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Abstract
In the age of multi-core and specialized accelerators in high performance computing (HPC) systems, it is critical to

understand application characteristics and apply suitable optimizations in order to fully utilize advanced computing sys-

tem. Often time, the process involves multiple stages of application performance diagnosis and a trial-and-error type of

approach for optimization. In this study, a general guideline of performance optimization has been demonstrated with

two class-representing applications. The main focuses are on node-level optimization and inter-node scalability improve-

ment. While the number of optimization case studies is somewhat limited in this paper, the result provides insights into

the systematic approach in HPC applications performance engineering.
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I. INTRODUCTION

Emerging systems with multi-core chips, high-density

blades, and sometimes specially designed accelerators

including graphics processing units (GPUs) have the

potential to provide much higher capacity and capability

for scientific computational research than previous gener-

ation systems. While this unprecedented scale of compu-

tational resources has become relatively accessible for

most of the science and engineering community, it is a

well-known fact that only a small fraction of the theoreti-

cal peak performance of these systems is obtainable for

the vast majority of high performance computing (HPC)

applications [1]. Challenges for achieving optimized per-

formance and better scalability exist in almost all aspects

of HPC system utilization. 

In this study, the development and analysis of compu-

tational methods on performance optimization and scal-
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ability for two class-representative scientific codes has

been successfully conducted on world-class HPC sys-

tems. Basic optimizations have implemented to enhance

on-node performance, and a series of tests for improving

scalability followed. Throughout this study, many of the

critical insights and knowledge gained will be a useful

guideline for the future development of large-scale HPC

applications aiming to improve performance. In the opti-

mization, a new performance tool, PerfExpert [2], devel-

oped by Texas Advanced Computing Center (TACC) and

the Computer Science Department at The University of

Texas at Austin, was used. The development goal of Per-

fExpert was to provide an easy-to-understand interface

for users and step-by-step guidance for optimization. By

utilizing this tool it was possible to maintain a unified

structure of performance test outputs for many different

cases. Most of performance and scalability tune-ups in

this study are based on the results from the PerfExpert.

Overall, the knowledge gained from this study is appli-

cable to other real-world scientific HPC applications

optimization and will also provide users with insights

into the performance engineering of large-scale applica-

tion development.

II. METHODOLOGIES

There are many factors that affect the performance and

scalability of applications when going to large core counts

on an HPC system, both at the node level and across the

whole system. A systematic approach was taken in this

study to analyze these issues and to apply suitable tech-

niques for the performance improvement and scalability

of the selected benchmarking applications, as described

in the rest of this report. A small-scale, three-dimensional

(3D) heat transfer code and a lattice-Boltzmann multiphase

(LBM) simulation code have been selected. The heat

transfer code is written in a way that can demonstrate var-

ious performance benchmarks, and has been used in

numerous tutorials and workshops for educational pur-

poses. The LBM code serves as a real-world scientific

model example.

In general, baseline study for application optimization

starts with profiling. This step includes node level perfor-

mance diagnostics and analysis, and investigation on

applicable optimizations for selected applications. Based

on the results from the profiling, the next step is com-

prised of numerous optimizations with algorithm devel-

opment and implementation, followed by code validation

and test-drive for scalability. In this study, we categorize

the optimizations into four different groups:

Intra-node performance optimization: TACC has

been conducting research on node-level performance

optimization and the development of performance diag-

nosis tools in collaboration with the Computer Science

Department at The University of Texas at Austin. PerfEx-

pert, an easy-to-use node-level performance diagnosis

tool that is developed through that collaborative effort,

has been used in order to ensure the application achieves

maximum performance within a single node.

Inter-node performance optimization: Methods for

increasing scalability across the system will include algo-

rithm and software scaling. A hardware scaling study was

excluded as it lies beyond the boundaries of this project.

Profiling and communication analysis was the focus of

the investigation on inter-node optimization. Timing and

structural studies of the message passing interface (MPI)

layer used in the application codes were carried out, and

changes were implemented in order to improve the initial

scaling by minimizing overhead, bottlenecks and work-

load imbalance from the codes. 

Hybrid programming for scalability: An attempt was

made to optimize the use of node-level memory resources

by modifying the applications to include OpenMP state-

ments. This may also be of benefit for overall scaling

because of reduced communication traffic over the net-

work, and increased bandwidth available to the tasks car-

rying out the MPI exchanges. Intra-node performance

evaluation as well as overall scaling were analyzed again

and compared critically to those of the original, pure MPI

applications.

Real-time, in-situ parallel visualization: In addition

to code implementation, extra effort in developing an in-

situ parallel visualization plug-in was made. By imple-

menting this plug-in, users can have visualization toolkit

(VTK)-compatible binary objects in their hands at the

end of computation runs, and the binary files are easily

converted into animation by visualization tools such as

ParaView and VisIt. This addition improves overall pro-

ductivity of the modeling cycle by reducing the post-pro-

cess time.

In Sections III and IV, computational methods used in

the optimizations study are described in detail.

III. OPTIMIZATION OF A CONVENTIONAL
POISSON SOLVER

A. 3D Conductive Heat Transfer Code

The heat transfer code (called Heat3D) solves the heat

conduction partial differential equation shown below by

using the tri-diagonal matrix algorithm (TDMA). Fig. 1

presents the description of computational mesh with the

boundary condition and what the code simulates.

The code is written in Fortran90 and is parallelized

∂T
∂t
------ k∇2

T=
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with MPI. 3D domain decomposition in Cartesian coordi-

nation has been utilized for scalability. In a previous

study [3], the model has thoroughly been tested for vari-

ous test cases of 1D, 2D, and 3D domain decomposition

along with multiple cases of communication schemes.

The current version for this study is implemented with

MPI virtual topology for 3D decomposition, and also is

utilizing user-defined MPI data types (contiguous, vec-

tor) for better data packaging and more efficient commu-

nication. Since this code was developed for educational

purposes in performance benchmark and optimization, it

is a great exemplary application model for baseline study.

Users can control all aspects of calculation and are also

able to measure details of communication work. Base

output from the code is time measurements of computa-

tion vs. communication work. The times are measured by

MPI-default MPI_WTIME, and this setup invokes com-

munication overhead from a multiple synchronization

barrier.

B. On-Node Optimization

On-node performance optimization starts with applica-

tion profiling. By using multiple profiling tools, users are

able to identify the bottleneck of the code performance

and apply available optimizations to those bottlenecks.

Fig. 2 briefly illustrates the general optimization steps.

While this looks straightforward, critical aspect of this

process is how to interpret those performance data gener-

ated by profiling tools. 

To make performance optimization more accessible,

TACC and the Computer Science Department at Univer-

sity of Texas at Austin have designed and implemented

PerfExpert, a tool that captures and uses the architectural,

system software and compiler knowledge necessary for

effective performance bottleneck diagnosis [2]. Hidden

from the user, PerfExpert employs the existing perfor-

mance tool, HPCToolkit [4], to execute a structured seq-

uence of performance counter measurements. Then, it

analyzes the results of these measurements and computes

performance metrics to identify potential bottlenecks at

the granularity of six categories. For the identified bottle-

necks in each key code section, PerfExpert’s built-in

component, Autoscope, recommends a list of possible

optimizations, including code examples and compiler

switches [5].

In summary, PerfExpert is an expert system for auto-

matically identifying and characterizing intrachip and

intranode performance bottlenecks and suggesting solu-

tions to alleviate the bottlenecks. Fig. 3 displays the com-

parison between the manual optimization process and

PerfExpert utilization.

PerfExpert was utilized thoroughly in this study, giv-

ing a unified, structured way of analysis regarding appli-

cation performance. Another light-weight tool used for

Fig. 1. Illustrated description of 3D heat transfer code (Heat3D).

Fig. 2. Basic profiling and optimization workflow with generic
measurement tools.
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analyzing MPI-related performance is mpiP [6] devel-

oped at the Lawrence Livermore National Laboratory

(LLNL).

As expected, the on-node performance evaluation of

the Heat3D code started with the PerfExpert test. First,

what PerfExpert tells you (shown below) is that the

TDMA routine in the code is spending more than 86% of

the total runtime, suggesting that we need to focus on this

routine since the other routines all together are taking less

than 15% of the total runtime. This is a typical example

of the computationally intensive numerical model. Com-

munication overhead of this model is around 15–20%,

which remains consistent throughout the test, which will

be described in a later section with mpiP test results.

First test case is 2563 mesh size with 8 cores (2×2×2

decomposition: 1283 per core).

As shown in the profiling result with PerfExpert, the

TDMA routine in the Heat3D code has a major issue in

data access and floating point operation. The problem

with data access is not a surprise since the TDMA solver

in the code has multi-dimensional array calculations

within multiple loops. The floating point instruction is a

little tricky as the long bar could mean the computation-

ally intensive aspect of the code. Optimization in the

memory access pattern of the code can put more work on

the computation, which will increase the local cycles per

instruction (LCPI) number for floating point instruction,

and it indicates the code runs more efficiently.

The first optimization for the code is replacing the

array with a scalar value, therefore reducing the required

memory footprint, and increasing the effectiveness of the

memory access pattern. Within the TDMA routine, an

Fig. 3. Comparisons of optimization workflow between generic and PerfExpert.
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array D(i,j,k) can be replaced to a scalar variable
since the value of D(i,j,k) at each grid point is unique
and is independent of the values of any other grid points.

By replacing the array to a scalar, the runtime of the code

is reduced by almost 10% (from 295 seconds to 265 sec-

onds for 2563 size with 8 cores: 1283/core size). The

result from the second PerfExpert run after the optimiza-

tion is shown below. The results show that the overall

LCPI value for the TDMA routine is reduced to 7.0, and

the floating point instruction LCPI value increases to 3.4.

They are small changes in terms of local cycle instruction

(LCI) value, but the actual runtime improves by 10%.

The second optimization scheme used is to reduce the

redundant use of memory space. In the baseline version,

the variable PHI(i,j,k) used in main routines and the

one used in TDMA routine, PHI_OLD(i,j,k), carry
the same value until it is used in the triple loop calcula-

tion in TDMA. The different names in those routines are

not necessary except that the different names illustrate

the logical meaning of it at different time steps, but the

actual values are the same. By replacing PHI_OLD with
PHI and using the same array without creating another

duplicated one, the memory access obtains greater effi-

ciency than the previous version. Actual test results

showed this optimization reduces the runtime from 265 to

235 seconds, which is more than 10%. Next the updated

result from the PerfExpert test shows that overall and

data access LCPI values are decreasing while the floating
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point instruction LCPI value increases to 3.7.

Below the code section of before and after of the opti-

mization is shown. The lines highlighted with blue color

are where changes were made for optimization.

Although other optimizations are still possible, we

shift our focus on to inter-node scalability as the main

goal of this study is to provide general computational

approaches to scalability for large-scale applications.

C. Parallel Mesh Generation

For scalability of application in the HPC environment,

the first test to be done is the strong scalability test. By

increasing the number of processors (cores) for the same

problem size, it is possible to identify the sweet spot of

parallel efficiency. At the same time, the speedup graph

also helps to understand what number of cores is the most

Fig. 4. Strong scalability tests and speedup of the Heat3D code (10243 size).
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efficient for a certain size of a given problem. 

Fig. 4 demonstrates the speedup of the Heat3D code of

10243 mesh size with increasing the number of cores.

Please note that it is not compared against serial run as

the problem size is too big to have a reasonable runtime.

Though its not linear, the plot shows a good scalability of

the code. The limitation of this test is the available mem-

ory size on a single node, as the size of the problem can-

not be larger than 10243 mesh due to the maximum

memory limit per compute node of the system. This is

usually the first hurdle when application developers want

to scale up their parallel code. Since most of parallel

codes are evolved from a serial version, often times the

mesh generation part is coded for using a global memory

space rather than a distributed memory type for MPI par-

allelization.

The Heat3D code is updated with a parallel mesh gen-

eration feature for this study and the upgraded model is

now capable of running much larger problem sizes. Table 1

shows the test cases for weak scaling of the parallel mesh

version of the Heat3D code. By sustaining the sub-mesh

size per single core to 1283, and with an N3 domain

decomposition scheme, it was possible to increase the

problem size up to 25603. This is more than 8 times big-

ger than the previously limited size of 10243. It was pos-

sible to increase the size even more, but the test was done

at this size because of the number of cores involved.

Fig. 5 shows the result of weak scaling, and the runt-

ime (second) of increasing the problem size with a fixed

number of cores remains fairly consistent after a big jump

in the initial stage between 8 to 64. We believe this jump

is due to the initial job launching time of the Mvapich

MPI stack through the InfiniBand (IB) switch when it

handles multiple node job launching.

D. Hybrid (MPI+OpenMP) Model

Even when the parallel mesh version of the fairly well-

optimized code hits a scalability limit, one strategy that

addresses an even larger problem size is to go with hybrid

programming. Many researchers consider using this strat-

egy to boost the performance of their numerical models;

however, in reality, the hybrid programming approach

does not guarantee performance improvement. On the

other hand, by setting MPI processes with muti-threaded

Table 1. Cases for weak scaling test of Heat3D code

Mesh size Cores Avg. MPI%

2563 8 (2×2×2) 2-4

5123 64 (4×4×4) 12-14

10243 512 (8×8×8) 12-16

20483 4096 (16×16×16) 14-20

25603 8000 (20×20×20) 15-22

MPI: message passing interface.

Fig. 5. Weak scaling test result with increasing problem size.
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OpenMP tasks, it is possible to reduce the memory foot-

print per node; hence a much bigger problem size can be

addressed. The Heat3D code is an ideal case for hybrid

programming as more than 80% of the total runtime is

spent in one computational routine, therefore implement-

ing OpenMP muti-threads for the main computing rou-

tine will scale up the problem size while taking a minimal

performance penalty. Below is the code snippet of the

TDMA routine that features OpenMP implementation in

the main calculation loop. For every iteration, this triple

loop calculation will now spawn out multiple threads for

parallel tasks depending on the number of thread users set

up per MPI process.

E. Real-Time, In-Situ Parallel Visualization 

While much of the work in this study focuses on code

optimization and scalability for the computation process,

post-processing (data management and visualization) is

also a great candidate for increasing the productivity of

computing workflow. Computational scientists these days

are generating an unprecedented scale of data every day,

and many of them are still using a manual post-process-

ing script, or still trying to visualize their data with a less

capable visualization tool. In this study, we developed a

VTK-compatible plug-in for a Heat3D code in order to

enable the visualization process in parallel while the

computation is still running. Development of C++ routine

that creates VTK objects is somewhat straightforward,

but converting ASCII data generated by the Fortran Heat3D

code into a C-compatible binary was tricky. Due to the

difference of memory access pattern and indexing, the

TACC visualization staff had to work with the code line

by line. Naturally, developing a generic framework for the

same purpose would be the next step, but in this study,

development of a customized plug-in for the Heat3D code

was sufficient. Adding extra VTK functionality of gener-

ating an animation movie so that application developers

can have the final product of their computation at the end

of the run is the plan for the next stage. Fig. 6 illustrates

the mechanism of the real-time, parallel in-situ visualiza-

tion process.

IV. OPTIMIZATION OF LATTICE-BOLTZMAN
MULTIPHASE SIMULATION MODEL

When investigating the classes of scientific codes that

should be considered for a comprehensive application-

based benchmark there are several options that can cover

particle-based methods, including molecular dynamics

(MD) and the lattice Boltzmann method (LBM). The LBM

has a simpler message passing structure than MD, because

the number of messages exchanged between neighboring

tasks is typically known in advance, and from a computa-

tional point of view the structure and behavior of an LBM

code is similar to that of an MD code:

1. Calculation of local quantities for each “particle”

2. Particle displacement

3. Calculation of global, macroscopic quantities which

affect the dynamics

4. Repeat 1–3 for a set number of time steps.

This suggests that an LBM code is a good starting

point for this class of applications because it has most of

the structural characteristics of other particle-based meth-

ods but it also has a straightforward implementation. 

Although a simple single fluid LBM code is more

straightforward to implement and analyze, we have cho-

sen a multiphase flow LBM code as one of the two work-

ing codes for this project. One of the principal reasons for

this choice is that a multiphase flow LBM code requires

the calculation of gradients, Laplacians, and other differ-

ential quantities that are commonly required also in other

scientific particle-based codes. This makes the use of this

code as part of a comprehensive suite of benchmark appli-

cations more realistic. Also, a multiphase code deals with

many more variables and arrays than a single fluid code

and presents more opportunities for analysis and optimi-

zation.

One of the most challenging issues in the study of mul-

tiphase flows is the range of spatial and temporal scales

that need to be analyzed. Interfacial phenomena can be

localized in small volumes, but for the models to be use-

ful the calculations often need to extend far beyond the

interfacial regions. Also, the timescales involved in inter-

facial phenomena are short, but at the same time one

needs to be able to simulate the evolution of the mul-

tiphase system over significant periods of time.

Traditional computational fluid dynamics (CFD) meth-

ods are capable of large system evolution simulations,

but tend to use high-level models to represent interactions

at the interface level. Kinetic techniques like the LBM [7]

Fig. 6. Comparison of conventional post-processing and parallel
in-situ visualization process mechanism. VTK: visualization toolkit.
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are better suited to more detailed analysis of short time

scale evolution, but are hindered by their explicit nature

and require many time steps to produce useful results.

Parallel implementations [8, 9], adaptive meshing algo-

rithms [10, 11] and multiple meshing levels [12], have

helped improve the performance of LBM so that more

simulation steps can be taken per second, but large scale

simulations over long periods of time remain a challenge.

A. Basics of LBM Multiphase

This chapter describes the multiphase model imple-

mented in this LBM benchmark. The physical equations

that are simulated are the Navier-Stokes equation together

with the mass conservation equation, and a convective

Cahn-Hilliard equation to track the interface evolution:

where µϕ is the chemical potential, θM is the mobility of

the interface (molecular diffusion mobility), P is the pres-

sure tensor, Fb is the body force, ρ is the density, µ is the

viscosity, and ϕ is the order parameter.

The Zheng-Shu-Chew model for two-phase flow [13]

is limited to fluids with identical viscosity µ, and uses an

average density n = (ρL + ρH)/2 and an order parameter ϕ

for the simulation. The advantage of this model is that the

interface between the two phases is captured using a con-

vective Cahn-Hilliard equation with second order accu-

racy. This is achieved by using a standard lattice Boltzmann

equation for the momentum distribution function g, but

introducing an over-relaxation term in the equation for

the order parameter f,

Here Ω is the collision term in the Bhatnagar-Gross-

Krook (BGK) [14] approximation:

where gi and fi are the distribution functions for the

momentum and the phase, τn and τϕ are their respective

relaxation times, ci is the lattice velocity, and η is the

over-relaxation constant coefficient. This scheme reduces

to the standard lattice Boltzmann equation when η is unity.

The macroscopic quantities corresponding to the order

parameter ϕ, the density of the fluid n, and its velocity u,

are defined in terms of the distribution functions f and g,

where Fb represents an external body force and the chem-

ical potential is given by:

with ϕ* defined as the constant ϕ* = (ρH – ρL)/2. In this

expression the parameters α and κ depend on the surface
tension, σ, and the interface width, W [13],

The expressions used for the relaxation parameter η

and the mobility θM are chosen so that the Cahn-Hilliard

equation can be recovered to second order using the Chap-

man-Enskog expansion, resulting in the following values,

The equilibrium distribution functions are given by:

The f distribution function is discretized using the

D3Q7 scheme, and its equilibrium coefficients are:

(i = 1 ... 6)

(i = 1 ... 6)

(i = 0 ... 6)

The g distribution function is discretized using the

∂ρ
∂t
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D3Q19 scheme, and its equilibrium coefficients are:

(i = 1 ... 18)

(i = 1 ... 6)

(i = 7 ... 18)

The velocity directions corresponding to these discreti-

zation schemes are shown in the figure below.

A basic implementation of the model described above

has a simple structure:

1. Initialize f, g

2. Initiate the interface relaxation loop

a. Follow steps 4.a through 4.i without applying the

gravity force

3. Complete the interface relaxation loop

4. Initiate the evolution loop

a. Update values of ρ, φ and u
b. Calculate chemical potential using the gradients

and Laplacian of φ
c. Calculate interfacial forces using the chemical

potential values

d. Perform collision step

e. Use MPI exchanges to get outward pointing f val-

ues on task boundaries

f. Stream f and g values along velocity directions

g. Use MPI exchanges to update inward pointing f

and g values on task boundary nodes

h. Apply boundary condition modifications

i. Use MPI exchange to update φ values on task
boundaries

5. Complete evolution loop and save data

The performance of this basic implementation on a sin-

gle node is illustrated in Fig. 8. The code (given as ver-

sion 1) achieves a maximum of 10.44 millions of lattice

updated points per second (MLUPS) when executed on a

single Ranger node (16 cores of 2.2 GHz Opteron CPUs),

and 18.61 MLUPS on a single Lonestar node (12 cores of

3.3 GHZ Westmere CPUs). The difference is larger than

what one would expect from the shear clock speed differ-

ence between the two systems (50%) because this code is

memory-bandwidth limited, and the Westmere system

has a larger bandwidth per core than the Opteron system

(2 GB/sec per core vs. 1.25 GB/sec).

B. Reuse of Intermediate Results

Analysis of this code by both PerfExpert and another

performance profiling team, TAU, indicates that the code

would benefit from reusing intermediate results. When

looking at the structure of the code for version 1 a possi-

ble way to reuse intermediate results seems obvious: to

combine the updates of ρ, φ, u and the  into a single

loop.

Because of the data dependencies, the value of φ must

be updated separately, but the updates of the density ρ,

the velocity u, and the chemical potential µφ can all be

done in the same step as the collision. This modification

leads to version 2 of the code, which achieves a perfor-

mance of 13.02 MLUPS in a single node in Ranger and

21.83 MLUPS on a single node in Lonestar, an Intel

Westmere-based Linux cluster at TACC. This represents

improvements of 24.6% and 17.3% in performance with

respect to the original implementation.

Figs. 9 and 10 illustrate the on-node performance of

versions 1.0 and 2.0 of the code. The improvement in
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Fig. 7. Discretization schemes D3Q7 (red arrows) and D3Q19
(red and black arrows).

Fig. 8. On-node performance of v1.0 of the lattice Boltzmann
method code. MLUPS: millions of lattice updated points per
second.
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performance becomes more obvious as more cores are

used in the calculation. This is because the optimizations

made so far focus on memory access, and become more

obvious as the number of cores per node participating in

the calculation increases and the memory bandwidth per

core is reduced.

C. Arithmetic Simplification and Reduction
of Memory Accesses

Further analysis of version 2 of the code suggests that

there is room for improvement in the area of floating

point operations. In particular, when run on the Ranger

architecture, this version of the code has a full third of the

floating point operations being what PerfExpert classifies

as “slow” floating point operations:

In order to improve this we focused on the function

collision, which both PerfExpert and Tau indicated was

the most time-consuming subroutine in the code. We

defined several inverse values so that we could turn mul-

tiple divisions into a single division and multiple prod-

ucts as in:

ux = (g1 – g2 + …) / rho
uy = (g3 – g4 + …) / rho
uz = (g5 – g6 + …) / rho

invRho = 1.D0/rho
ux = (g1 – g2 + …) * invRho
uy = (g3 – g4 + …) * invRho
uz = (g5 – g6 + …) * invRho

We also defined a series of inverse values for constants

used in the gradient and Laplacian calculations:

inv6 = 1.D0/6.D0
inv12 = 1.D0/12.D0

We also manually re-arranged the terms in the equilib-

rium function calculation and the collision step to mini-

mize the number of floating point operations, and in

particular to reuse as much data as possible by defining

some terms which are common to all the principal direc-

Fig. 9. Memory optimizations lead to ~25% performance
improvement in Ranger. Performance improvements become
obvious after node memory bandwidth saturation. MLUPS:
millions of lattice updated points per second. 

Fig. 10. Performance improvement between v1.0 and v2.0
reaches ~18% in Lonestar. Performance improvements become
obvious after node memory bandwidth saturation. MLUPS:
millions of lattice updated points per second.
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tions, and some terms which are common to all diagonal

directions. This also reduces the number of memory accesses,

which is another weak area highlighted by both PerfExpert

and Tau.

The result from these changes is version 3 of the code,

with a performance of 20.31 MLUPS on a single Ranger

node and 34.44 MLUPS in a single Lonestar node. This

improvement in performance is shown in Figs. 11 and 12,

and is also seen in the output from PerfExpert in the

Ranger system.

Not only do these changes reduce the number of float-

ing point operations per second (FLOPS) needed by 20%,

but they virtually eliminate the presence of slow floating

point operations. The changes also reduce the number of

L2 cache misses by almost 14% and the overall data

accesses by 8%. Further improvement in the memory

access patterns of this particular code may be possible but

it is not obvious, since the streaming step in LBM makes

contiguous access very difficult. This takes us to a perfor-

mance close to 15% of peak in Lonestar, and at this point

we consider the possible improvements to the scalability

of the code.

D. Memory Access Improvement in Data
Packing and Unpacking

Versions 1–3 of the code use a fat loop in order to pack

the data that is needed in the MPI exchange. This loop

involves multiple arrays and multiple non-contiguous

locations within the arrays. Since both PerfExpert and

Tau indicate a very large percentage of cache misses in

the MPI exchange routines poststream.f90 and postcolli-

sion.f90 the next step in the optimization of the code was

to split this loop into shorter loops involving a single

array with the hope that prefetching, and with it the scal-

ability of the code, and with this change, the scalability of

the code will be improved.

The results of this simple change are highlighted in

Figs. 13 and 14. At 1024 cores the parallel efficiency of

version 4 in Ranger is 5% higher than the efficiency of

version 3, and the improvement in Lonestar at 1152 cores

is close to 4%. PerfExpert shows a tiny reduction in over-

Fig. 11. On-node performance on Ranger. Math simplification in
v3.0 of the code nearly doubles its throughput. MLUPS: millions
of lattice updated points per second.

Fig. 12. On-node performance on Lonestar. Math simplification
in v3.0 of the code nearly doubles its throughput. MLUPS:
millions of lattice updated points per second.
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all data access timings which corresponds to these changes:

We also observe a lower amount of time spent in L2

cache misses in the Westmere-based system.

By using loop fission and simplifying the memory

access patterns in the data packing and unpacking sec-

tions of the MPI exchange subroutines we have improved

the scalability of the code but in the process it also

became obvious that such a large amount of data packing/

unpacking would benefit from using fully non-blocking

communications so that part of this data packing and

unpacking process can be overlapped with the message

passing itself.

E. Overlapping Computation and Communication

In version 5 of the code all data exchanges are done

using MPI_Irecv/MPI_Isend calls followed by a single

MPI_Waitall statement just before that data is needed for

unpacking. 

To obtain maximum overlap we defined several sets of

messages that were completed with a single MPI_Waitall

statement, one for each of the face exchanges in the X, Y,

and Z directions, and one for each of the edge exchanges

in the X, Y, and Z directions. In this manner part of the

data exchange for the faces in the X directions can be

partly overlapped with the packing of data for the Y and

Z exchanges, the Y exchange can be partly overlapped

with the packing of data for the faces in the Z direction

and the unpacking of data corresponding to the face

exchange in the X direction, and so on and so forth. The

pseudo code of this would read.

These changes produce a very marked improvement in

scalability, increasing parallel efficiency to 60% at 1024

cores in Ranger and to 76.9% at 1152 cores in Lonestar.

Fig. 13. Large core-count improvement in parallel efficiency by
improving packing/unpacking memory access patterns in Ranger.
MLUPS: millions of lattice updated points per second.

Fig. 14. Large core-count improvement in parallel efficiency by
improving packing/unpacking memory access patterns in Lonestar.
MLUPS: millions of lattice updated points per second.

Fig. 15. Marked improvement in parallel efficiency obtained in
Ranger by overlapping data exchange and work using fully non-
blocking communications. MLUPS: millions of lattice updated
points per second.
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Figs. 15 and 16 illustrate this improvement.

Studies were also carried out with a large data set

(480×480×480), with a footprint of approximately 36 GB

in memory. The results for both Ranger and Lonestar are

shown in Figs. 17 and 18. In these figures some fluctua-

tions in performance (which are repeatable) are observed.

These fluctuations are due to the particular partitioning

scheme chosen for the spatial decomposition of the prob-

lem. The large difference in parallel efficiency between

the runs in the two systems occurs because the MPI part

of the code is dominated by the exchange of large mes-

sages, so that the scalability of this code is limited by net-

work bandwidth. The increased network bandwidth

provided by the quad data rate (QDR) IB in Lonestar (40

Fig. 16. Overlapping data exchange and work has a less
dramatic effect in Lonestar because the network is significantly
faster than in Ranger (quad data rate vs. single data rate). MLUPS:
millions of lattice updated points per second.

Fig. 17. Strong scalability in the Ranger cluster. Parallel efficiency
is ~66% at 4 k cores when compared with a 32 core run. MLUPS:
millions of lattice updated points per second.

Fig. 18. Strong scalability of benchmark code in the Lonestar
cluster. Parallel efficiency is ~80% at 4 k cores when compared
with a 24 core run. MLUPS: millions of lattice updated points per
second.



Journal of Computing Science and Engineering, Vol. 6, No. 4, December 2012, pp. 294-309

http://dx.doi.org/10.5626/JCSE.2012.6.4.294 308 Byoung-Do Kim et al.

GBs) over the 10 GBs SDR IB of Ranger explains the

difference.

V. DISCUSSION AND CONCLUSIONS

Study on computational methods for on-node optimi-

zation and inter-node scalability for HPC applications has

been conducted. By using a newly developed performance

diagnosis tool, PerfExpert, a basic guideline of on-node

optimization was developed for two selected scientific

applications. An algorithmic approach for improving scal-

ability was also introduced and tested with a large num-

ber of cores on HPC systems. 

The methods developed in this study can be used for

future research on application-based benchmarks. Per-

fExpert proved its capability of providing appropriate

optimization guidelines as each test case showed perfor-

mance improvement. Multiple case studies on scalability

were also provided, including MPI data packaging, utiliz-

ing MPI non-blocking communication for overlapping

computation and communication, and hybrid program-

ming with MPI and OpenMP. In addition, VTK-compati-

ble in-situ visualization plug-in was developed as well to

provide a way of enhancing the effectiveness of the over-

all modeling workflow.

During the course of this project, it has been apparent

that more research will be required for more extensive

guidelines regarding optimization and scalability. Addi-

tional case studies with more applications from various

science domains are necessary if a general framework for

an optimization process in high demand.

The next stage of this project will include a similar

study on new HPC platforms such as general purpose

computing on graphics processing units (GPGPU) and

Intel’s upcoming many-integrated core (MIC) system. As

many HPC researchers expect the development of new

parallel programming models for those new platforms,

this study provides application developers with a step-

ping stone in developing new computational methods for

HPC applications.
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