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Abstract
The state-of-the-art techniques in multicore timing analysis are limited to analyze multicores with shared instruction

caches only. This paper proposes a uniform framework to analyze the worst-case performance for both shared instruction

caches and data caches in a multicore platform. Our approach is based on a new concept called address flow graph,

which can be used to model both instruction and data accesses for timing analysis. Our experiments, as a proof-of-con-

cept study, indicate that the proposed approach can accurately compute the worst-case performance for real-time threads

running on a dual-core processor with a shared L2 cache (either to store instructions or data).

Category: Embedded computing

Keywords: Performance; Reliability; WCET analysis; Multicore processors; Unified caches

I. INTRODUCTION

Multicore chips can offer many important advantages

such as higher throughput, energy efficiency and density.

However, to safely exploit multicore chips for real-time

systems, especially hard real-time systems, it is crucial to

accurately obtain the worst-case execution time (WCET).

This, however, is a very challenging task, due to the enor-

mous complexity caused by inter-thread interferences in

accessing shared resources in multicores, such as shared

caches.

In the last two decades, WCET analysis has been

actively studied, and a good review regarding the state-

of-the-art can be found at [1]. Most of the prior research

efforts, however, focus on WCET analysis for uniproces-

sors [2-6], which cannot be used to estimate the WCET

for multicore processors due to their inability to estimate

the worst-case inter-thread interferences in shared resources

such as caches.

There are also some studies on WCET analysis for

multi-tasking uniprocessors [7-10], which, however, still

cannot be applied to estimate inter-thread cache conflicts

on multicore chips. This is because in a multi-tasking uni-

processor system, threads (i.e., tasks) are typically assigned

by different priorities and are preemptive. When preemp-

tion occurs, the cache memories are taken over by a

higher prioritized thread solely and later given back to the

lower prioritized thread when the higher prioritized thread

finishes. Therefore, the preemption of a thread implicitly

causes the preemption of the cache memories simulta-

neously, making it possible to find such preemption points,

at which the higher prioritized threads will produce the
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worst cache related preemptive delay (CRPD). In a multi-

core model, however, threads are running in parallel and

cannot preempt each other across different cores. Thus,

the interferences among threads are solely determined by

the timing order information of all the cache accesses

from all the threads. So, the worst-case cache related

delay for a given thread is determined by a set of interfer-

ence points caused by the accessing sequences of all the

cache accesses and from all the threads. This essential

difference makes existing analysis techniques for multi-

tasking uniprocessors [7-10] not applicable to the multi-

core WCET analysis.

Recently, there have been an increasing number of

research efforts on real-time scheduling for multicore

platforms [11, 12]. However, all these studies basically

assume that the worst-case performance of real-time

threads is known a priori. Therefore, it is critical to develop

new timing analysis techniques to reasonably estimate

the WCET of real-time threads running on multicore pro-

cessors.

To the best of our knowledge, the state-of-the-art tim-

ing analysis techniques for multicore processors studied

in recent work [13-15] are unable to estimate the worst-case

performance of shared instruction caches of multicores.

While these studies [13-15] have made initial contribu-

tions towards the timing analysis of multicores, their inabil-

ity to analyze shared data caches fundamentally limits the

applicability of these methods, considering the widespread

use of data caches in multicore processors and their sig-

nificant impact on the execution time, including the WCET.

To address this problem, this paper proposes to use an

address flow graph (AFG) to conduct a timing analysis,

which can be generally applied to not only instruction

caches, but also data caches as well as unified caches.

Also, to the best of our knowledge, this paper is the first

work to extend the implicit path enumeration technique

(IPET) [4, 5] from uniprocessors to multicores, and the

beauty of our approach is that both the path analysis (of

single core) and shared cache analysis are based on IPET,

which can implicitly compute the WCET of real-time tasks

running on a multicore chip safely and accurately by con-

sidering all possible paths of each and all concurrent

threads, as well as all possible interactions among them.

II. ASSUMED MULTICORE ARCHITECTURE

In a multicore processor, each core typically has pri-

vate L1 instruction and data caches. The L2 (and/or L3)

caches can be shared or private. While private L2 caches

are more time-predictable in the sense that there are no

inter-thread L2 cache conflicts, they suffer from other

deficiencies. First, each core with a private L2 cache can

only exploit separated and limited cache space. Second,

separated L2 caches will increase the cache synchroniza-

tion and coherency cost. Moreover, a shared L2 cache

architecture makes it easier for multiple cooperative threads

to share instructions and data, which become more expen-

sive in separated L2 caches. Therefore, in this paper, we

will study the WCET analysis of multicore processors

with shared L2 caches (by contrast, the WCET analysis

for multicore chips with private L2 caches is a less chal-

lenging problem).

In this paper, we focus on examining the WCET analy-

sis for a dual-core processor with a shared L2 cache,

although our approach can also be generally applied to

multicore processors with a greater number of cores. Fig. 1

shows a processor, where each core has private L1 instruc-

tion and data caches, and shares a unified L2 cache. In

this work, we focus on analyzing the inter-thread interfer-

ences caused by both instruction and data streams. Spe-

cifically, we assume the L1 data (instruction) cache in

each core is perfect when analyzing the instruction (data)

cache, as depicted in Fig. 1b and c, respectively. Due to

the common analysis framework of both instruction and

data interferences, our approach can also be easily applied

to a unified shared cache with both data and instruction

accesses, which will be examined in our future work.

III. COMPUTING THE WORST-CASE DELAY
OF INTER-THREAD CACHE INTERFERENCES

Cache related delay (CRD) is the delay due to the pres-

ence of cache memories, which makes the latency of

accessing an instruction or data fluctuate, depending on

whether or not the instruction or data can be found from a

particular level of cache. Generally speaking, the CRD

Fig. 1. A dual-core with (a) a shared unified L2 cache, (b) a
shared L2 instruction cache (with a perfect L1 data cache), and
(c) a shared L2 data cache (with a perfect L1 cache).
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problem can be tackled in at least two different ways.

One approach is to statically classify each instruction,

thus the upper bound latency can be derived for each

instruction, which is then integrated with pipeline analy-

sis and path analysis to derive the WCET [2]. Another

approach is to use the IPET [4, 5], which is built upon

constraint programming to bind the CRD and then lever-

age integer linear programming (ILP) to compute the

CRD and the WCET. This paper adopts IPET to compute

WCET. However, the original IPET [4, 5] was proposed

for timing analysis of uniprocessors, which cannot ana-

lyze multicore processors or caches shared by multiple

concurrent threads. In this paper, we propose to use

address flow analysis for both instruction and data caches

shared in a multicore, which can be easily integrated with

IPET to generate constraints for computing the CRD and

the WCET for multicores.

A. Constraint Equations for Computing the
CRD

Based on IPET [4], WCET analysis for a program can

be mathematically defined by using ILP equations and

inequalities. Specifically, the WCET can be computed as

the maximal value of the following objective function (1).

(1)

The equation above defines that the WCET is the max-

imum sum of the cost for each basic block and the cost of

the CRD. The cost of each basic block is the scheduled

latency (i.e., ci) multiplied by the number of execution

counts (i.e., xi) of that basic block; and the cost of the

CRD is the sum of the hit and miss latency of each cache

line block (i.e.,  and , respectively for an L1

cache and  and , respectively for an L2 cache)

multiplied by the number of cache line block hits (i.e.,

 for an L1 cache and  for an L2 cache) and

misses (i.e.,  for an L1 cache and  for an L2

cache), respectively. The symbols used in this paper are

explained in Table 1. More detailed information on IPET

can be found at [4].

Equation (2) models the structural constraints of this

program, which can be derived from the control flow

graph (CFG) of the program.

(2)

Equation (3) bounds the execution count of a loop

header block. Basically, the execution count of a pre-

header block timed by the weight of that loop should pro-

vide the upper bound for the execution count of this loop

header block.

(3)

Equation (4) describes the fact that the execution

counts of a basic block should be equal to the execution

counts of the L1 cache line block holding this basic block.

(4)

Equation (5) states that the sum of L1 cache hits and

misses for a cache line block j should be equal to the exe-

cution counts of this cache line block. This equation also

gives the first (but not tight) upper bound of the L1 cache

misses of a cache line block, which must be no greater

than the execution counts of the cache line block.

(5)

Equation (6) gives a tighter bound of the number of L1

cache misses for a cache line block j.  will be

detailed in Section III-C.

(6)

Equation (7) is based on the fact that the number of

execution counts of a lower level cache line should be

equal to the number of execution counts of cache misses

from its corresponding upper cache line.

(7)

Equation (8) breaks the execution counts of a lower

level cache line (i.e., an L2 cache line) into two parts,

including the number of cache hits and the number of

WCET ci  xi×∑=

+ ci
l1_hit

  li
l1_hit

  ci
l1_miss

  li
l1_miss

×+×( )∑
+ cj

l2_hit
  lj

l2_hit
  cj

l2_miss
  lj

l2_miss
×+×( )∑

ci
l1_hit

ci
l1_miss

cj
l2_hit

cj
l2_miss

li
l1_hit

lj
l2_hit

li
l1_miss

lj
l2_miss

din∑ dout∑ xi= =

xi
header

  loop_weight  xj
pre_header

×≤

xi lj=

lj lj
l1_hit

lj
l1_miss

+=

t
miss

∑

lj
l1_miss

  t
miss

∑≤

li
l1_miss

∑ lp=

Table 1. Symbols used in this paper and their description

Symbol Description

B
i

Basic block i

L
i

Line block i

c
i

Cost of basic block or line block

x
i

Execution counts of basic block i

l
i

Execution counts of line block i

t
i

State of cache line block i

l1_hit Level 1 cache hit

l1_miss Level 1 cache miss

l2_hit Level 2 cache hit

l2_miss Level 2 cache miss

l2_intra_miss Level 2 cache intrinsic cache miss

l2_inter_miss Level 2 cache extrinsic cache miss

d
in

Edge flow in to a basic block

d
out

Edge flow out to a basic block
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cache misses. Similarly to Equation (5), this equation

also gives the first upper bound for the number of misses

from L2 cache lines.

(8)

Equation (9) gives another bound regarding the num-

ber of misses for a cache line block, in which  will

be further bounded in our address flow analysis. It should

be noted that it is possible for users to provide more data

flow analysis constraints to help reduce the number of

infeasible paths, which may make the ILP solver derive

even tighter WCET analysis results.

(9)

B. Address Flow Analysis

A program’s WCET is determined by the execution

time of the code and the CRD caused by loading the

instructions and its data to the processor. In our model,

thanks to the help of a compiler and a statically-sched-

uled architecture based on very long instruction word

(VLIW) [16], the execution time of each instruction can

be statically derived from its static scheduling. However,

the CRD is still subject to the dynamic program behavior

in terms of the instruction and data memory access pat-

terns and the history of accesses, as well as the actual

cache architecture (i.e., cache set associativity, replace-

ment policy, etc.). In a multicore processor with a shared

cache, the CRD is also dependent on the memory access

behaviors of other concurrent threads that may access the

same cache. Motivated by this observation, we start with

the address flow analysis and introduce the AFG to unify

instruction and data cache timing analysis and to help

transform the CRD into an ILP problem that can be auto-

matically solved in a reasonable amount of time.

An AFG, G = (V, E), is defined as a graph that consists

of vertices V and edges E. A vertex  is an address

related state. Specifically, this state represents the content

of the current cache set. This state must satisfy the fol-

lowing requirements: 1) Each vertex is a unique state,

which represents the changes caused by the in-flow

edges, 2) The out-flow edges of the current state can be

used to derive the next state from the current state, and 3)

Each vertex is a stable state, which means all the in-flow

edges will always produce the current state.

An edge  is a directed line connecting two verti-

ces and the direction indicates the flow direction from

one state to another. The change from the source vertex to

the destination vertex is caused by the address in the des-

tination vertex. It should be noted that here the address

may be an individual memory address of each instruction

or data, or an index of a cache line block. A complete

AFG should contain all the possible vertices, which are

connected by a set of edges.

From the AFG’s point of view, the execution of a pro-

gram can be viewed as running a sequence of addresses

loaded from the memory to the processor. This sequence

is subject to the control flow of a program to ensure cor-

rect semantics. Therefore, the control flow graph can be

directly used to represent the AFG for instruction accesses.

However, we will analyze the limitation of simply using

the CFG to represent the AFG when considering data

caches in Section III-B-4, which necessitates the concept

of AFG for the timing analysis of unified caches that are

common for last-level caches.

In the rest of this section, we will begin with the AFG

based analysis for a simple direct-mapped instruction cache

and then extend to more complicated cache structures.

1) AFG for Direct-Mapped Instruction Caches

We assume a virtually-addressed cache. After compila-

tion and linking, the virtual address of each instruction is

known. Given a cache, each instruction can be mapped to

a particular cache line for a direct-mapped cache or to a

particular cache set for a set-associative cache in general.

Assume that we have a CFG as shown in Fig. 2a, which

has 4 instructions, a, b, c, d, and all these instructions are

mapped to the same cache line l. Thus, the AFG of this

cache line l is shown in Fig. 2b. As can be seen from this

graph, starting at the entry point of this program, the first

state of this cache line is the access from instruction a, so

a vertex containing a is constructed. Then following the

out_edges of instruction a, the next state of cache line l

can be either b or c; therefore, two vertices are added, i.e.,

b and c. There are two edges going out from a to b and c,

respectively; then either b or c leads to the access of

instruction d, which is another vertex added into the AFG.

From this example, it can be seen that in a direct-

mapped cache, the state is solely determined by the

instructions accessed. Thus, each address (or instruction)

forms a vertex in the AFG.

2) AFG for Set-Associative Instruction Caches

Now let us consider a more complicated and generic

scenario, i.e., a set-associative cache. The contents of a

set-associative cache consist of the history of cache

lp lp
l2_hit

  lp
l2_miss

+=

t
miss

∑

lp
l2_miss

  t
miss

∑≤

v V∈

e E∈

Fig. 2. An example of (a) control flow graph (CFG) and (b)
address flow graph (AFG) for a direct-mapped instruction cache.
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accesses and the current access. Therefore, for an AFG to

correctly represent the address flow of a set-associative

cache, the vertex in the AFG must be able to:

· Memorize the history cache accesses;

· Represent the change caused by the current cache

access;

· Derive the next possible cache access without violat-

ing program semantics.

This can be achieved by using a tuple, called a cache

line state (or a cache set state), c(xl, x2,…, xn), where xi

represents the address stored in cache way i, and n is the

number of ways for the set-associative cache. Each update

can be done based on the cache replacement scheme

(e.g., least recently used [LRU]). The most recently used

entry can be used to derive the next cache state. We

assume that xl is the least recently used access.

In Fig. 3a, the same assumption is made as the case of

a direct-mapped cache, except that the cache is now a 2-

way set-associative. Assume that the initial state of the

cache set l is unknown x. Thus, the first cache set state is

(x, a). Based on the control flow graph of this program,

from the most recent access a, two new states can be con-

structed, i.e., (a, b) and (a, c). The next access can be

either from b to d, or from c to d, thus two new states, i.e.,

(b, d) and (c, d) are added. The whole AFG for this 2-way

set-associative instruction cache is shown in Fig. 3b.

3) AFG for Instruction Caches Shared by Multiple

Threads

A more complicated scenario involves two or more

threads running simultaneously on a multicore access to a

shared cache such as an L2 cache. Then, the abovemen-

tioned cache state c(xl, x2,…, xn) is incapable of construct-

ing the address flow graph without losing semantics. The

reason is that xi, where 1 ≤ i ≤ n can store only the cache

state of a single thread, while other threads can also access

this shared cache. For example, assume that we have two

threads T1 and T2 and the current cache state ccurr contains

only the cache access information from T1, then starting

from this point, we lose the capability to derive the cor-

rect next state cnext since ccurr has no information to guide

us for deriving the next possible access from T2.

Motivated by this, assuming we have m threads run-

ning concurrently on m cores with a shared cache, we

append another tuple r(s1, s2, …, sm) to each vertex of an

AFG for a shared cache, which records the most recent

access from each thread Ti, where 1 ≤ i ≤ m. Combining

these two tuples, i.e., r and c, an AFG can always be con-

structed for m threads with a n-way associative cache by

using a set of tuples with m + n entries.

4) AFG for Data Caches

Now, let us take data caches into consideration. In con-

trast to instructions in a program, data cache WCET anal-

ysis typically has difficulty in acquiring the address

information for each load/store instruction. Furthermore,

what makes it even worse is that even if the data address

of each load/store is known, a 1-to-n mapping of this

relationship makes a CFG alone useless for data cache

analysis. This is because if a load/store instruction is in a

loop, although there is only one load/store instruction, it

may actually load different data with various memory

addresses at different loop iterations, which unfortunately

cannot be represented by CFGs. Thus, to tackle the data

cache WCET analysis, two issues must be solved: 1) to

determine the data address of each instance of a load/store

operation, and 2) to construct an AFG to represent all the

possible data addresses used by load/store operations.

To determine the data address for general-purpose appli-

cations such as programs with pointers and dynamic mem-

ory allocation is a very challenging task. Fortunately,

hard real-time applications typically restrict the use of

those features such as dynamic memory allocation; there-

fore, it is not uncommon to assume that the data access

addresses are statically known for timing analysis in the

domain of hard real-time systems, which is also the

assumption used in this paper (it should be noted that the

focus of this paper is not to tackle how to statically gener-

ate addresses for data cache timing analysis, which is

orthogonal to our research. Instead, a contribution of this

paper is to use AFGs to represent the data and/or instruc-

tion addresses, based on which our method can derive the

WCET for multicore processors). In addition, we assume

for programs with loops, the maximum number of loop

iterations is known, which can be either obtained by

static analysis or annotation.

Based on the assumption that the data addresses for

each load/store and the correct access sequences can be

known statically, we propose to expand load/store opera-

tions to create the AFG. The idea is to unroll the loop so

that the data address accessed by each instance of a load/

store operation in each loop iteration is represented as an

individual vertex in an AFG. For nested loops, our approach

starts from the innermost loop to conduct load/store

Fig. 3. An example of (a) control flow graph (CFG) and (b) address
flow graph (AFG) for a 2-way associative instruction cache.
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expansion. Each expansion of the loop needs to remove

the back-edge of the expanded loop, while maintaining

all the other edges to keep the control flow information.

After load/store expansion, each data access can be

uniquely represented by an address; therefore, the AFG

for a data cache can be constructed in the same way as

that for an instruction cache. It should be noted that cur-

rently we focus on loop index based accesses; however,

the approach can also be extended to any accesses sequence

as long as the correct address sequence can be statically

obtained. Moreover, the AFG for set-associative data

caches and shared data caches can be similarly constructed

by using the same principles for instruction caches as dis-

cussed in Section III-B-2 and Section III-B-3.

An example is shown in Fig. 4 to illustrate our approach.

For simplicity, suppose that we have a loop with three

iterations and two load instructions. One load instruction

accesses addresses a, b, c, and the other one accesses d, e,

f. At the first iteration of the loop, either a or d is accessed;

and at the second iteration, either b or e is accessed; and

at the last iteration, either c or f is accessed. Then the

expansion of the CFG to the AFG is shown in Fig. 4b.

It is worthy to note that the instruction accesses and

data accesses are treated in the same way in an AFG, for

which only the addresses of instruction or data accesses

matter. Therefore, our discussion on the AFG for set-

associative caches in Section III-B-2 and AFG for shared

instruction caches in Section III-B-3 can be directly

applied to the data accesses. However, a major difference

between a data access and an instruction access is that

inside a loop, the same instruction and thus the same

address is accessed for different loop iterations; while for

data accesses, the same instruction at different loop itera-

tions may access different memory addresses. This prob-

lem can be solved by using the load/store expansion as

mentioned above. Therefore, after building the AFT after

using load/store expansion, the analysis for the data cache

or shared data cache is not different from the instruction

cache or the shared instruction cache as previously dis-

cussed.

C. Implementation of the AFG

Section III-B discusses the definition of an AFG and

its application in different cache structures. In this section

we propose to use a combined cache conflict graph

(CCCG) to realize the AFG for our assumed architecture,

which can handle instruction as well as data caches,

direct-mapped as well as set-associative caches, inter-

thread shared cache and multi-level cache hierarchies.

The CCCG can be built upon the cache conflict graph

(CCG) [4, 5] of each concurrent thread. The CCG was

first proposed by Li and Malik [4] and Li et al. [5] to

bound worst-case instruction and/or data cache misses for

single-core processors. A CCG is basically a projection

of a control flow graph for a given thread on a cache set,

which contains a set of nodes and edges. In a CCG, each

node corresponds to a cache set, and each edge represents

a legal path in the CFG between two nodes. A CCG is

constructed for every cache set containing two or more

conflicting memory object accesses (i.e., instructions or

data addresses mapped to the same cache set). A CCG

contains a start node ‘s’, an end note ‘e’, and a node ‘Bk.l’

for every memory object ‘Bk.l’ mapped to the same cache

set. The start node represents the start of the program, and

the end node represents the end of the program. For every

node ‘Bk.l’, a directed edge is drawn from node ‘Bk.l’ to

node ‘Bm.n’ if there exists a path in the CFG from basic

block Bk to basic block Bm without passing through the

basic blocks of any other memory object of the same

cache set. If there is a path from the start of the CFG to

basic block Bk without going through the basic blocks of

any other memory object of the same cache line, then a

directed edge is drawn from the start node to node ‘Bk.l’.

The edges between nodes and the end node are con-

structed analogously. More details about the CCG can be

found in [4, 5].

In a CCCG, each vertex is denoted by a tuple t(r:c),

which is a combination of tuple r and c. The left side of

this tuple records the last access from each thread; and

the right side of the tuple represents the current cache line

state.

1) Build the CCCG

For illustration purposes, we assume that we have 2

threads (i.e., T1 and T2) running on a dual-core with a

shared 2-way set-associative cache. Thus, the tuple t in

our CCCG approach can be initialized as (S1, S2 : x, x),

Fig. 4. An example of load/store expansion (a) control flow
graph (CFG) and (b) address flow graph (AFG) after load/store
expansion.
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where S1 represents the starting node in the CCG of the

first thread T1, S2 denotes the starting node in the CCG of

the second thread T2, and x means the state for the current

cache set is unknown. The next transition tnext can be

derived by examining the left side of the tuple of the cur-

rent vertex tcurr. If the current access from either T1 or T2

has any out_edge in its CCG leading to the access of the

next cache line block, then our approach updates tnext to

represent the correct next cache set state. It should be

mentioned that for an L1 cache, the right side records the

most recent access to the most recent cache line. How-

ever, for an L2 cache, the update of the tnext must check its

upper-level cache state. If the next address transition

leads to an L1 hit, then the current L2 tnext will simply

inherit the same state from tcurr.

Algorithm 1 takes the initialized state t and starts walk-

ing from the thread s1. If the last access of thread s1 has an

out_edge leading to the next address access, then the next

cache set state is generated. The new cache set state ini-

tially inherits from t. To update the new cache set state,

the algorithm first checks whether the upper-level cache

leads to a cache miss or not. If a cache miss occurs at the

upper-level cache, then a new cache state is updated

based on the current level cache configuration. If a cache

hit occurs at the upper-level cache, then the new cache

state remains intact as the cache state in t. The algorithm

then uses tnext to derive a new state. The termination con-

dition of the algorithm is that the final access from all

threads has no out_edge to go, which indicates that the last

access has reached the end of the CCG in each cache line.

2) Bounding Cache Hits

The sum of all the entry edges should equal to 1, as

shown in Equation (10). An entry edge is an edge in a

CCCG that starts the entry block in a CCG. Specifically,

this edge has a source state containing the start entry and

its destination state has an entry other than the start entry.

(10)

Each CCCG is subject to its own structural constraints

as shown in Equation (11). The sum of in-flow edges

equals the sum of out-flow edges, which equals the num-

ber of execution counts for the current state. However, in

a CCCG, each cache line block may sit in a different t due

to different paths leading to this cache line block. Equa-

tion (12) describes this relationship, where ti represents

the possible state of a line block in a CCCG, and the sum

of all the possible states equals the execution counts lk of

the line block. Another scenario is that when a cache line

block is in a loop, the state t in the CCCG is also in a

loop. In this case there must be a constraint to bound the

ein and the execution counts of state t. Inequality 13

shows that the execution count of t must be less than the

product of the loop execution counts and the sum of in-

flow edges ein, where ein are those none back-edges of the

current loop. Since the number of loop execution counts

is known,  in Inequality (13) is a constant.

(11)

(12)

(13)

The cache hit bound is calculated by Inequality (14),

where ek is an edge leading to a cache hit.

(14)

Equation (15) links the bounded cache hits and misses

to the total number of execution counts of the state t.

Now all the variables in our constraint equations are

bounded.

(15)

D. Put Them Together

The constraints from Equations and Inequalities (2)-

(15), in conjunction with the objective function (1) can be

solved by using an lLP solver. The result of the objective

function will be the WCET

IV. AN EXAMPLE OF USING CCCGS

Fig. 5 gives an example to illustrate how to apply the

CCCG to WCET analysis. For simplicity, assume there

are two threads, a real-time thread (RT) and a non-real-

eentry∑ 1=

ti
loop_weight

din∑ dout∑ ti= =

ti∑ lk=

ti  ti
loop_weight

  ein∑×≤

ti
hit

  ek∑≥

ti ti
hit

  ti
miss

+=

Algorithm 1 The construction of a CCCG



Journal of Computing Science and Engineering, Vol. 6, No. 4, December 2012, pp. 267-278

http://dx.doi.org/10.5626/JCSE.2012.6.4.267 274 Wei Zhang and Jun Yan

time thread (NRT) (It should be noted that the CCCG can

be applied to multiple RTs as well). While the RT has

only one instruction a, the NRT has two instructions, b

and c. Assume the cache is a 2-way set-associative with

one set, thus all a, b, and c will be mapped to the same

cache line. Also, we assume the cache hit latency is 1

cycle and the cache miss latency is 100 cycles. Fig. 5a

shows the CFGs for the RT and NRT; Fig. 5b depicts the

CCGs for the RT and NRT; and Fig. 5c draws the CCCG,

which is constructed automatically by applying Algo-

rithm 1 to the CFGs and CCGs of both threads.

A. Objective Function

The following objective function below is derived from

Equation (1).

(16)

B. Structural Constraints

Structural constraints are derived from Equation (2).

First, we construct the structural constraints for the RT. In

the following equations, d represents an edge, and ds_a

means that the edge starts from the beginning point (i.e.,

s) to an instruction a. Similarly, da_e means that the edge

starts from the instruction a to the end of the program

(i.e., e).

(17)

(18)

Also, we can construct structural constraints for the

NRT as the follows.

(19)

(20)

(21)

(22)

C. Functionality Constraints

For each thread, we assume that each of them executes

only once.

(23)

(24)

WCET 100  a
miss

  a
hit

+×=

a  ds_a –  da_a– 0=

a  da_a –  da_e– 0=

b  ds_b– 0=

b  db_c– 0=

c  db_c– 0=

c  dc_e– 0=

ds_a 1=

ds_b 1=

Fig. 5. An example of applying combined cache conflict graphs (CCCGs) to estimate the worst-case execution time. CFG: control flow
graph, CCG: cache conflict graph, RT: real-time thread, NRT: non-real-time thread.
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We also assume that the loop in the RT thread executes

no more than 10 iterations, which is based on Equation (3).

(25)

D. Cache Constraints

Cache constraints are obtained from Fig. 5c.

1) Connection Constraints

The following equation describes the constraints, i.e.,

the sum of instruction a’s different states equals the exe-

cution counts of instruction a. This is derived from Equa-

tion (5).

(26)

2) CCCG Entry Edge Constraints

The RT thread executes only once; thus we have the

following equation, which is based on Equation (10).

(27)

Similarly, the NRT thread also executes only once,

leading to the following equation.

(28)

3) CCCG Node Constraints

The sum of all the nodes that execute instruction a

must be equal to the execution counts of instruction a,

thus we have the following equation, which is derived

from Equation (12).

(29)

Similarly, the sum of all the nodes that execute instruc-

tion b also must be equal to the execution counts of

instruction b; hence we can derive the following equation.

(30)

Also, the sum of all the nodes that execute instruction c

must be equal to the execution counts of instruction c, so

we have the following equation.

(31)

4) Hit Edge Constraints

The following equations are derived from Equation (13).

(32)

(33)

(34)

(35)

5) CCCG Hit Bound

The total cache hits of instruction a should equal the

sum of all the edges that lead to a possible cache hit for

instruction a. Thus, we can derive the following equation

based on Equation (14) to estimate the number of cache hits.

(36)

6) Put Them All Together

Fig. 6 shows the WCET path for the example. The

final result from ILP (i.e., the WCET) is 208, which can

be derived from Equation (37).

(37)

V. EVALUATION METHODOLOGY

It should be noted that in this paper, we assume a time-

predictable bus and memory system [17], so that we can

focus on studying the timing analysis of the shared caches

for multicore processors. In our experiments, we use a

cycle-accurate simulator based on SuperESCalar (SESC)

simulator to simulate a dual-core processor with either a

shared L2 instruction or data cache. The memory hierar-

chy of the dual-core processor is specified in Table 2. The

LP analyzer is implemented by incorporating a commer-

cial ILP solver, CPLEX [18] to handle the linear pro-

gramming analysis, which generates the worst-case number

of misses for both the L1 instruction and data caches and

the L2 cache, as well as the WCET.

In the experiments, we chose 10 real-time benchmarks

from Mälardalen WCET benchmarks [19], and 2 media-

bench applications from Mediabench [20]. Then, each

benchmark runs concurrently on the dual-core processor

with a benchmark called crc, which is randomly selected

from Mälardalen WCET benchmark suite [19].

VI. EXPERIMENTAL RESULTS

A. Instruction Cache Timing Analysis Results

To evaluate the effectiveness of the proposed approach,

a  10ds_a <– 0=

a  a
miss

 –  a
hit

– 0=

e1  e6  e15  e28+ + + 1=

e2  e5  e8+ + 1=

n2  n8  n15  n20 a–+ + + 0=

n4  n5  n6  b–+ + 0=

n7  n9  n11  n12  n18  c–+ + + + 0=

n2  10e1 <– 0=

n8  10e9  10e6 – <– 0=

n15  10e18  10e15 –  10e22 – <– 0=

n20  10e30  10e27 –  10e28 –  10e33 – <– 0=

a
hit

  e3 –  e9 –  e12 –  e22 –  e25 –  e27 –  e33 –

 e36 – > 0=

100  a
miss

  a
hit

+× 100  2  8+× 208= =

Table 2. Cache configuration of the base dual-core chip

Size Bsize Assoc Latency

L1-i(d)-cache 512 16 1 1

L1-d(i)-cache Perfect

L2-cache 2 k 32 2 10

Memory Unlimited 100
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we first study the timing analysis for a dual-core with a

shared instruction cache. Table 3 compares the estimated

and observed (through simulation) number of L1 misses,

number of L2 misses, and execution cycles. The last col-

umn gives the ratio of the estimated WCET by our

approach to the observed WCET through simulation. As

can be seen in Table 3, for a number of benchmarks such

as adpcm and jfdctint, the proposed approach can

obtain a very tight upper bound of execution cycles, which

are within 1% of the observed WCET. On average, the

estimated WCET of our approach is 10.1% more than the

observed WCET through simulation, which is very accu-

rate considering all possible inter-core cache interfer-

ences. Also, we observe that our approach can accurately

estimate the worst-case number of L1 and L2 cache misses,

which are not too far away from the observed worst-case

results.

However, it should be noted that although our approach

can achieve a tight bound for most of the benchmarks, the

worst-case performance of some benchmarks is still over-

estimated. In particular, we notice that the estimated

WCETs of fft, qsort-exam are 1.412, 1.266 times

more than the simulated results, respectively. One of the

major reasons for this overestimation is the intensive if-

then-else used in the loops in these programs. In both

programs, if-then-else in loops typically make the

programs execute one of the branches (e.g., a then branch)

consecutively and then switch to the other branch (e.g., a

else branch) stay that way for later iterations. This will

certainly improve the cache hit ratio since the instructions

in either branch are consecutively placed in the cache

memory, which can be reused and thus lead to more

cache hits. However, in the ILP’s semantics, the execu-

tion of an if-then-else in a loop is most likely inter-

preted alternatively (e.g., executing one path and then the

other path without repeating each path more than once).

This is because such an execution on alternative paths

can result in a theoretical worst case, which however may

not happen at runtime. It is worthy to note that providing

further information such as data flow or infeasible paths

can help to reduce the overestimation if there is any.

B. Data Cache Timing Analysis Results

As a proof-of-concept study to verify the effectiveness

of the proposed load/store expansion approach, we

choose six benchmarks whose data access addresses can

be statically computed from Mälardalen WCET bench-

marks [19]. Table 4 compares the estimated and simu-

lated number of L1 misses, number of L2 misses, and

execution cycles for the shared data cache of the simu-

lated dual-core. The last column provides the ratio of the

estimated WCET to the observed WCET through simula-

tion. As can be seen in Table 4, the proposed approach

can precisely obtain the theoretical WCET on four bench-

marks matmul, lms, sqrt, and wave. The reason is that all

of these four benchmarks actually only have a single

path. For the other two benchmarks, ifthen and fir, which

have data accesses from different paths, the overestima-

tion is 7.8% and 5.3%, respectively, indicating that our

method for data cache timing analysis by considering

inter-core interferences is also very tight.

VII. CONCLUSIONS

This paper presents a novel and unified approach to

bounding the worst-case performance of shared instruc-

Table 3. Comparing estimated and simlated worst-case L1, L2 misses and execution cycles for the shared instruction cache

Estimated results Observed results (simulation)

RT L1 miss L2 miss Cycle L1 miss L2 miss Cycle WCET/Simu ratio

adpcm 657068 515910 65812382 656747 512968 65480672 1.005

bs 21 21 20227 19 19 20009 1.011

crc 1655 765  149284 1643 692 137432 1.086

fft 830 469 59591 626 326 42201 1.412

jfdctint 1431 676 95417 1431 671 94917 1.005

ludcmp 219 153 595400 218 153 573533 1.038

minver 410 218 38172 394 213 36732 1.039

ndes 10791 5690 737603 9872 5167 674225 1.094

qsort-exam 1359 555 80543 1016 453 63602 1.266

qurt 97 72 11007 95 69 10666 1.032

rawcaudio 3772 1687 9950552 3758 1635 8767239 1.135

cordic 1870075 1532070 176648017 1735026 1400280 161822816 1.092

Average 1.101

RT: real-time thread, WCET: worst-case execution time.
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tion and data caches for multicore processors. While tra-

ditional control flow graph based analysis is useful for

instruction cache analysis, it is not effective for analyzing

data caches, which are important components of multi-

core chips. To address this problem, we propose to use

address flow graphs to model all the possible inter-thread

cache conflicts, including both instruction and data

accesses, based on which our method can accurately cal-

culate the worst-case inter-thread cache interferences and

derive the WCET. We also describe a general method to

use combined cache conflict graphs to automatically

implement AFGs for set-associative caches shared by

multiple threads.

Our experiments indicate that the proposed approach

can accurately compute the worst-case performance for

real-time threads running on a dual-core processor with a

shared L2 cache (either to store instructions or data).

Compared to the observed WCET, the estimated WCET

is 10.1% larger on average, and can be as low as 1% or

less for a number of benchmarks for shared instruction

cache analysis. For shared data cache analysis, the esti-

mated WCET is within 2.2% on average compared to the

observed WCET by simulation.

In our future work, we would like to conduct unified

cache timing analysis on large benchmarks and more

cores. Also, we are working on reducing the number of

states modeled by CCCGs without affecting the safety

and accuracy of analysis. For example, numerous impos-

sible states can be removed by firstly eliminating the

infeasible paths on all the concurrent tasks.
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