
Copyright 2012. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 6, No. 3, September 2012, pp. 207-218

Equivalence Heuristics for Malleability-Aware Skylines

Christoph Lofi* and Wolf-Tilo Balke

Institut für Informationssysteme, Technische Universität Braunschweig, Braunschweig, Germany

lofi@ifis.cs.tu-bs.de, balke@ifis.cs.tu-bs.de

Ulrich Güntzer

Institut für Informatik, Universität Tübingen, Tübingen, Germany

ulrich.guentzer@informatik.uni-tuebingen.de

Abstract
In recent years, the skyline query paradigm has been established as a reliable method for database query personalization.

While early efficiency problems have been solved by sophisticated algorithms and advanced indexing, new challenges in

skyline retrieval effectiveness continuously arise. In particular, the rise of the Semantic Web and linked open data leads

to personalization issues where skyline queries cannot be applied easily. We addressed the special challenges presented

by linked open data in previous work; and now further extend this work, with a heuristic workflow to boost efficiency.

This is necessary; because the new view on linked open data dominance has serious implications for the efficiency of the

actual skyline computation, since transitivity of the dominance relationships is no longer granted. Therefore, our contri-

butions in this paper can be summarized as: we present an intuitive skyline query paradigm to deal with linked open data;

we provide an effective dominance definition, and establish its theoretical properties; we develop innovative skyline

algorithms to deal with the resulting challenges; and we design efficient heuristics for the case of predicate equivalences

that may often happen in linked open data. We extensively evaluate our new algorithms with respect to performance, and

the enriched skyline semantics.

Category: Smart and intelligent computing

Keywords: Query processing; Personalization; Skyline queries; Linked open data

I. INTRODUCTION

Continuous efforts to put the Semantic Web vision into

practice have led to two important insights: implementing

a full-fledged machine understandable Web has largely

failed, but focusing only on the ‘reasonable’ part already

reveals a vast variety of valuable data [1]. This area of so-

called linked open data (LOD) [2] has immediately

spawned interesting efforts, like the DBpedia knowledge

base (http://www.dbpedia.org/About) that currently describes

more than 3.64 million things, out of which 1.83 million

are classified in a consistent ontology. Moreover, the

potential applications also promoted the development of

innovative methods to make such data available to users

in a structured way. Information retrieval (IR)-style or

rule-based extraction frameworks, like ALICE [3], Xlog

[4], or SOFIE [5], can already crawl the Web, and extract

structured relationships from unstructured data with largely

sufficient accuracy.

However, when it comes to retrieval of the now struc-

Received 10 July 2012, Accepted 20 August 2012

*Corresponding Author

†An earlier version of this paper has been published at DASFAA 2012.

Open Access http://dx.doi.org/10.5626/JCSE.2012.6.3.207 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 207-218

http://dx.doi.org/10.5626/JCSE.2012.6.3.207 208 Christoph Lofi et al.

tured information, the typical query paradigms also have

to be adapted. This is not only because extracted knowl-

edge is usually represented in some form of knowledge

representation language (with resource description frame-

work [RDF] triples as the most prominent example), but

also due to the semantic loss of focus that results from

ambiguities in the extraction process. For instance when

querying for a person’s place of birth, the information

where somebody grew up is generally heavily related, but

definitely less focused regarding the original query inten-

tion. Still, whenever the exact place of birth is unknown,

the information where a person grew up is still much

more helpful, than an empty result set. Thus, it should be

retrieved as relevant, but of course should always get a

penalty in the ranking. This desirable facet of retrieval is

known as schema malleability [6, 7].

While current retrieval paradigms, for example those

in SOFIE’s retrieval engine NAGA [8] or Xlog’s DBLife

[9], only focus on structured query language (SQL)-style

retrieval (usually SPARQL over RDF) and keyword search

with top-k ranking, the problem of preference-based

retrieval paradigms, like skyline queries over linked open

data, has not yet been solved. In this paper we tackle the

problem of malleability-aware skyline queries over linked

open data. The problem is twofold: first a viable seman-

tics has to be defined, trading a user’s value preferences

against the extracted relationships’ loss of focus with

respect to the original query; then efficient algorithm(s)

have to be designed, to solve the retrieval task in practical

runtimes.

In a nutshell, the problem is the intuitive interleaving

of each individual user’s attribute value preferences, with

the generally applicable preferences on attribute seman-

tics, as specified in the query. Whereas skyline queries up

to now only dealt with relaxing value preferences, the

new additional relaxation in attribute semantics is owed

to the linked open data. Let’s extend our example from

above:

Example: A user might be interested in famous Nobel

laureates in physics who were born in Munich, Germany.

Querying the DBpedia knowledgebase retrieves only two

entries: Rudolf Mössbauer and Arno Allan Penzias.

However, a similar query for Nobel laureates in physics

growing up in Munich also retrieves Werner Heisenberg

(who went to school in Munich); and a further relaxation

to Nobel laureates in physics living in Munich finally

retrieves Wilhelm Conrad Röntgen. With a different degree

of relevance (with respect to famousness, and having a

relationship with Munich) all these are possible answers

that are, however, getting less focused with respect to the

original query, and should thus be displayed accordingly.

That means the final result, including schema malleabil-

ity, may be a trade-off between the famousness of the

physicists, and their relationship to Munich, which is best

represented by a skyline query result.

To model this paradigm in databases (and schema mal-

leability as such), each query attribute can be considered

as a database column, holding not only tuples based on

the strict relationships given by the query, but also tuples

from semantic similar relationships. However, to prepare

for later retrieval each such malleable attribute has to be

associated with a second attribute measuring the semantic

loss of focus for each tuple. This can be done by either

automatically measuring semantic loss of focus by

instance-based precision/recall tests, like shown in [10],

testing the relationships’ semantic relatedness with exter-

nally available ontologies, like in [11], or simply denot-

ing possible relationships, and allowing users to define a

(partial) order over these relationships with respect to

their queries.

In any case, the new associated attribute columns have

to be considered by retrieval algorithms, but in contrast to

the attribute value columns, have a slightly different qual-

ity. This is because relaxations on preferred values for

cooperative query processing might change a tuple’s desir-

ability, but larger relaxations in attribute senses might ren-

der tuples utterly useless. Consider the example above,

where a Nobel laureate’s place of birth is relaxed in terms

of the preferred value, e.g., from ‘Munich’ to ‘Bavaria’ or

‘Germany’, or in terms of the relationship with Munich,

e.g., from ‘born in’ to ‘lived in’. Whether a broader relax-

ation of the sense like ‘visited’ is still of any use is doubt-

ful. Thus, classical skyline query processing following

Pareto-optimality cannot readily be applied. Moreover,

by basically doubling the problem dimensionality also,

the well-known efficiency problems of skyline process-

ing in terms of runtimes and result set manageability, see

for example [12], are bound to be encountered.

The contribution of this paper is threefold: we design

an intuitive notion of skyline dominance with respect to

malleability, in the form of semantically typed links in

linked open data, and discuss its characteristics. We

develop innovative algorithms to efficiently process sky-

line queries, even over large data repositories. And we

extensively evaluate these algorithms with respect to

runtime behavior and skyline manageability. In fact, our

experiments show that in the general case, our algorithm

can achieve significant performance improvements over

the baseline. However, when slightly restricting general

malleability, we can even show that performance can

indeed be increased by several orders of magnitude, even

rivaling the runtime behavior of classical skyline algo-

rithms over strictly transitive preferences.

Please note that this paper is an extension of our work

in [13]. Compared to [13], we heavily invest in general-

ized semantics for cases where non-malleable attributes

show equivalent values. These semantics are discussed in

Section IV-C and this new definition is also evaluated in

Section V. This paper is structured as follows: after briefly

surveying related work in Section II, we discuss the nec-

essary foundations and theoretical characteristics of sky-

Equivalence Heuristics for Malleability-Aware Skylines

Christoph Lofi et al. 209 http://jcse.kiise.org

lines over linked open data in Section III. Section IV then

presents and evaluates skyline algorithms over several

malleability attributes, whereas Section V deals with the

special case of a single aggregated malleability attribute.

We close with a short summary and outlook.

II. RELATED WORK

Due to its potential usefulness, linked open data has received

a lot of attention, and even inspired a taskforce (http://

www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData) of the World Wide Web Consortium

(W3C). Current research is often focused on the area of

business intelligence, but also for the collection of com-

mon knowledge. The basic idea is of using the Web to

create typed links between data items from different

sources. Once extracted, these links represent semantic

relationships, which can in turn be exploited for query-

ing. However, when querying (or reasoning over) such

relationships, the exact nature of the relationship and its

semantic correspondence to the query is often difficult.

Therefore, apart from typical exact match queries (usu-

ally performed in SPARQL [http://www.w3.org/TR/rdf-

sparql-query/] over RDF triples), many approaches for

ranking the best matching information have been designed.

The first notable approach to rank queries on extracted

entity properties was Entity Search [14], proposing an

elaborate ranking model that combines keywords and

structured attributes. When it comes to also exploiting

semantic relationships, NAGA [8] used a scoring model

based on the principles of generative language models,

from which measures such as confidence, informative-

ness, and compactness are derived, which are subse-

quently used to rank query results. Finally, [15] develops

a general model for supporting approximate queries on

graph-modeled data, with respect to both attribute values

and semantic relationships, and derives a first top-k algo-

rithm to implement the ranking efficiently. However, like

in all top-k frameworks, even far-fetched semantic rela-

tionships can be compensated for, by good matching

attribute values. Moreover, all these approaches directly

work on graph-structured data relying on path-based

semantic relatedness, e.g., as defined by [16], whereas

our approach works on relationship malleability quantify-

ing the respective loss of focus.

To our knowledge the only algorithm similar to skyline

queries on linked open data is given by [17]. However,

the developed algorithm has been designed for optimiz-

ing skyline queries over RDF data stored using a verti-

cally partitioned schema model, and thus presents an

efficient scheme to interleave the skyline operator with

joins over multiple relational tables. Unfortunately, it

does not offer any techniques with respect to personaliza-

tion and the problem of semantic linkage, and thus is not

really related to our work here. In brief, to our knowl-

edge, our approach features the first skyline algorithm

that respects semantic malleability.

III. THEORETICAL FOUNDATIONS OF
MALLEABILITY-AWARE SKYLINES

In the following, we will briefly revisit the notion of

Pareto skylines, as given by [18]. Assume a database

relation R D1 × ... × Dn on n attributes. 1) A preference

Pi on some attribute Ai with domain Di is a strict partial

order over Di. If some attribute value a Di is preferred

over another value b Di, then (a,b) Pi, written as a >i

b (read “a dominates b with respect to Pi”). The set of all

preferences is denoted as P. 2) Analogously, an equiva-

lence relation on Di compatible with Pi can also be

defined. Then, two attribute values attribute a,b Di can

be defined as being equivalent with respect to the domain:

a i b. Moreover, if some attribute value a Di is either

preferred over or equivalent to some value b Di, we

write a i b.

Assuming preferences P1, ..., Pn for each attribute in R,

the concept of Pareto dominance between two tuples

 with (x1, ..., xn) can be defined as:

Definition 1: Pareto dominance

(>P) := (xi i yi) (xi >i yi).

The classical skyline set [19] can now be defined as all

those tuples in each database instance, which are not

dominated by any other tuple:

Definition 2: Pareto skyline for some relation R and

preferences P

sky(R, P) := { ∈ R ∈ R : >P }.

Now we are ready to extend the semantics, by intro-

ducing the concept of malleability-aware dominance,

which specifically respects the semantic challenges intro-

duced by linked open data entities. As motivated above,

the intuition is that regarding each queried attribute, per-

sonalized skyline queries consist of a user-specific value

preference, and a certain meaning of the attribute that

may more or less correspond to some number of extracted

attribute types in the database instance. Thus, for getting

acceptable results, not only the entities’ attribute values,

but also the loss of focus with respect to each attribute’s

semantics has to be taken into account. The baseline

approach for this would be to simply compute skylines

with a double dimensionality (one attribute value, and a

malleability score for each attribute).

However, apart from the obvious scalability problems,

the semantics are also unclear. Whereas attribute values,

like dates, prices, or ratings, are usually crisp, and follow

a certain preference order (users want the cheapest price

for some product or the highest quality rating), labels for

semantic relationships are usually fuzzy, and to some

 ⊆

∈

∈ ∈

∈

≈ ∈

∈

 ∼ >

x,y R∈ x =

x y ∀i D∈ ∼ > ∧ i D∈
∃

x ∃¬ y y x

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 207-218

http://dx.doi.org/10.5626/JCSE.2012.6.3.207 210 Christoph Lofi et al.

degree ambiguous, depending on their labels. Often

grew_up_in maybe used synonymously with born_in, but

lived_in definitely is not. Thus, the relative loss of focus

(or d-distance) between semantic labels needs to be con-

sidered: if two labels differ at most by d, they should be

considered semantically equivalent, but once two labels

are too far apart, a different class of semantic relationship

has to be assumed.

Definition 3: δ-preferences for modeling malleability

over linked open data.

A δ-preference δPi on some attribute Ai with metric

domain Di and metric disti(.,.) is a reflexive and transitive

binary relation i over Di, together with an intransitive

form of equivalence with the notion of indifference: for

all a,b ∈ Di: a ≈i b disti(a,b) ≤ δ, see e.g., [20]. If

some attribute value a ∈ Di is preferred over another

value b ∈ Di and disti(a,b) > δ, we write a i b (read “a

strictly δ-dominates b with respect to δPi”). The combi-

nation of several δPi can easily be achieved using the nor-

mal Pareto product and will be denoted as δP. Likewise,

we write a i b, if either a ≈i b or a i b.

It is easy to mix δ-preferences and normal strict partial

order preferences to create a product preference over

some relation (which for ease of use we will again simply

denote by ‘>’), and we will define the respective domina-

tion relationships for malleability-aware skylines in

Sections IV and V. But up to now, such δ-preferences

with relative distances have not been considered in sky-

line queries, because their use directly contradicts the

generally assumed transitivity of domination relationships

between tuples. Actually, results in psychology have long

shown that, in contrast to common belief, intransitivity

often occurs in a person’s system of values or prefer-

ences, potentially leading to unresolvable conflicts, see

e.g., [21] or [22]. Analogously, in economics, intransitiv-

ity may occur in a consumer’s preferences. While this

may lead to consumer behavior that does not conform to

perfect economic rationality, in recent years economists

have questioned whether violations of transitivity must

necessarily lead to ‘irrational’ behavior, see for instance

[23].

Indeed, from an order-theoretical point of view it is

easy to show that whenever δ-distances are used in at

least one preference, and (>P) and (>P) are given,

(>P) does not necessarily follow:

Lemma 1: Dominance relationships are not transitive

using δ-distances.

Proof: Transitivity for dominance regarding any prod-

uct preference P is violated, if three tuples , , and

can be constructed, for which holds: (>P >p),

but P .

Assume a product preference P over some relation R,

and assume there is one attribute m for which a δ-prefer-

ence δPm is declared, stating the equivalence of values

within the relative distance of some fixed δ. Now define

preference P^ by removing δPm from P, and construct

three tuples , , and such that (>P^ >P^). Now,

assign values of , , and for attribute m as follows: ym
:= (xm + δ) and zm := (ym + δ).

Then, with respect to P, >P holds because of

(>P^), and xm and ym are equivalent with respect to the

chosen δ. Analogously, >P holds. However, P^

because of P^ , but (zm = (xm + 2δ) δPm xm). Hence

 and are incomparable with respect to P, and the dom-

ination relationship is not transitive.

□

While the resulting preference orders are not transitive,

at the same time domination relationships within the

intransitive product order are sensible, since there can

never exist any cyclic base preferences. However, this is

only the case when strict partial-order preferences and δ-

preferences are used conjointly to build the product

order; product orders built only from δ-preferences will

inevitably lead to cycles. In order to guarantee a cyclic

product orders, some observations can be made: 1) no

cycles can ever emerge between tuples showing domi-

nance with respect to any attributes, over which a strict

partial-order preference is defined (due to their guaran-

teed transitivity), and 2) cycles can only occur, if tuples

are equivalent with respect to all partial-order prefer-

ences. In this case, strict δ-dominance () must be

enforced, and none of the tuples are allowed to dominate

by simple δ-dominance alone (). This leads to our for-

mal definition of malleability-aware dominance (Defini-

tion 4) in Section IV-A.

A. Implications for Algorithm Design

The danger of intransitivity of dominance relationships

is that it may lead to non-deterministic behavior when

computing skylines using standard skyline algorithms.

According to Definition 2, the skyline contains all tuples

of a given relation that are not dominated by any other

tuple, assuming that preferences are partial orders.

Naïvely, this would need an algorithm pairwise compar-

ing all tuples, with respect to the chosen dominance crite-

rion. In practice, however, most skyline algorithms

increase efficiency by pruning large numbers of tuple

comparisons (e.g., basic block-nested-loop [BNL] algo-

rithms [19], branch-and-bound algorithms [24], distrib-

uted algorithms [25], or online algorithms [26]). These

optimizations usually all rely on the transitivity of domi-

nance.

Example: When using non-transitive dominance with

for instance a BNL algorithm, the result will vary non-

deterministically depending on the order of the tuples in

the database instance (and therefore, also the order of

the tests for dominance). For example, when assuming

(>P), (>P), but P , then a skyline computed

p

 ⇔

p

p

� p

x y y z

x z

x y z

x y ∧ y z

x > z

x y z x y z

x y z

x y

x y

y z x > z

x > z

p

x z

p

�

x y y z x > z

Equivalence Heuristics for Malleability-Aware Skylines

Christoph Lofi et al. 211 http://jcse.kiise.org

by some BNL algorithm just contains { }, if the test for

(>P) is performed first, and thus is immediately

pruned from the database. Otherwise, if (>P) is tested

first, the resulting skyline contains { , }, because is

removed prematurely, before could also be removed by

testing (>P); and due to (P), incorrectly

remains in the skyline set.

However, the idea of skylines is still sensible, since as we

will prove in Lemma 2, cyclic preferences cannot occur,

and thus a skyline based on the notion of containing all

non-dominated objects can be computed. Since pruning

may cause difficulties, the obvious way is by simply

comparing all tuples in the database instance pairwise

(with quadratic runtime). But, as we will see in the next

section, far more efficient algorithms can be designed, and

thus skylines over linked open data are indeed practical.

IV. MALLEABILITY-AWARE SKYLINES

Before delving into designing skyline algorithms capa-

ble of dealing with intransitivity, as described above, we

have to formalize our concept of product orders also built

from d-preferences in the form of a dominance criterion

usable in skyline algorithms.

A. Malleability-Aware Skylines with Individual
Attribute Malleability

Assuming preferences P that can be decomposed into

strict partial-order preferences P^, and δ-preferences δP,

the concept of malleability-aware dominance between

two tuples , can be defined as:

Definition 4: Malleability-aware dominance over indi-

vidual attributes

(>P) : ((>P^) (δP))

((≈P^) (δP)).

In this definition, there is a malleability-aware domi-

nance: 1) if all non-malleable attribute values of show

Pareto dominance over , and all malleable attributes of

 are at least equivalent to those of with respect to the

δ-preferences (i.e., all malleable attributes encoding the

tuple’s loss-of-focus are tested for “soft” dominance here,

allowing a certain δ of flexibility), or 2) if all data attributes

are equivalent with respect to the Pareto preferences, but

show strict dominance with respect to the malleable

attributes for the δ-preferences (this means all malleable

attributes encoding loss-of-focus have to show real Pareto

dominance, i.e., no δ-distances are considered). This impor-

tant property is required to prevent cycles to form in P:

Lemma 2: Product orders of strict partial order pref-

erences and δ-preferences following Definition 4 cannot

contain cyclic preferences.

Proof: We have to show that the dominance relation of

the product order does not induce cycles, more precisely,

if >P ... >P with k > 1, then neither >P nor

≈P is possible. Please note that ≈P means ≈Pi

for all non-malleable attributes and = for all mallea-

ble attributes, i.e., no malleability is allowed for equiva-

lence.

For 1 ≤ t ≤ k let :=(xt,1, ..., xt,n, xt,n+1, ..., xt,n+m) where

the first n attributes are non-malleable, and the following

m attributes are malleable. We distinguish two cases: 1)

There is a strict preference in the non-malleable part

between two objects in an assumed cycle, i.e., there are 1

≤ t < k and 1 ≤ i ≤ n such that xt,i >Pi xt+1,i. Then, within the

cycle we have: x1,i Pi ... Pi xt,i >Pi xt+1,i Pi ... Pi xk,i and

therefore x1,i >Pi xk,i, rendering both >P x1 and ≈P x1
impossible; 2) If there is no strict preference in the non-

malleable part, for all 1 ≤ t < k and 1 ≤ i ≤ n we have xt,i
≈Pi xt+1,i. Thus, following Definition 4 for the malleable

attributes for all 1 ≤ t < k holds: (xt,n+1, ..., xt,m) δP (xt+1,n+1,

..., xt+1,m), which means (x1,n+1, ..., x1,m) δP (xk,n+1, ..., xk,m),

due to the strictness of δP. Hence >P x1 is impossible.

In the same way it is easy to also see that ≈P x1 is

impossible.

□

Now, the respective malleability-aware skyline can be

computed analogously to Definition 2, by:

sky(R, P) := { R R : >P }

Unfortunately, actually implementing such malleabil-

ity-aware skyline computations algorithmically poses

several challenges. Therefore, in the following we dem-

onstrate how such algorithms can be designed. For the

sake of cleaner notions and without loss of generality, we

will assume that all our preferences are encoded in the

database tuples by normalized scores in [0,1], where 1

represents the most preferable attribute values, and 0 the

least preferable ones. Any database tuple is given by

= (x1, ..., xm), and the individual attributes can be sepa-

rated into non-malleable data attributes xi with i ∈ D (cor-

responding to P^), and malleable attributes xi with i ∈ M

(corresponding to δP). Then, the dominance criterion of

Definition 4 can be re-formulated as:

(>P) : [(xi ≥ yi xi > yi)

(xi ≥ (yi − δi))] [(xi = yi)
(x

i
 ≥ y

i
 x

i
 > y

i
)]

It is easy to see that this definition is equivalent to the

Pareto dominance, as given by Definition 1, for the cases

of M = Ø or δ = 0. If M = Ø and δ > 0, then malleability-

aware dominance allows for additional tuples being dom-

inated compared to Pareto dominance, hence the result-

ing Skyline is a subset of the Pareto skyline.

B. Computing Non-Transitive Skylines

As already indicated in Section III-A, modern Skyline

x

y z z

x y

x z y

z

y z x > z z

x y

x y ⇔ x y ∧ x

�

y ∨

x y ∧ x

p

y

x

y

x y

x1 xk xk x1 xk

x1 x y xi yi

xj yj

xt

~> ~> ~> ~>

xk xk

p

p

p

xk

xk

x ∈ ∃¬ y ∈ y x

x x

x y ⇔ ∀i D∈
∧ ∃i D∈

∧

 ∀i M∈
∨ ∀i D∈

∧
 ∀i M∈

∧ ∃i D∈

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 207-218

http://dx.doi.org/10.5626/JCSE.2012.6.3.207 212 Christoph Lofi et al.

algorithms have come to rely on the transitivity of domi-

nance criteria. For the sake of improved performance,

many tuple comparisons are avoided by pruning objects

early, relying on transitivity for computational correct-

ness, i.e., a tuple shown to be dominated can be fully

excluded from further execution of the algorithm. How-

ever, without guaranteed transitivity, even basic algorithms

like the well-known BNL algorithm [19] fail. Therefore,

the need arises to develop new algorithms that are able to

cope with these new requirements. In this section, we will

therefore present a general purpose algorithm designed

for use with any non-transitive dominance criteria, includ-

ing dominance for malleability-aware skylines.

The naïve solution to the given problem is relying on

exhaustive pairwise comparison, i.e., each possible tuple

pair has to be tested for dominance. However, this algo-

rithm shows prohibitive practical performance, requiring

1/2(n(n − 1)) expensive tests for dominance, with n being

the size of the database (and assuming that each test for

dominance is bi-directional, i.e., by testing a >P b, we can

test b >P a at the same time).

Hence, we propose a novel algorithm, which is capable

of dealing with any transitive or non-transitive prefer-

ences P. Our algorithm is derived from this naïve imple-

mentation by carefully avoiding any tuples comparisons

that are guaranteed to show no effect. This can be formal-

ized as follows:

Given is a database relation R with n tuples and prefer-

ences P. Furthermore, we need the set T of all tuples

which need further testing for 1) if any t ∈ T is dominated

by any other tuple, and 2) if any t ∈ T dominates any

tuples itself; T is initialized with T = R. Furthermore, we

use the set S of all tuples that are the final skyline, and the

set L (i.e., losers) of those tuples that have already been

shown to be dominated by any other tuple. In contrast to

Skyline algorithms with transitive dominance, we cannot

exclude tuples in L from further computation without

additional guarantees. This results in the following algo-

rithm:

The algorithm contains two loops, the outer one iterat-

ing t over all objects to be tested that have not already

been shown to be dominated. For finding new dominance

relationships, the second loop iterates c over the set C (C

is initialized in each run with T {t}.) By testing t and

each c for dominance, objects can be marked to be domi-

nated, by adding them to the set L of all losers. As soon

as t is dominated, any subsequent comparisons of t with

any other tuple that has been shown to be dominated can

be avoided, as those yield no new information. If t was

not dominated within the inner loop, it can safely be

added to the skyline. Compared to the naïve approach,

this algorithm saves a significant number of superfluous

tuple comparisons (see evaluation in the next section).

Furthermore, this algorithm can be efficiently imple-

mented by representing the membership of a tuple in the

different sets by simple flags attached to the tuples in R,

thus minimizing the overhead of additional bookkeeping.

C. Expanding Semantics for the Case of
Equivalent Data Attributes

In the following, we will introduce a more general def-

inition of malleability-aware skyline semantics, address-

ing some restrictions of the semantics introduced in

Definition 4. Especially, we focus on the case that all

non-malleable attributes are equivalent, i.e., (≈P^).

For the case of equivalent data values, in our initial

definition, we demanded strict dominance with respect to

malleable attributes, in order to establish a dominance

relationship between the two tuples. This constraint does

not capture the intended semantics of malleable skylines

perfectly, as it allows for no vagueness in the case of

equivalent data values. However, Definition 4 represents

a pragmatic restriction for the sake of simplicity, and

guarantees the absence of cycles without any additional

effort. For many datasets, i.e., especially those that have

large, or even continuous domains for the non-malleable

data attributes, this restriction has a negligible impact, as

tuples with equivalent data attributes rarely occur. How-

ever, for tuples with smaller attribute domains, tuples

equivalent with respect to data attributes may happen fre-

quently, and thus, often, our malleable skyline heuristic

does not trigger.

Therefore, the definition presented in the following

will expand on this case, also allowing soft-dominance

when non-malleable attributes are equivalent, but result-

ing in a more complex and computation-heavy definition.

The effectiveness of this modification is highly depen-

dent on the current dataset, and especially shines in sce-

narios where data equivalences can frequently occur—

e.g., e-commerce datasets where product facts are auto-

matically extracted from the Web, resulting in varying

extraction quality (malleable attributes), and often collid-

ing data values (as there is a common consensus among

most manufacturers with respect to which product prop-

erties make sense and which don’t).

x y

Algorithm 1 Non-transitive skyline algorithm

Equivalence Heuristics for Malleability-Aware Skylines

Christoph Lofi et al. 213 http://jcse.kiise.org

Let := (x1, ..., xn, xn+1, ..., xn+m) where the first n

attributes are non-malleable attributes respecting the par-

tial-order preference P^, and the following m attributes

are malleable with respect to a δ-preference δP. Further-

more, is defined analogously.

Then, similar to Definition 4, we can define general

malleability-aware dominance between two tuples , as

Definition 5: Malleability-aware dominance over indi-

vidual attributes

(>P) : (1)

((>P^) (δP)) (2)

 [(≈P^) (3)

(4)

 (

(5)

(6)

We will discuss the detailed semantics of this defini-

tion in the following:

Part (2) of Definition 5 is similar to Definition 4, and

encodes the semantic that if all non-malleable attribute

values of show Pareto dominance over , and all mal-

leable attributes of are at least equivalent to those of

with respect to the δ-preferences, using “soft” dominance

allows a certain δ of flexibility.

Also, the next two parts (3) and (4) also directly corre-

spond to Definition 4. Please note that we changed the

notation, in order to be consistent with the later compo-

nents (5) and (6) of the definition, i.e., the expression

(δP) as used in Definition 4 is equivalent to

 as

used by (4) in Definition 5. Therefore, this part still means

that if no soft δ-dominance on the malleable attributes

with strictly dominating non-malleable attributes as given

by (2) could be established, then we can establish domi-

nance if all non-malleable data attributes are equivalent

with respect to the Pareto preferences (3), and the mallea-

ble attributes are strictly better with respect to the δ-pref-

erences (4).

The extension of Definition 5 over Definition 4 is in

(5) and (6): here, an additional alternative option for

establishing dominance is provided for the case that the

non-malleable attributes are equivalent. Therefore, this

new definition is more general, and it will usually result

in more dominance relationships than the previous

Definition 4, i.e., the resulting skyline is either equal, or a

strict subset of a respective skyline, in accordance with

Definition 4.

The semantics of (5) and (6) are that for the case (≈P^

), it is also possible to use soft-dominance on malleable

attributes, as long as certain restrictions hold: especially,

(5) encodes that tiny value variations within malleable

attributes smaller than are considered as just

being noise, and only larger variations of can

lead to a dominance relationship between and .

Unfortunately, this change breaks the guaranteed absence

of cycles, one of the major features of the original

Definition 4. Therefore, further restrictions are needed, in

order make use of both soft-dominance for malleable

attributes, and cycle-free dominance relations. These

restriction are given by (6), i.e., by the additional con-

straint . This constraint describes

that in order for to dominate , needs to be better in

its sum over of its malleable attributes. This enforces a

compensation mechanism, i.e., in order to dominate; a

tuple has to show at least one malleable attribute for

which it is significantly better than the respective attribute

in , and all other malleable attribute values that are worse

in than in (but still below the noise level) need to be

compensated for by the entirety of the tuple. Therefore,

for example, dominance between an overall inferior tuple

(but with all inferior malleable attribute values being

below the noise threshold) showing just few better values

is disallowed, unless the better values are significantly bet-

ter, also compensating for the shortcomings of the other

attributes. This eliminates the source for cyclic domi-

nance relationships, rendering this definition safe.

V. EVALUATIONS

A. Evaluating General Malleability-Aware
Skylines

In this section, we evaluate the effects of malleability-

aware dominance, respecting any number of malleable

attributes on the properties of skylines. Furthermore, we

will also measure the performance of respective skyline

algorithms.

1) Skyline Size

For the first set of experiments, we examined the

impact of malleability-aware dominance (represented by

varying values δ) on the skyline size. For this purpose,

we relied on synthetic data, and in each experimental run

generated new database tuples with 12 independently dis-

tributed numeric attributes. Six of these attributes repre-

sent non-malleable (data) attributes, while the other six

attributes are malleable ones, representing loss-of-focus.

Using the operationalized dominance criterion of Section

IV-A, skylines are computed for d-values ranging from δ

= 0 (the baseline; equivalent to Pareto skylines as in

Definition 2) to δ = 0.3. For each value of d, the experi-

ment is repeated 50 times with newly generated tuples (to

x

y

x y

x y ⇔

x y ∧ x

�

y

∨ x y

∧ { i n+1, ..., n+m[]: xi yi≥() ∈∀〈

i∃ n+1, ..., n+m[]: xi yi>()∈∧ 〉

∨ i n+1, ..., n+m[]: xi yi δ–≥() ∈∀〈

i∃ n+1, ..., n+m[]: xi yi δ+>()∈∧ 〉

 x
n+m

i=n+1 i∑ yi δ+
n+m

i=n+1 ∑>())}]∧

x y
x y

x

p

y i∈∀〈

n+1, ..., n+m[]: xi yi≥() i∃ n+1, ..., n+m[]: xi yi>()∈∧ 〉

x

y

xi yi– δ≤

xi yi δ+>

x y

x
n+m

i=n+1 i∑ yi δ+
n+m

i=n+1 ∑>()

x y x

x

y
x y

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 207-218

http://dx.doi.org/10.5626/JCSE.2012.6.3.207 214 Christoph Lofi et al.

ensure comparability, the same random seed is used for

each δ, resulting in the same sequence of generated

tuples). The averaged results are shown in . It is clearly

obvious that the skyline resulting from the baseline (δ =

0, identical to the Pareto skyline of the same data) is not

practically manageable: from the 50,000 database tuples,

26,981 are contained in the skyline (53%). This can be

attributed to the high dimensionally of d = 12. But with

growing δ, the skyline sizes dramatically decrease:

already with δ = 0.15, the skyline is reduced to 11,959

tuples on average - a clearly more manageable result.

Similar behavior can also be observed for smaller data-

base sizes. Therefore, we can conclude that the malleabil-

ity-aware skyline indeed efficiently addresses the issue of

overly large skylines, when considering malleable loss-

of-focus attribute per data attribute.

2) Performance of Algorithms

In the second set of experiments, we examined the per-

formance of the naïve baseline and our non-transitive

skyline algorithm (measured in the required number of

tests for dominance). Similar to the last experiment, we

again relied on synthetic data with 12 independent-

attributes (6 malleable, 6 non-malleable), and incremen-

tally increased the size n of the database from 10,000

tuples up to 100,000 tuples. The results are shown in Fig. 2:

clearly, our non-transitive algorithm shows significantly

better performance than the baseline, using pairwise

comparisons. Furthermore, this performance advantage

increases with growing database sizes. But still, the total

time required by both algorithms is quite high (272 sec-

onds with n = 100 k using our non-transitive skyline

algorithm vs. 637 seconds for pairwise comparisons; tests

performed on a 1.86 GHz Dual-Core CPU, using Java 6

and just a single core.) Therefore, additional optimiza-

tions must be found for application domains with tighter

time constraints.

B. Effects of General Semantics for Equivalent
Values

In this section, we briefly demonstrate the effect on the

skyline size of the alternative Definition 5 for malleable

skylines, given in Section IV-C, over the original Definition

4, given in Section IV-A. As this definition specifically

extends Definition 4 with respect to equivalent (non-

malleable) data values, this experiment uses slightly

different data sets, encouraging the occurrence of such

tuples (i.e., showing equivalent non-malleable parts).

This is achieved by generating discrete data values with

10 levels, e.g., possible values are 0.0, 0.1, ..., 0.9.

Furthermore, we only use 5 non-malleable attributes and

5 malleable ones, for a total of 10 attributes. Skylines

computed using definition 5 are, as mentioned in Section

IV-C, a subset of skylines computed with Definition 4,

i.e., Definition 5 may result in additional domination

relationships under certain conditions (simplified: when

non-malleable attributes between two tuples are equiva-

lent, and the malleable attributes are not strictly dominat-

ing, but most non-malleable attributes are roughly similar,

with some attribute values being significantly better for

one tuple).

In brief, in this experiment, we measure the relative

skyline size reduction when comparing skylines com-

puted with Definitions 4 and 5. For δ = 0.0, both defini-

tions obviously behave similarly. Furthermore, as we use

discrete values with distances of 0.1, Definition 5 behaves

similarly for groups of δ-values δ ∈ {0.0, 0.05, 0.1}, δ ∈

Fig. 1. Skyline size with respect to δ using 6 malleable and 6
non-malleable attributes and varying database sizes (y-axis shows
skyline size).

Fig. 2. Performance using 6 malleable and 6 non-malleable
attributes (x-axis shows #tuples in database, y-axis shows number
of required tests for dominance, δ = 0.15).

Equivalence Heuristics for Malleability-Aware Skylines

Christoph Lofi et al. 215 http://jcse.kiise.org

{0.15, 0.2}, and δ ∈ {0.25, 0.3}. Therefore, the results

shown in Fig. 3 are for relations with 10 k to 50 k tuples,

and δ-values δ = 0.15 and δ = 0.25. It can be clearly seen

that the effectiveness of the heuristic increases with

increasing database size, as due to our experimental set-

ting, the probability of tuples fulfilling the conditions

required for the extensions provided in Definition 5 also

increases. On an absolute scale, for the example of 50 k

tuples generated as described above, the skyline is 4,567

tuples for δ = 0.0. For δ = 0.15, Definition 4 results in

1,594 tuples, while 5 results in 1,481 tuples, leading to

the 7% relative reduction depicted in the figure. For δ =

0.25, the skyline sizes are 630 vs. 533 tuples. Overall, we

can see from this evaluation that our alternative Definition

5 is beneficial, for the case of datasets with frequently

occurring equivalence between tuples, with respect to the

non-malleable attributes. However, it is very domain

dependent if data does indeed show this property or not

(for further illustration: if the same experiment is run

using randomly generated non-discreet float values in

[0,1], the effect of the definition is barely visible, and rel-

ative reductions are usually below 1%).

C. Malleability-Aware Skylines with a Single
Malleable Attribute

As demonstrated in the last section, the runtime of gen-

eral non-transitive skyline algorithms with one malleable

loss-of-focus attribute for each non-malleable data attribute

can be quite high. Thus, for time-critical applications, we

suggest reducing the number of malleable attributes to

using just a single attribute. This single attribute then rep-

resents the overall loss-of-focus of a given database tuple

with respect to the query, in an aggregated form. This

reduction can be implemented by different methods: 1)

by combining multiple malleable attributes by some com-

bining function, or 2) by directly eliciting just a single

attribute representing loss-of-focus, using one of the

established frameworks for this task (e.g., [10] or [11]).

As an immediate effect, the number of dimensions to

be respected during skyline computation is reduced dras-

tically, leading to direct performance advantages, due to

respectively reduced skyline sizes. However, there is a

less obvious and significantly more crucial advantage

resulting from this reduction, which allows us to build

vastly more efficient skyline algorithms. The basic con-

siderations leading to these algorithms are as follows:

When using established skyline algorithms, like BNL,

the only problem which is encountered when dealing

with malleability-aware dominance is that tuples are

eliminated early that are required to dominate another

non-skyline tuple, and due to non-transitivity, none of the

remaining tuples can lead to the same dominance; thus an

incorrect skyline is computed (e.g., see example in Sec-

tion III-A). Therefore, we could use a more efficient stan-

dard algorithm, like BNL, if it could be made “safe”, i.e.,

if this situation can be prevented. In the general case with

multiple malleable attributes, this is unfortunately not

possible. But when using just one malleable attribute, the

correctness of BNL depends only on the order in which

the tuples are inserted into the window: for example, con-

sider three tuples with preferences already encoded in

scores = (0.8, 0.8, 0.4), = (0.7, 0.7, 0.6), and =

(0.6, 0.6, 0.8); the bold score represents the single mal-

leable attribute. When computing a malleability-aware

skyline with δ = 0.20, then >P >P , and the resulting

skyline is just { }. But due to P , the BNL algorithm

could first test >P , removing , and resulting in the

skyline { , } (because cannot be dominated any-

more). Obviously, the skyline result would be correct, if

the tested order was (>P (>P)). It is easy to see that

this observation can be generalized, i.e., problems in

BNL can only occur if tuples with a lower malleability

score are removed before they have been tested for domi-

nance against all tuples with a higher malleability score.

Therefore, for the case that there is only one malleable

attribute, we can use established algorithms like BNL, if

all tuples are processed in descending order with respect

to the malleability attribute (preventing the situation lead-

ing to incorrect skylines described above), i.e., the sky-

line algorithm is therefore stratified with respect to the

malleability attribute. This can be implemented by pre-

sorting the data before executing e.g., by a BNL algo-

rithm. The effectiveness of this approach is tested later in

this section.

1) Skyline Size

Before dealing with performance issues, similar to the

last section, we also measured the skyline sizes for vary-

ing δ and database sizes n. Again, we generate tuples

using 6 non-malleable independently distributed attributes,

but just one single malleable attribute. As now the num-

ber of overall dimensions is reduced from d = 12 down to

x y z

x y z

x x > z

x y y
x z z

x y z

Fig. 3. Percentage of skyline reduction Definition 5 vs. Definition
4. Five non-malleable and 5 malleable attributes, randomly
generated discrete values with 10 levels.

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 207-218

http://dx.doi.org/10.5626/JCSE.2012.6.3.207 216 Christoph Lofi et al.

d = 7, the respective skyline sizes are also reduced dra-

matically to only 4,017 tuples (8% of database) for the

baseline δ = 0 with n = 50,000 (see Fig. 5). But still, by

slightly increasing δ, the skyline can be furthermore

decreased to more manageable levels (e.g., 2,809 for δ =

0.15 and n = 50,000).

2) Performance of Algorithms

In this last set of experiments, we examined the perfor-

mance of the naïve baseline, our non-transitive skyline

algorithm, and the stratified BNL algorithm as described

above. Again, performance is measured by the required

number of tests for dominance. We also relied on syn-

thetic data with 7 independent-attributes (one malleable,

6 non-malleable), and incrementally increased the size n

of the database from 10,000 tuples up to 100,000 tuples.

The results are shown in Fig. 5 (using a logarithmic y-

axis). Here, we can see that the stratified BNL-algorithm

needs roughly two orders of magnitudes fewer domi-

nance tests than the naïve baseline, and is also one order

of magnitude more efficient than our general non-transi-

tive skyline algorithm. In terms of absolute runtime, the

general non-transitive algorithm needed 218 seconds for

n = 100 and δ = 0.15, which is still quite long. In contrast,

the stratified BNL algorithm could be executed in less

than 1.4 seconds using the same hardware (the time

needed for sorting the 50,000 tuples before executing the

algorithm is negligible). This significant result clearly

shows that malleability-aware skylines can even be used

in interactive environments having tight constraints with

respect to response time, such as web applications.

VI. SUMMARY AND OUTLOOK

In this paper we discussed the case of query processing

over LOD. Whereas traditional query processing algo-

rithms are usually graph-based, and use exact matches on

typed links between data items in SQL-like languages

like SPARQL, the fuzzy nature of semantic links calls for

approximate query processing algorithms. In particular,

the exact labels of links cannot always be taken at face

value, because information extraction techniques, the use

of different concept ontologies, and slight variations in

the links’ semantics introduce quite a bit of fuzziness,

which algorithms have to deal with. Relying on tech-

niques to estimate different labels’ loss of focus regard-

ing each other, in this paper we presented the first skyline

query algorithm that can efficiently deal with semanti-

cally typed links in linked open data. Modeling the

semantic malleability of attributes by d-preferences, we

proved that the resulting product order is indeed well

defined, and can be used effectively as the basis for a sen-

sible definition of malleability-aware skylines over

linked open data.

Moreover, in our experiments we show that our inno-

vative algorithms can efficiently evaluate such skylines,

and when restricting the type of malleability, will even

result in runtime improvements of several orders of mag-

nitude against the baseline. Therefore, even interactive

applications with tight response time requirements are

possible. While we performed the algorithmic consider-

ations here on synthetic data to test our algorithms in an

unbiased environment, our future work will focus on the

integration of our algorithmic framework into practical

LOD sets. Our aim is to use potential bias in the data for a

tighter integration of the attribute malleability, respective

Fig. 4. Skyline size with respect to δ using one malleable and 6
non-malleable attributes and varying database sizes (y-axis
shows the skyline size).

Fig. 5. Performance using one malleable and 6 non-malleable
attributes (x-axis shows #tuples in database, y-axis shows the
number of required tests for dominance on a logarithmic scale, δ
= 0.15). BNL: block-nested-loop.

Equivalence Heuristics for Malleability-Aware Skylines

Christoph Lofi et al. 217 http://jcse.kiise.org

to each individual query. It seems that different query

intentions might need different degrees of admissible

malleability, to stay semantically meaningful.

REFERENCES

1. P. Hitzler and F. van Harmelen, “A reasonable Semantic

Web,” Semantic Web, vol. 1, no. 1-2, pp. 39-44, 2010.

2. C. Bizer, T. Health, and T. Berners-Lee, “Linked data - the

story so far,” International Journal on Semantic Web and

Information Systems, vol. 5, no. 3, pp. 1-22, 2009.

3. M. Banko and O. Etzioni, “Strategies for lifelong knowl-

edge extraction from the web,” Proceedings of the 4th Inter-

national Conference on Knowledge Capture, Whistler, BC,

2007, pp. 95-102.

4. W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan,

“Declarative information extraction using datalog with

embedded extraction predicates,” Proceedings of the 33rd

International Conference on Very Large Data Bases, Vienna,

Austria, 2007, pp. 1033-1044.

5. F. M. Suchanek, M. Sozio, and G. Weikum, “SOFIE: a self-

organizing framework for information extraction,” Proceed-

ings of the 18th International Conference on World Wide

Web, Madrid, Spain, 2009, pp. 631-640.

6. X. Dong and A. Y. Halevy, “Malleable schemas: a prelimi-

nary report,” Proceedings of the 8th International Workshop

on the Web and Databases, Baltimore, MD, 2005, pp. 139-

144.

7. X. Dong and A. Y. Halevy, “A platform for personal infor-

mation management and integration,” Proceedings of the

Conference on Innovative Data Systems Research, Asilo-

mar, CA, 2005, pp. 119-130.

8. G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G.

Weikum, “NAGA: searching and ranking knowledge,” Pro-

ceedings of IEEE 24th International Conference on Data

Engineering, Cancun, Mexico, 2008, pp. 953-962.

9. P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick, A. H.

Doan, and R. Ramakrishnan, “DBLife: a community infor-

mation management platform for the database research com-

munity (demo),” Proceedings of the Conference on

Innovative Data Systems Research, Asilomar, CA, 2007, pp.

169-172.

10. E. Mena, V. Kashyap, A. Illarramendi, and A. P. Sheth,

“Imprecise answers in distributed environments: estimation

of information loss for multi-ontology based query process-

ing,” International Journal of Cooperative Information Sys-

tems, vol. 9, no. 4, pp. 403-425, 2000.

11. J. Gracia and E. Mena, “Web-based measure of semantic

relatedness,” Proceedings of the 9th International Confer-

ence on Web Information Systems Engineering, Poznan,

Poland, 2008, pp. 136-150.

12. P. Godfrey, R. Shipley, and J. Gryz, “Algorithms and analy-

ses for maximal vector computation,” VLDB Journal, vol.

16, no. 1, pp. 5-28, 2007.

13. C. Lofi, U. Guntzer, and W. T. Balke, “Malleability-aware

skyline computation on linked open data,” Proceedings of

the 17th International Conference on Database Systems for

Advanced Applications, Busan, Korea, 2012, pp. 33-47.

14. T. Cheng and K. C. C. Chang, “Entity search engine:

towards agile best-effort information integration over the

web,” Proceedings of the Conference on Innovative Data

Systems Research, Asilomar, CA, 2007, pp. 108-113.

15. F. Mandreoli, R. Martoglia, G. Villani, and W. Penzo, “Flexi-

ble query answering on graph-modeled data,” Proceedings of

the 12th International Conference on Extending Database

Technology: Advances in Database Technology, Saint-Peters-

burg, Russia, 2009, pp. 216-227.

16. S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “XSEarch: a

semantic search engine for XML,” Proceedings of the 29th

International Conference on Very Large Data Bases, Berlin,

Germany, 2003, pp. 45-56.

17. L. Chen, S. Gao, and K. Anyanwu, “Efficiently evaluating

skyline queries on RDF databases,” Proceedings of the 8th

Extended Semantic Web Conference on the Semanic Web:

Research and Applications, Crete, Greece, 2011, pp. 123-

138.

18. W. T. Balke, U. Guntzer, and C. Lofi, “Eliciting matters:

controlling skyline sizes by incremental integration of user

preferences,” Proceedings of the 12th International Confer-

ence on Database Systems for Advanced Applications,

Bangkok, Thailand, 2007, pp. 551-562.

19. S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline

operator,” Proceedings of the 17th International Conference

on Data Engineering, Heidelberg, Germany, 2001, pp. 421-

430.

20. P. C. Fishburn, “Intransitive indifference in preference the-

ory: a survey,” Operations Research, vol. 18, no. 2, pp. 207-

228, 1970.

21. A. Tversky, “Intransitivity of preferences,” Psychological

Review, vol. 76, no. 1, pp. 31-48, 1969.

22. P. C. Fishburn, “The irrationality of transitivity in social

choice,” Behavioral Science, vol. 15, no. 2, pp. 119-123,

1970.

23. P. Anand, Foundations of Rational Choice under Risk,

Oxford, UK: Oxford University press, 1995.

24. D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive sky-

line computation in database systems,” ACM Transactions

on Database Systems, vol. 30, no. 1, pp. 41-82, 2005.

25. W. T. Balke, U. Guntzer, and J. X. Zheng, “Efficient distrib-

uted skylining for web information systems,” Proceeding of

the 9th International Conference on Extending Database

Technology: Advances in Database Technology, Crete,

Greece, 2004, pp. 256-273.

26. D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the

sky: an online algorithm for skyline queries,” Proceedings of

the 28th International Conference on Very Large Data

Bases, Hong Kong, China, 2002, pp. 275-286.

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 207-218

http://dx.doi.org/10.5626/JCSE.2012.6.3.207 218 Christoph Lofi et al.

Christoph Lofi

Christoph Lofi is currently a post-doctoral researcher at Technische Universität Braunschweig in Germany. He
worked from 2001 to 2004 at the Fraunhofer Institute for Experimental Software Engineering (IESE),
Kaiserslautern, and in 2005 at the Collaborative Software Development Laboratory, Honolulu, USA. He
received his MSc in computer science in 2005 from Technische Universität Kaiserslautern, Germany. He
started his PhD studies at the L3S Research Center, Hannover, Germany in early 2006. There, his interest
shifted to information systems and databases, and most of his later works focus on personalized database
queries. Since 2008, he has been working at the Technische Universität Braunschweig, Germany, where he
received his PhD degree in early 2011. Starting October 2012, he will work at the National Institute of
Informatics in Tokyo, Japan funded by the German Academic Exchange Service (DAAD).

Ulrich Güntzer

Ulrich Güntzer has, since 1990, been Chair for databases and information systems at the University of
Tübingen, Germany. He received his PhD and Habilitation in the field of mathematics, and since 1970 has
worked as professor at the University of Maryland, USA, Free University of Berlin, and Technical University of
Munich, Germany.

Wolf-Tilo Balke

Wolf-Tilo Balke currently holds the Chair for information systems at Technische Universität Braunschweig,
Germany, and serves as a director of L3S Research Center at Leibniz Universität Hannover, Germany. Before,
he was the associate research director of L3S, and a research fellow at the University of California at Berkeley,
USA. His research is in the area of databases and information service provisioning, including personalized
query processing, retrieval algorithms, preference-based retrieval and ontology-based discovery and
selection of services. He is the recipient of two Emmy-Noether-Grants of Excellence by the German Research
Foundation (DFG), and the Scientific Award of the University Foundation Augsburg, Germany. He received
his BA and MSc in mathematics, and PhD in computer science, from the University of Augsburg, Germany.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

