the average response time under k when

the number of concurrent requests vary between 103 and

104. The experimental results show that: 1) For each

curve (i.e., with a fixed value of top-k), the average

response time becomes larger when the number of con-

current requests is increasing. 2) As the value of top-k

increases, the performance of our service selection

scheme generally gets better, although it does not mean

that the larger the value of top-k, the better our perfor-

mance. This is because the overhead on retrieving top-k

services in each service class is not negligible, especially

when the value of top-k is considerably large. As a matter

of fact, we found in our experiments that given the num-

ber of concurrent requests, the preferable value of top-k

does not always correspond to the largest value of k. For

instance, as denoted in Fig. 7b, with the number of con-

current requests varying between 100 and 103, the perfor-

mance of our service selection scheme is almost the same

when the value of top-k is set to 80 and 100, respectively.

If we take into account the overheads on retrieving the

top k services, the performance when the top-k = 80 is

obviously better than that when the top-k = 100. 3) If the

value of the top-k is set inappropriately with respect to

the number of concurrent requests, the performance can

be unfavorable. As shown in Fig. 7c, when the number of

concurrent requests varies between 103 and 104 and the

value of top-k is set to 2, 4, 6, 8, and 10, respectively, we

can see that the overheads are considerably larger com-

pared to the overheads shown in Fig. 7d where the value

of top-k is set to 20, 40, 60, 80, and 100, respectively.

2) SSize

SSize indicates the number of candidate services in a

service class. To study the impact of SSize on the perfor-

mance of our approach, we have also conducted a series

of experiments where we vary the number of concurrent

requests between 100 and 1,000 with a step value of 100.

In each experiment, we compare the performance of our

approach for three different values of SSize, namely; 103,

104, and 105, respectively.

The experimental results are shown in Fig. 8. The only

difference between these experiments (denoted by Fig. 8)

lies in the values of top-k. For example, we set the values

of top-k in Fig. 8 to be 2, 5, 10, and 20, respectively.

From these figures, we can observe that: 1) for each

Fig. 7. Impact of top-k.

Dominance-Based Service Selection Scheme with Concurrent Requests

Chaogang Tang et al. 101 http://jcse.kiise.org

curve (i.e., the number of candidate services in one ser-

vice class is fixed), when the number of concurrent

requests grows, the response time of our approach also

increases. Besides, the performance degradation in terms

of response time does not always decrease in a linear

fashion as the number of concurrent request increases.

Take Fig. 8a for instance. When the number of concurrent

requests reaches 800, the performance of our approach

begins to degrade sharply, regardless of the values of

SSize. 2) When the value of SSize becomes larger, the

performance of our approach also improves with regards

to the response time. In Fig. 8a, for example, when the

number of concurrent requests is within 500, no matter

what the value of SSize is set to, the performance of the

service selection scheme is almost the same. However,

with the number of concurrent requests continuing to

grow, the service selection scheme with SSize = 105 is

much better than that with SSize = 103 or 104. Meanwhile,

the service selection scheme with SSize = 103 behaves the

worst when compared to the other two service selection

schemes with a smaller SSize. Since the services in our

experiments are generated randomly, the QoS for each

candidate service is also uniformly distributed. Whether

we can select (relatively) good Web services in terms of

QoS actually depends on the cardinal number, i.e., SSize.

This is because the larger the value of SSize, the higher

the probability that a service class may contain good can-

didate services which can be obtained by using the top-k

dominating technique. As reflected by the experiments in

Fig. 8, however, we also find that when SSize is extremely

large, the overhead on retrieving top-k candidate services

also becomes prohibitive. Consequently, there should be

a balance between the performances of the selection

scheme and the overheads on retrieving the top-k candi-

date services. According to previous experience and our

experiments, SSize with the value of 104 is sufficient to

demonstrate the effectiveness of our approach. As men-

tioned before, there are few service classes which contain

more than 105 services in most real-life applications. 3)

When the value of SSize is fixed at say 105, the perfor-

mance of our service selection scheme in Fig. 8d is much

better than that in Fig. 8c.

The difference on the performance can be easily distin-

guished, because the value of top-k in Fig. 8c is 10, while

in Fig. 8d the value of top-k is 20. From this set of exper-

iments, we can observe that as the value of top-k increases,

the performance of our service selection scheme also

improves to some extent.

3) CSize

CSize denotes the number of component services in a

composite service. In this set of experiments, we study

Fig. 8. Impact of SSize with top-k varies from k = 2 (a), k = 5 (b), k = 10 (c) and k = 20 (d).

Journal of Computing Science and Engineering, Vol. 6, No. 2, June 2012, pp. 89-104

http://dx.doi.org/10.5626/JCSE.2012.6.2.89 102 Chaogang Tang et al.

CSize over the performance of our approach. We vary the

number of concurrent requests (denoted in X-axis)

between 100 and 1,000 with a step value of 100. In each

experiment, we analyze the performance of our approach

with regard to the average response time for each service

class under five different values of CSize, i.e., 2, 4, 6, 8,

and 10, respectively. The experimental results are shown

in Fig. 9. Note that the only difference among these

experiments (denoted by Fig. 9) lies in the values of top-

k. In particular, the value of top-k in Fig. 9a to Fig. 9d is

set at 2, 5, 10, and 20, respectively. The value of SSize in

this experiment is set to 104. From the results, we can see

that: 1) With the number of concurrent requests increas-

ing, no matter which value CSize is, the average response

time also increases. This variation actually complies with

the development trend reflected in the previous experi-

ments. 2) When the number of concurrent requests is

fixed, the average response time of our approach under

different values of CSize is in fact, almost the same. The

reason is that the component services in a composite ser-

vice are generated randomly, which means that each

component service of the composite service exhibits sim-

ilar behavior. Overall, we can see that the total response

time for the composite service increases proportionally to

the growth of the number of component services in a

composite service. Furthermore, the average response

time for each service class in a composite service stays

almost the same. Thus, we can see from this set of exper-

iments that CSize has little influence over our service

selection scheme.

VI. CONCLUSIONS

In this paper, we have presented a service selection

scheme which adopts top-k dominating queries to gener-

ate a composition solution. In particular, to handle a given

request, we select the composition solution by adopting a

top-k dominating query technique for each component

service. Through extensive experimentation, we have veri-

fied the efficiency and effectiveness of our approach in

comparison to the baseline and traditional service selec-

tion schemes. For future work, we plan to further improve

the overall performance of DFR and balance the over-

heads between retrieving the top-k dominating services

and the top-k service selection scheme.

ACKNOWLEDGMENTS

The work reported in this paper has been supported by

a Strategic Research Grant from the City University of

Fig. 9. Impact of CSize with top-k varies from k = 2 (a), k = 5 (b), k = 10 (c) and k = 20 (d).

Dominance-Based Service Selection Scheme with Concurrent Requests

Chaogang Tang et al. 103 http://jcse.kiise.org

Hong Kong (project no.: 7002606). The work is also sup-

ported by the National Natural Science Foundation of

China under Grant no. 61003044, the Natural Science

Foundation of Jiangsu Province under Grant no. BK2010257

and State Key Laboratory of Software Engineering (SKLSE).

REFERENCE

1. X. Lian and L. Chen, “Top-k dominating queries in uncer-

tain database,” Proceedings of the 12th International Confer-

ence on Extending Database Technology: Advances in Database

Technology, Saint-Petersburg, Russia, 2009, pp. 660-671.

2. W. Zhang, X. Lin, Y. Zhang, J. Pei, and W. Wang, “Thresh-

old-based probabilistic top-k dominating queries,” The VLDB

Journal, vol. 19, no. 2, pp. 283-305, 2010.

3. M. L. Yiu and N. Mamoulis, “Multi-dimensional top-k dom-

inating queries,” The VLDB Journal, vol. 18, no. 3, pp. 695-

718, 2009.

4. D. Liu, C. Wan, N. Xiong, J. H. Park, and S. S. Yeoe, “Glo-

bal top-k aggregate queries based on X-tuple in uncertain

database,” Proceedings of the 2010 IEEE 24th International

Conference on Advanced Information Networking and Appli-

cations Workshops, Perth, Australia, 2010, pp. 814-821.

5. M. L. Yiu and N. Mamoulis, “Efficient processing of top-k

dominating queries on multi-dimensional data,” Proceedings

of the 33rd International Conference on Very Large Data

Bases, Vienna, Austria, 2007, pp. 483-494.

6. I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-based

skyline evaluation,” ACM Transactions on Database Sys-

tems, vol. 33, no. 4, article no. 31, 2008.

7. S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline

operator,” Proceedings of the 17th International Conference

on Data Engineering, Heidelberg, Germany, 2001, pp. 421-430.

8. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline

with presorting,” Proceedings of the 19th International Con-

ference on Data Engineering, Bangalore, India, 2003, pp.

717-719.

9. P. Godfrey, R. Shipley, and J. Gryz, “Maximal vector com-

putation in large data sets,” Proceedings of the 31st Interna-

tional Conference on Very Large Data Bases, Trondheim,

Norway, 2005, pp. 229-240.

10. D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the

sky: an online algorithm for skyline queries,” Proceedings of

the 28th International Conference on Very Large Data

Bases, Hong Kong, China, 2002, pp. 275-286.

11. D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive sky-

line computation in database systems,” ACM Transactions

on Database Systems, vol. 30, no. 1, pp. 41-82, 2005.

12. K. L. Tan, P. K. Eng, and B. C. Ooi, “Efficient progressive

skyline computation,” Proceedings of the 17th International

Conference on Very Large Data Bases, Rome, Italy, 2001,

pp. 301-310.

13. I. F. Su, Y. C. Chung, and C. Lee, “Top-k combinatorial sky-

line queries,” Proceedings of the 15th International Confer-

ence on Database Systems for Advanced Applications

(volume part II), Tsukuba, Japan, 2010, pp. 79-93.

14. M. A. Soliman, I. F. Ilyas, and K. C. C. Chang, “Probabilistic

top-k and ranking-aggregate queries,” ACM Transactions on

Database Systems, vol. 33, no. 3, article no. 13, 2008.

15. A. Guttman, “R-tree: a dynamic index structure for spatial

searching,” Proceedings of the ACM SIGMOD International

Conference on Management of Data, Boston, MA, 1984, pp.

47-57.

16. Y. Liu, A. H. Ngu, and L. Z. Zeng, “QoS computation and

policing in dynamic web service selection,” Proceedings of

the 13th International World Wide Web Conference on Alternate

Track Papers & Posters, Manhattan, NY, 2004, pp. 66-73.

17. M. A. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui, “A

QoS broker based architecture for efficient web services

selection,” Proceedings of the IEEE International Confer-

ence on Web Services, Orlando, FL, 2005, pp. 113-120.

18. Q. Yu and A. Bouguettaya, “Computing service skylines over

sets of services,” Proceedings of the IEEE International

Conference on Web Services, Miami, FL, 2010, pp. 481-488.

19. D. Skoutas, D. Sacharidis, A. Simitsis, and V. Kantere, and

T. Sellis, “Top-k dominant web services under multi-criteria

matching,” Proceedings of the 12th International Confer-

ence on Extending Database Technology: Advances in Data-

base Technology, Saint-Petersburg, Russia, 2009, pp. 898-909.

20. M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline ser-

vices for QoS-based web service composition,” Proceedings

of the 19th International Conference on World Wide Web,

Raleigh, North Carolina, 2010, pp. 11-20.

21. D. Skoutas, and D. Sacharidis, A. Simitsis, and T. Sellis,

“Serving the sky: discovering and selecting semantic web

services through dynamic skyline queries,” Proceedings of

the IEEE International Conference on Semantic Computing,

Santa Clara, CA, 2008, pp. 222-229.

22. Q. Yu and A. Bouguettaya, “Computing service skyline from

uncertain QoWS,” IEEE Transactions on Services Comput-

ing, vol. 3, no. 1, pp. 16-29, 2010.

23. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalag-

nanam, and H. Chang, “QoS-aware middleware for web ser-

vices composition,” IEEE Transactions on Software Engineering,

vol. 30, no. 5, pp. 311-327, 2004.

24. D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, “Efficient

OLAP operations in spatial data warehouses,” Proceedings

of the 7th International Symposium on Advances in Spatial

and Temporal Database, Redondo Beach, CA, 2001, pp.

443-459.

25. I. Lazaridis and S. Mehrotra, “Progressive approximate aggre-

gator queries with a multi-resolution tree structure,” Proceed-

ings of the ACM SIGMOD International Conference on

Management of Data, Santa Barbara, CA, 2001, pp. 401-412.

26. L. P. Slothouber, “A model of web server performance,”

Proceedings of the 5th International World Wide Web Con-

ference, Paris, France, 1996.

Journal of Computing Science and Engineering, Vol. 6, No. 2, June 2012, pp. 89-104

http://dx.doi.org/10.5626/JCSE.2012.6.2.89 104 Chaogang Tang et al.

Chaogang Tang

Chaogang Tang is currently a PhD student in the Department of Computer Science and Technology at the
University of Science and Technology of China (USTC). He is also enrolled in a joint PhD program offered by
the City University of Hong Kong (CityU) and USTC. His research interests include web service composition,
web service selection and web service reputation.

Qing Li

Qing Li is currently a Professor at the Department of Computer Science, City University of Hong Kong where
he joined as a faculty member in Sept 1998. Prof. Li has served/is serving as a consultant to Microsoft
Research Asia (Beijing, China), Motorola Global Computing and Telecommunications Division (Tianjin
Regional Operations Center), and the Division of Information Technology, Commonwealth Scientific and
Industrial Research Organization (CSIRO) in Australia. Prof. Li has been actively involved in the research
community by serving as an associate editor and reviewer for technical journals, and as an organizer/co-
organizer of numerous international conferences. Prof. Li’s research areas include object modeling,
multimedia databases, and web services.

Yan Xiong

Yan Xiong is currently a professor of the University of Science and Technology of China. He received his B.S.,
M.S. and Ph.D. degrees in computer science from the University of Science and Technology of China in 1983,
1986 and 1988, respectively. His research interests include computer networks, distributed system, mobile
computing, information security and trust computing.

Shiting Wen

Shiting Wen is currently a PhD student in the Department of Computer Science and Technology at the
University of Science and Technology of China (USTC). He is also enrolled in a joint PhD program offered by
the City University of Hong Kong (CityU) and USTC. His research interests include web service composition,
web service selection and web service reputation.

An Liu

An Liu received his Ph.D. degrees in computer science from the University of Science and Technology of
China (USTC) and the City University of Hong Kong (CityU), respectively, in 2010. He is currently a
postdoctoral fellow of USTC and CityU. His research areas include web service composition, web service
selection and web service reputation.

Farong Zhong

Farong Zhong is currently a professor at the Department of Computer Science in Zhejiang Normal University.
He received his B.S. degree in Computer Science from Shandong University in 1986, M.S. and Ph.D. degrees in
Computer Science from Shanghai Jiaotong University in 1994 and 2005 respectively. His research interests
focus on process calculus and web services.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

