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Abstract
Multicore and multiprocessor systems with dynamic voltage scaling architectures are being used as one of the solutions

to satisfy the growing needs of high performance applications with low power constraints. An important aspect that has

propelled this solution is effective task/application scheduling and mapping algorithms for multiprocessor systems. This

work proposes an energy aware, offline, probability-based unified scheduling and mapping algorithm for multiprocessor

systems, to minimize the number of processors used, maximize the utilization of the processors, and optimize the energy

consumption of the multiprocessor system. The proposed algorithm is implemented, simulated and evaluated with syn-

thetic task graphs, and compared with classical scheduling algorithms for the number of processors required, utilization

of processors, and energy consumed by the processors for execution of the application task graphs.

Category: Smart and intelligent computing
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I. INTRODUCTION

Various scheduling policies for real-time multiproces-

sors systems have been constantly evolving. Scheduling of

real-time applications/tasks on multiprocessor systems

often has to be combined with task to processor mapping.

With the current design trends moving towards multi-

cores and multiprocessor systems for high performance

and embedded system applications, the need to develop

design techniques to maximize utilization of processor

time, and at the same time minimize power consumption,

have gained importance. General design techniques to

achieve the above goals have been fueled by the develop-

ment of both hardware and software solutions. Hardware

solutions to minimize power and energy consumption

include: dynamic voltage and frequency scaling (DVFS)

processors, dynamic power management modules (Advanced

Configuration and Power Interface, ACPI), thermal man-

agement modules, intelligent energy management (IEM),

and heterogeneous multicore or multiprocessor systems

[1]. Software solutions for maximizing processor utiliza-

tion and energy minimizations include: parallelization of

instructions, threads, and tasks; effective thread/task sched-

uling; and mapping algorithms for multicore and multi-

processor systems.

In this work we propose a new energy aware, probabil-

ity-based offline scheduling algorithm of aperiodic real-

time tasks for a multiprocessor system. The proposed

solution combines the traditional mapping and scheduling

algorithm into a unified process. The proposed algorithm

is modeled for multiprocessor (homogeneous processors)

systems that support dynamic voltage scaling (DVS) pro-
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cessors. The algorithm is based of the force-directed

scheduling (FDS) algorithm [2], most commonly used

during the high-level design synthesis. The algorithm

determines an optimal schedule for each task, on a pro-

cessor operating at a discrete voltage level with constant

frequency, which will be able to satisfy the deadline. The

algorithm also maximizes the utilization of all processors,

and minimizes the energy consumption of the system.

For comparison purposes, this work implements four dif-

ferent variations of the scheduling algorithms for multi-

processor systems that support DVS processors. The first

three scheduling algorithms implement the scheduling

and mapping algorithms as different processes. The first

scheduling algorithm, called scheduling after scaling (SaS),

performs the mapping of tasks to the processors, and iter-

atively scales down the voltage of the processors from the

maximum operable voltage, based on the slack of the

tasks. Once the tasks have been mapped to the proces-

sors, voltage levels are determined, and scheduling is per-

formed. In the second scheduling algorithm, called

scheduling before scaling (SbS), the tasks are first sched-

uled based on the deadline (earliest deadline first, EDF)

[3]. The SbS scheduling algorithm is similar to the low-

energy EDF algorithm proposed by Manzak and Chakra-

barti [4]. Once scheduled, the tasks with slack are assigned

to processors with lower operating voltages. In the above

two algorithms, processors are added to the system, to sat-

isfy the dependency and deadline constraints. In the third

scheduling algorithm, called probability based schedul-

ing (PbS), the scheduling is based on optimizing the

probability (probability of utilization) of the tasks execut-

ing in a unit time step. The probability function optimizes

the utilization of each processor, and hence the utilization

of the whole multiprocessor system. Mapping of the tasks

and assignment of voltage levels to processors is achieved

by determining the probability of utilization of each pro-

cessor operating at different voltages. The final schedul-

ing algorithm, called energy-probability based scheduling

(E-PbS), combines the process of scheduling, and mapping

or assignment of voltages to processors, together. The

probability of utilization function incorporates the energy

factor, and the scheduling algorithm determines task oper-

ation times and voltage levels of the respective processors.

The developed algorithms have been implemented, simu-

lated and evaluated for synthetic real-time applications

(standard task graphs). The algorithms are compared for

utilization of the processors, number of processors (re-

sources), and energy consumed by the processors.

II. PRIOR WORK

Scheduling algorithms have been classically categorized

into online or offline, priority or non-priority, pre-emptive

or non pre-emptive, and hard or soft deadline scheduling

algorithms. Two of the classical scheduling algorithms

for uniprocessor are fixed priority rate-monotonic sched-

uling (RMS), and dynamic priority EDF algorithms [3].

With the advent of multicore and multiprocessor systems,

where each processor is capable of dynamic performance

and energy consumptions based on variable voltage and

frequency operations, scheduling and mapping algorithms

to optimize performance and energy have gained impor-

tance. Weiser et al. [5] were the first to propose the DVFS

technique. Their approach was to reduce CPU ideal times,

by dynamically adjusting DVFS levels in OS-level sched-

uling algorithms. Yao et al. [6] and Ishihara and Yasuura

[7] proposed an optimal offline-scheduling algorithm for

independent and dependent tasks, respectively, to mini-

mize energy consumption.

Aydin et al. [8] proposed a dynamic speculative sched-

uling algorithm, by exploiting slack times. Zhu et al. [9]

proposed scheduling algorithms to improve the above

algorithms for multiprocessors for dependent and inde-

pendent tasks, to share slack times. More recent works

[10-14] on DVFS do not account for frequency scaling,

as analysis shows performance loss on processor fre-

quency scaling. Also, work by Dhiman and Rosing [14]

has shown that memory intensive tasks have less depen-

dency on frequency scaling, which is true with modern

embedded applications. Also, issues such as task granu-

larity and shared resource contention in caches, memories

and buses have to be accounted for. Algorithms for resource

contention aware or mitigations have been explored in

[15-18]. Lee and Zomaya [19] proposed a DVFS energy

aware scheduling algorithm for a heterogeneous distributed

multiprocessor system. Also, work comparing dynamic

power management and DVFS methods has been con-

ducted by Cho and Melhem [20], and has concluded that

DVFS scheduling methods provide better energy saving

for multiprocessor systems. Shin and Kim [21] have con-

sidered the problem of mapping the tasks of the task

graphs from real-time applications to available cores, and

then determined the DVFS for each core to meet the tim-

ing deadlines, while minimizing the power consumption.

The problem of determining the optimal voltage schedule

for a real time system with fixed priority jobs, imple-

mented on a variable voltage processor, is discussed in

[22].

Okuma et al. [23] addressed the problem of less energy

consumption, by simultaneously assigning the CPU time

and a supply voltage to each task that results in low

power. This algorithm uses a variable voltage processor

core to schedule the tasks [7]. An online energy aware

algorithm for distributed heterogeneous hard real-time

systems, based on a modification of the EDF algorithm,

is proposed in [8]. The energy reduction is obtained by

reducing the speed of the processor when the only ready

task in the system has no successor, or when the previous

task has not exhausted its worst-case execution time

(WCET).

In this work, we present an offline dynamic voltage scal-
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ing scheduling algorithm for dependent and non-periodic

task graphs, to optimize energy consumption on a multi-

processor system. The proposed work in this article fol-

lows a similar approach to the method presented in [21],

but with the following differences and advantages: 1) this

work considers task graphs derived from real-time appli-

cations, as well as synthetic task graphs; 2) the process of

mapping the tasks to a processor, voltage scaling of the

processor and scheduling are considered together; and 3)

only voltage scaling is considered in this work, for the

reasons mentioned above. However, frequency scaling

can also be implemented, by considering an appropriate

cost function.

III. DEFINITIONS

Definition 1 (Task model). A task model is required as

the basis for discussing scheduling. A real-time task is a

basic executable entity, which can be scheduled; it can be

either periodic or aperiodic, with soft or hard timing con-

straint. A task is best defined with its main timing param-

eters. This model includes the following primary parameters.

• ri - release time of the task 

• ei - WCET of the task 

• Di - relative deadline of the task 

• di - absolute deadline of the task 

• pi - period of the task 

• gi - start time of the task 

• hi - end time of the task 

• si - slack of the task = di – ei

Definition 2 (Scheduling model). For the problem of

scheduling, we consider a task set or application A = {T0,

T1, …, Tn} = {Ti}, where each task Ti is an aperiodic task

with a hard deadline di, and WCET of ei and best-case

execution time (BCET) of ez. These tasks execute on a

multiprocessor system consisting of processing elements

PE = {PEj} = {PE0, PE1, …, PEm}, which can operate at a

prespecified set of voltages V = {V1, V2, …, Vp}, where

i < j implies Vi > Vj. We denote a task Ti running on the

processor PEj scaled at voltage Vk as Tik. In this work we

also phrase the WCET of a task Ti as its execution time at

maximum voltage V1, denoted by ei1. Thus, its execution

time at voltage Vk is determined as: 

. (1)

Also, all tasks T are subject to precedence constraints,

and a partial order Ti < Tj is defined on T, where Ti < Tj

implies that Ti precedes Tj. The problem of scheduling of

an application A is denoted as:

.

(2)

If there exists a precedence operation between any two

tasks, such that the execution of a task Ti should occur

before the execution of task Tj, represented as Ti < Tj,

then for each Ti ∈ T, ti + ei ≤ di and tn + en ≤ D, where D

is the absolute deadline of the last task.

Definition 3 (Mapping and voltage scaling). Mapping

is the process of assigning each task in an application to a

processor, such that the processor executes the task and

satisfies the task deadline, as well as other constraints

(power, throughput, completion time), if any. For an

application A = {T1, T2, …, Tn}, where Ti is a task instance

in the application, mapping a task, denoted as σ(Ti), is

defined as an assignment of the processor {Pj} = {PE1,

PE2, …, PEm} = PE for the task Ti: 

. (3)

Application mapping is defined as mapping of all tasks,

Ti, in the application A to processors, and is denoted as:

. (4)

Voltage scaling is the processes of assigning a discrete

operating voltage to each processor, such that the proces-

sor executes the tasks and satisfies the task deadline, as

well as other constraints (power, throughput, completion

time), if any. For a set of processors PE = {PE1, PE2, …,

PEm} that can be scaled at discrete voltages V = {V1, V2,

…,Vp}, voltage scaling is denoted as δ(Tik), and is defined

as an assignment of voltages (Vk) and task (Ti) to the pro-

cessors:

.

(5)

Definition 4 (Processor power model). Assuming that

a processor PEik is scaled at a supply voltage Vk, and a

frequency fj, and a task Ti takes ‘n’ clock cycles on the

processor to complete its execution, the power consump-

tion in the processor is given by: 

. (6)

where, CL is the output capacitance, and Nsw is the num-

ber of switches per clock. Energy consumption by a task

Ti can be computed as:

. (7)

From the above equations, we can conclude that lower-

ing the supply voltage drastically reduces the power and

energy consumption of the particular processor. The sup-

ply voltage also affects the circuit delay. The circuit delay

is given by Td = k * Vk
2/(Vk – Vt)

2, where k is a constant

eik ei1 * V1 Vk⁄( )=

α Ti( ) ti{ } and α A( ) α T1( ),α T2( ),α T3( ),...,α Tn( ){ }= =

σ Ti( ) PEj{ }=

σ A( ) σ T1( ),σ T2( ), ..., σ Tn( ){ }=

δ Tjk( ) Vk{ } and δ A( ) δ T1k( ),δ T2k( ), ..., δ Tnk( ){ }= =

P PEik( ) CL * NSW * Vk

2

 * fj,  i tasks( )∀=

Ei

n * P PEik( )

fj
--------------------------- n * CL * NSW * Vk

2

,  i tasks( )∀= =
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that is dependent on output capacitance, and Vt is the

threshold voltage.

Definition 5 (Scheduling power and energy model).

The power consumed by a schedule is the total power

consumed by all tasks that execute at the time period t,

and is denoted as P
α
(t),

. (8)

Energy consumed by the schedule is the integral of

P
α
(t),

. (9)

Definition 6 (Problem statement). Given an applica-

tion A with tasks Ti, determine an optimal schedule α(A)

with minimal energy consumption for a multiprocessor

system PE, while mapping tasks to PEs, σ(A) and voltage

scaling the processors, δ(PE) in a multiprocessor system,

such that all tasks are executed before their respective

deadlines, and the end task before the final deadline D. 

Minimize ( ) and minimize (E
α
), ti + ei ≤ di and

tn + en ≤ D.

IV. ENERGY AWARE SCHEDULING ALGORITHM

A. Tasks Deadlines

Since the input task graph considered has only a final

hard deadline, the first step is to determine the deadlines

of all the tasks. 

• Find the path with the highest execution time: the

path with the highest execution time is determined

using a depth first search algorithm that determines

all paths, from source to sink, of the task graph. The

highest execution time is denoted as emax. 

• Find the deadlines of the tasks by backtracking: the

deadlines of all the tasks are determined by back-

tracking to each task from the sink task. In order to

determine the efficiency of the proposed algorithms

the highest execution time emax is relaxed to max (D =

max). This relaxation of the deadline allows the tasks

to be operated at a lower voltage, and hence better

power and energy consumption.

The deadlines of all other tasks are found by back-

tracking from the sink task. The deadline of a predecces-

sor task di with one sucessor task dj is determined as

di = dj-ej. If a task has more than one successor, then the

deadline is obtained by choosing the minimum of the dif-

ferences of the deadlines and execution times of the succes-

sors. For example, a task i has successors j, k and l, then

di is given, determined as min(dj-ej, dk-ek, dl-el). The slack

of each task is calculated as the difference of deadline

and execution time of each task, si = di-ei.

B. Scheduling after Scaling Algorithm (SaS)

The proposed SaS algorithm first allocates voltages to

each task, and then progressively schedules and binds the

tasks to the processors.

Step 1 (Scaling the voltage of each task). Assume that

the tasks can only execute at a pre-specified set of volt-

ages, and all tasks are by default assigned the highest

voltage. First the tasks are sorted with respect to their

slack. Then the task with least slack is made the current

task (Ti), and its execution time (ei) is modified by a

“scaling factor”. The scaling factor is defined as the ratio

of the current voltage (Vi) assigned to the task, to the min-

imum voltage (Vk) that can be assigned to the task, pro-

vided that the execution time of the task is less than the

deadline of the task. The new execution time of the task

is denoted as ei. The start times and end times of all the

successors of the current task are modified, until the sink.

If any task misses its deadline, then the scaling factor is

reduced. The new voltage assigned to the task is denoted

as V(k-1). Again, the start and end times of the successors

are modified, to see if any of the tasks misses its deadline.

This procedure is repeated until none of the tasks misses

its deadline, and the voltage at which the current task

executes is fixed. This voltage scaling is performed on all

the tasks in the graph, sorted by its slack time. 

Step 2 (Assigning the tasks on processors). The tasks

are then scheduled on the processors, based on the EDF

scheduling algorithm, and the first come first served

(FCFS) mapping algorithm. At every instance of the start

time of a task, a check is done to see if any processor is

idle. The task is scheduled on the idle processor, if any;

else a new processor is initialized. The pseudocode of the

SaS algorithm is shown in Algorithm 1.

Algorithm 1 Scheduling after Scaling (SaS)

Inputs: A = {T1, T2,…, Tn}, PE = {PE0, PE1, …, PEm}

Outputs: σ(A), δ(Tik), α(Ti)

repeat {

   assign highest voltage to tasks;

  sort tasks based on their slacks;

 scale voltages based on slacks;

} until (all tasks are scaled)

repeat {

 schedule tasks based on deadlines (EDF);

 assign tasks to free processors;

} until (all tasks are scheduled)

C. Scheduling before Scaling Algorithm (SbS)

This algorithm performs scheduling of the tasks on the

available processor, before scaling the task voltages. This

Pα t( ) P PEi t( )( )m

i=0
∑=

Eα Pα t( ) * ∆t
0

t

∫=

ei( )n

i=1
∑

e

e
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algorithm is an extension of the EDF algorithm. The SbS

algorithm first performs scheduling, followed by assign-

ment of voltage to the tasks.

Step 1 (Sorting the tasks). This algorithm is different

from the SaS algorithm in sorting the tasks. All the tasks

are initially sorted with respect to their deadlines (similar

to EDF scheduling algorithm). 

Step 2 (Scheduling of tasks). The SbS algorithm pro-

ceeds from the source task to the sink task. A breadth-

first search approach is adopted, to determine the task

with the shortest deadline, and is scheduled first. This

process is repeated, until all tasks are scheduled.

Step 3 (Assigning the tasks to processors). The tasks

are then scheduled on the processors. At every instance

of the start time of a task, a check is done to see if any

processor is idle. The task is scheduled on the idle pro-

cessor, if any; else a new processor is initialized. 

Algorithm 2 Scheduling before Scaling (SbS)

Inputs: A = {T1, T2, …, Tn}, PE = {PE0, PE1, …, PEm}

Outputs: σ(A), δ(Tik), α(Ti)

repeat {

 assign highest voltage to tasks;

 sort tasks based on their deadlines (EDF);

 assign tasks to free processors;

} until (all tasks are scheduled)

repeat {

 for each processor {

   for each task {

 scale voltages of based on slacks and deadline;

  } }

} until (all tasks are scaled)

Step 4 (Voltage scaling of the task on processors). The

schedule produced from the above step is based on task

deadlines only, and results in the minimum number of

processors required to execute a task set. After schedul-

ing, the voltages of the tasks are scaled, as in the SaS

algorithm. The algorithm proceeds by sorting the proces-

sor, based on the tasks assigned to the processor. Voltage

scaling is performed for each task on the processor. As

voltage scaling is preformed on each task, the start and

end times of its successor task in the same processor and

any other processor, and the subsequent tasks on the same

processor, are also modified. The pseudocode of the SbS

algorithm is shown in Algorithm 2.

D. Probability based Scheduling Algorithm
to Maximize Utilization

The proposed PbS algorithm increases the utilization of

the processors, by optimizing the number of processors

and energy consumed by the processors, by voltage scal-

ing the tasks (Ti) that execute in the processor. The sched-

ule is divided into equal time steps (∆tj). The PbS algorithm

determines the probability of utilization P(Ti(∆tj)) of a

task in each time step (∆tj). A task is scheduled to a time

step where the probability of utilization of the task is

maximum. The probability of utilization is the sum of the

probabilities of utilization of the current task (Ti) and its

successors (Tk). Initial probabilities are calculated by assum-

ing all tasks are operating at the highest voltage. When

voltage scaling is performed on the tasks, the probability

of utilization is dynamically updated, based on the time

steps assigned to the voltage scaled task. Finally, the num-

ber of processors required to execute the final schedule is

calculated. The following steps explain the algorithm in

detail.

Step 1 (Determining the time step). All the tasks in the

task set A = {T1, T2, …, Tn} are assumed to be executing

at their BCET, i.e., all the tasks are currently running at

the highest voltage. Divide the task graph into time steps,

with the smallest execution time of all tasks as the unit of

time steps. 

Step 2 (Best-case time scheduling). The next step is to

perform the best-case time (BCT) scheduling algorithm.

The BCT algorithm starts with the source tasks in the task

graph, and proceeds in a breadth-first order. Each task is

scheduled in the earliest available time step (BCT(Ti)),

and only if its predecessors are scheduled. A task Ti is

characterized by its start time, BCTg(Ti), and end time,

BCTh(Ti). This algorithm determines the earliest possible

execution time of the task graph. 

Step 3 (Worst-case time scheduling). The worst-case

time (WCT) scheduling algorithm works exactly in the

same way as the BCT algorithm, except that it starts at

the sink of the task graph, and proceeds upwards. This

algorithm determines the longest possible execution time

for the task graph. A task Ti is characterized by its start

time, WCTg(Ti), and end time, WCTh(Ti). This algorithm

determines the latest possible execution time of the task

graph. 

Step 4 (Determining the bound limit). The algorithm

proceeds by determining the bound limits (∆ti) of each

task. The bound limit of a task Ti is calculated as: 

. (10)

where ∆ti represents the time steps within which the cur-

rent task can be scheduled. 

Step 5 (Determining the probability of utilization of

each task in each time step). The next step in the algo-

rithm is to determine the probability of utilization of each

task in each time step, within the bound limit of the task

(∆tij). The probability of utilization of a task Ti in a time

step ∆tij is represented as PU(Ti(∆tij)), where ∆tij ranges

from the earliest start time, to the latest end time of the

task Ti.

Step 6 (Distributed probability of utilization). The distrib-

uted probability of utilization is the summation of proba-

∆ti WCTh Ti( ) BCTg Ti( )–=
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bilities of utilization of each task in each time step. It

signifies the portion of a task that will be executed in a time

step. The distribution probability of utilization DPU(∆tij)

for a time step ∆tij is given as:

. (11)

Step 7 (Schedule the task in a time step). The algo-

rithm schedules the task Ti at time step ∆tij that has the

maximum probability of utilization. Once the task (Ti) is

fixed to a time step (∆tij), the probabilities of utilization

of its successors (Tk) are to be updated.

The change in the probability of utilization of a task Tk

is denoted by (∆PU(Tk)). If the current task Ti is sched-

uled to execute in time step tj, then the change in the prob-

ability of utilization of Ti is determined as ∆PU(Ti(∆tij)) = 1

– PU(Ti(∆tij)), and the change in the probability of utiliza-

tion of successor task Tk is determined as ∆PU(Tk(∆tij)) =

-PU(Ti(∆tij)).

Step 8 (Calculate the cumulative probability of utiliza-

tion of the current task). The algorithm balances the dis-

tribution probability, by calculating the cumulative pro-

bability of utilization (CPU) of each task to time step

assignment, and then selects the tasks with the smallest

CPU. The CPU of a task Ti in time step ∆tij is determined

as CPU(Ti(∆tij)) = DPU(∆tij) * ∆PU(Ti(∆tij)). The total

CPU of a task that is scheduled from time step ∆tij to ∆tik
is calculated as:

. (12)

Step 9 (Calculate the CPU of the successor tasks).

Scheduling the current task (Ti) directly affects the sched-

uling of the successor tasks (Tj). Hence the successor

effect is also considered, while determining the total

cumulative probability of utilization TCPU of a task.

. (13)

Step 10 (TCPU). The TCPU of a task determines the

feasibility of scheduling the task in that particular time

step. The least effect determines the step in which the

task has to be executed. TCPU signifies that the task graph

will use fewer resources (higher utilization). The TCPU

of a task Ti is given as:

. (14)

Steps 7-10 are repeated for all the tasks in the task set,

and a final schedule is obtained. 

Step 11 (Voltage scaling). Based on the schedule devel-

oped above, voltage scaling of the tasks are performed as

in the SaS algorithm, and the FCFS mapping algorithm.

At every instance of the start time of a task, a check is

done to see if any processor is idle. The task is scheduled

on the idle processor, if any; else a new processor is ini-

tialized. The final step in this algorithm is to find the

number of processors required to execute the scheduled

task set. By the end of scheduling, all the tasks are ready

to be executed at a specified voltage. This algorithm finally

returns a schedule in which the task voltages are scaled,

making sure none of the tasks miss their deadlines, and

that these tasks are executed on processors in such a way

that the utilization of the processors is high. The pseudocode

of the PbS algorithm is shown in Algorithm 3.

Algorithm 3 Probability based Scheduling (PbS)

Inputs: A = {T1, T2, …, Tn}, PE = {PE0, PE1, …, PEm}

Outputs: σ(A), δ(Tik), α(Ti)

repeat {

 determine the bound limit for tasks;

 compute Probability of Utilization (PU);

 compute Distributive PU (DPU);

 compute Cummulative PU (CPU);

 compute Total CPU (TCPU)

 schedule tasks with min. TCPU;

 update PU;

} until (all tasks are scheduled)

for each processor {

  for each task {

 scale voltages of based on slacks and deadline;

  } }

} until (all tasks are scaled)

E. Energy-Probability based Scheduling Algorithm
to Minimize Energy

The PbS algorithm proposed above reduces the concur-

rency of tasks in all time steps, to minimize the resources.

However, the energy factor is not considered during

scheduling. To achieve this, the energy-probability based

scheduling (E-PbS) algorithm is proposed. The algorithm

is similar to the PbS algorithm, but has an additional fac-

tor of voltage included in calculating the TCPU, called

the TCPU-energy (TCPUE) factor. 

Step 10 (TCPUE factor). Let V = {V1, V2, …, Vk} be

the set of voltages at which a task can execute. The

(TCPUE(Tik)) is calculated for different voltages Vk for

the task Ti. The least TCPUE(Tik) determines the voltage

at which the task will be executed. After a task is fixed in

voltage, the affected distributed probabilities of utiliza-

tion are updated. This process is repeated for all the tasks,

and each one is scheduled for execution at a particular

voltage, and the distributed probabilities of utilization are

updated dynamically, to get an optimized schedule. After

determining the TCPUE, the task is scheduled in the time

step where the TCPU is minimal. The TCPUE of a task Ti

in time step ∆tj for each operating voltage Vk is deter-

DPU ∆tij( ) Ti ∆tij( )
j∑=

CPU Ti( ) CPU Ti ∆tz( )( )
z=j

k

∑=

CPU Tj( ) CPU Tj ∆tz( )( )
z=j+1

k

∑=

TCPU Ti( ) CPU Ti( ) CPU Tj( )+=
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mined as follows:

. (15)

The value of CPU(Ti) and CPU(Tj) for the current task

and its sucessor tasks are determined as shown in steps 8

and 9, respectively, in Section IV-D. The TCPUE of each

task operating at a specific volatge is calculated, by mul-

tiplying a voltage factor Vr
2 to the CPU terms. The volt-

age factor incorporates the energy awareness in the

scheduling algorithm. The voltage factor Vr
2 is the ratio

of the current operating voltage to the maximum possible

operating voltage, Vk
2/Vp

2. The algorithm schedules a

task at a voltage in the time step where the TCPUE is

minimal. Thus in this method, the voltage scaling and map-

ping are implicitly integrated into the scheduling algo-

rithm. Also, initial voltages are assigned to tasks based on

their respective slacks. After a task is assigned a voltage,

the affected distributed probabilities of utilization are

updated. This process is repeated for all the tasks, and

each one is scheduled for execution at a particular volt-

age, and the TCPUE is updated dynamically to get an

optimized schedule. The final step in this algorithm is to

find the number of processors required to execute the

scheduled task set, as shown in step 11 (Section IV-D).

The pseudocode of the E-PbS algorithm is shown in

Algorithm 4. 

Algorithm 4 Energy-Probability based Scheduling (E-

PbS)

Inputs: A = {T1, T2, …, Tn}, PE = {PE0, PE1, …, PEm}

Outputs: σ(A), δ(Tik), α(Ti)

repeat {

 determine the bound limit for tasks;

 compute Probability of Utilization (PU);

 compute Distributive PU (DPU);

 compute Cummulative PU (CPU);

 compute Total CPU-Energy (TCPUE)

 schedule tasks and assign processor;

 update PU;

} until (all tasks are scheduled)

V. EXAMPLE

This section explains the SaS, SbS, PbS, and E-PbS

algorithms, with the aid of an example. Fig. 1 shows an

example task graph, consisting of ten tasks, with edges

between them indicating the dependencies between the

tasks. The source (task 0) and sink (task 11) tasks are

redundant tasks that have zero execution time. This task

graph is expressed in standard task graph (STG) format,

as shown in Table 1. Only the final deadline of the end

task in the STG is specified. The first step of all proposed

algorithms is to determine the deadline and slack of each

task, by backtracking from the sink task, as described in

Section IV-A. Each task Ti is represented by parameters

ei, {Tj}, {Tk}, gi, hi, di, and si, which are the execution

time, predecessor task set, successor task set, start time,

end time, deadline and slack of the task, respectively.

Also, a task executed on a processor operating at a spe-

cific voltage is simply refered to as a task operating at a

specific voltage, or the voltage assigned to the task. 

A. SaS

Initially, all processors are assumed to be operating at a

maximum voltage in the voltage set V = {5 V, 3.3 V, 2.4 V}.

The task graph and each task in the task graph meet their

respective deadlines when operated at the maximum volt-

TCPUE Tik( ) CPU Ti( ) Vr
2

× CPU Tj( ) Vr
2

×+=

Fig. 1. Standard task graph.

Table 1. Task graph example

Ti ei {Tj} {Tk}  gi hi di si 

0 0 0 0 0 0 0 11.5

1 9 2, 3 0 0 9 20.5 11.5

2 4 11 1 9 13 34.5 21.5

3 3 9 1 9 12 23.5 11.5

4 6 6 0 0 6 26.5 20.5

5 4 6 0 0 4 26.5 22.5

6 3 7 4, 5 6 9 29.5 20.5

7 3 10 6 9 12 32.5 20.5

8 8 9 0 0 8 23.5 15.5

9 9 10 3, 8 12 21 32.5 11.5

10 2 11 7, 9 21 23 34.5 11.5

11 0 11 2, 10 23 23 34.5 11.5
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age. Another assumption is that each processor runs at a

preset voltage, and voltage switching between tasks is not

supported. In the first step, tasks with zero execution time

are eliminated, and the tasks are sorted with respect to

their slack. Next, voltage scaling is applied to the tasks.

For the example, task T1 has the least slack (s1 = 11.5),

and has an initial execution time, e1 = 9. The new execu-

tion time ê1 of the task T1 at voltage 2.4 V is determined

as ê1 = e1×(5/2.4) = 18.75. The start and end times ( j and

j) of all successor tasks Tk of T1, given as Tk = {T2, T3,

T9, T10}, are updated with respect to the new deadline of

task T1, and evaluated to see if they meet their respective

deadlines. The above process is called voltage scaling.

For the voltage scaled task T1, none of the successor tasks

(Tk) misses its deadline, and hence the task T1 is assigned

a voltage of 2.4 V. If any task misses its deadline, then task

T1 is scaled to a voltage greater than 2.4 V. This process

is repeated for voltages greater than 2.4 V, and checked to

satisfy deadlines. This procedure is repeated for all tasks

in the task graph.

Voltage scaling of all the tasks results in partitioning

the tasks into three partitions, where each partition con-

tains tasks operating at a specified voltage. An earliest

deadline first scheduling is performed on the task graphs.

If a task is to be scheduled at a specific voltage and the

processor operating at that specific volatge is busy, a new

processor is added to the resource. The schedule devel-

oped by the SaS algorithm is shown in Fig. 2. The total

number of processors required by the SaS algorithm is 6.

B. SbS

The SbS algorithm performs scheduling of the tasks on

the available processor, before scaling the task voltages.

The algorithm proceeds by first scheduling the tasks

based on the EDF scheduling algorithm. The voltage

scaling succeeds scheduling by scaling each task in each

processor, and determines if the following conditions are

satisfied: the current task or any of its successors meet

their deadlines, or any of the tasks that are executing on

the same processor as the current task do not miss their

deadlines. It is important to note that when a task is

scaled, all the tasks on that processor are also scaled to

the same voltage, because it is assumed that a processor

can operate at that specified voltage. As shown in Fig. 3,

the SbS algorithm starts by choosing processor P1 and

task T1. The task T1 is voltage scaled to the voltage 2.4 V,

and checked to see if it satisfies its deadline. If the dead-

line of task T1 is satisfied, the start and end times of all its

successor tasks {T2, T3, T9, T10} are also modified for

their start time and end time. If any task in this processor

misses its deadline, task T1 is scaled to a higher voltage,

and their execution times are checked, to see if all tasks

satisfy their deadlines. If deadlines are satisfied, the task

is operated at that voltage. This procedure is repeated on

all the tasks in that processor. The total number of proces-

sors required by the EDF algorithm is 4. Fig. 3 shows the

final schedule obtained using the SbS algorithm, where

the processor P1 operates at 5 V, and all other processors

are scaled to operate at 2.4 V.

C. PbS

The first step in this algorithm is to determine the BCT

and WCT schedules for the task graph. Since the final

deadline of the task graph is = 34, the whole graph

is divided into 34 time steps (∆tj). The bound limit for

each task (∆ti) is determined as shown in Equation (10).

ĝ

ĥ

34.5

Fig. 2. Scheduling after scaling algorithm execution for the sample task graph.

Fig. 3. Scheduling after scaling algorithm execution for the sample task graph.
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Table 2a shows the bound limit of each task, along with

the BCT and WCT start times (gBCT and gWCT) of each

task. For task Ti, the task has the earliest start time ∆t1j = 0,

and the latest start time ∆t1j as 11. The next step is to

determine the probabilities of utilization of each task in

each time step from ∆t11 to ∆t111+ e1 = 20 = d1, where e1 = 9.

These probabilities are determined by using Equation (11).

For the example, the probabilities of utilization (PU(T1(∆tj)))

for task T1 within the range ∆t1j, j = 0 to 20 are given in

Table 2b. After determining the probabilities of utiliza-

tion of each task in each time step, the next step is to find

the distributed probabilities of utilization (DPU(∆t1j)) for

each time step. This is done by calculating the sum of

probabilities of utilization for all task occurring in each

time step. Table 2c lists the distributed probabilities of

utilization for time step ∆ti1. Then, the CCPU(Ti) of the

task is determined by scheduling the task in a control

step, and finding the variation in probability of utiliza-

tion, as given by Equations (12) and (13). The TCPU(Tj)

is again the summation of all CPU(Ti) of a task and its

successors CPU(Tj). Due to the high volume of data, the

CPU(Ti) and CPU(Tk) are omitted. The task Tj that has

the highest value of TCPU in time step ∆t1j is scheduled

in that current time step. The probabilities of utilization

of subsequent time steps and tasks are updated, and the

above processes repeated for sucessor tasks. Throughout

this procedure, the tasks are assumed to be running at 5 V.

The next major step is to scale the voltages of the tasks

in such a way that neither the task, nor its successors,

miss their respective deadlines. The schedule obtained so

far assumes that the tasks are assigned 5 V. Each task in

this schedule is then voltage scaled, as described in the

SaS algorithm. The last and final step in this algorithm is

to determine the number of processors required to accom-

modate all the tasks in the schedule. This is accomplished

as explained in step 11 of Section IV-D. The processors

are assumed to be operating at only one particular volt-

age, without the ability to shift voltages. The final sched-

ule for the benchmark program 10.stg is shown in Fig. 4a.

D. E-PbS

The CPU for each task and its sucessor in time step ∆ti1
are evaluated as shown in step 10 of Section IV-D. The

TCPUEs of a task at 5.0 V (V1), 3.3 V (V2) and 2.4 V

(V3) for the task Ti are determined as shown in Equation

(16), and are represented as TCPUE(TiV1), TCPU(TiV2),

and TCPUE(TiV3), respectively. The voltage factor Vr
2 for

the above three cases is given as V1
2/V1

2, V2
2/V1

2, and

V3
2/V1

2, respectively. The algorithm schedules a task at a

voltage in the time step where the TCPUE is minimal.

After a task is assigned a voltage, the affected distributed

probabilities of utilization are updated. This process is

repeated for all the tasks, and each one is scheduled for

execution at a particular voltage; and the TCPUE is

Table 2a. BCT and WCT start time and bound limit of each task

Ti ei WCT BCT ∆ti di 

[1] 9 1 1 12 20

[2] 4 31 10 22 34.5

[3]  1 10 12 23.5

[4] 6 21 1 21 26.5

[5] 4 23 1 23 26.5

[6] 3 27 7 21 29.5

[7] 3 30 10 21 32.5

[8] 8 16 1 16 23.5

[9] 9 24 13 12 32.5

[10] 2 33 22 12 34.5

WCT: worst-case time, BCT: best-case time.

Table 2b. Distribution probabilities for task T1 within the bound
limit ∆t1j

∆t1j PD

 1  0.08 

 2  0.17 

 3  0.25 

 4  0.33 

 5  0.42 

 6  0.50 

 7  0.58 

 8  0.67 

 9  0.75 

 10  075 

 11  0.75 

 12  0.75 

 13  0.67 

 14  0.58 

 15  0.50 

 16  0.42 

 17  0.33 

 18  0.25 

 19  0.17 

 20  0.08

Table 2c. CCPU(T1) for task T1 at time step ∆ti1

Ti Probability 

 [1]  0.08 

 [4]  0.05 

 [5]  0.04 

 [8]  0.06 

CCPU  0.24 

CCPU: cumulative probability of utilization.
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updated dynamically, to get an optimized schedule. The

final schedule obtained by E-PbS is shown in Fig. 4b.

VI. RESULT

Processors supporting several supply voltages are avail-

able. Various supply voltages result in different energy

consumption levels for a given task Ti. The voltage at

which a task is run can be decided before the execution of

the task, or sometimes, when the task is executing. In the

former method, a particular voltage is assigned to a task,

and it is run at that voltage on the processor. In the latter

case, the switching of the voltage while the tasks are run-

ning on the processor is controlled by the OS. These vari-

able voltage processors operate at different voltage ranges,

to achieve different levels of energy efficiency.

All the four scheduling algorithms have been imple-

mented in C++. The STG set were used to evaluate the

performance of the above algorithms. The STG bench-

mark suite contains both synthetic, and practical real-

time application task graphs. The assumptions followed

during evaluation are as below:

• All the processors operate at a pre-specified set of

voltages. 

• All the processors operate at a constant and identical

frequency. 

• Processors cannot shift from one voltage level to

another while executing a task set. This constraint

allows us to ignore overheads, such as processor volt-

age transition times, transition energy, states, and

steps [24] during scheduling. 

• The switching capacitance of the processors is con-

stant, and is the same for all the processors. 

• All the tasks are assumed to be non-preemptable,

aperiodic, dependent tasks.

Fig. 4. (a) Probability based scheduling algorithm (PbS) execution for the sample task graph and (b) energy-PbS algorithm execution for
the sample task graph.

Table 3. Number of processors required for scheduling

 Benchmark #T
 SaS  SbS PbS E-PbS

5 V 3.3 V 2.4 V Total 5 V 3.3 V 2.4 V Total 5 V 3.3 V 2.4 V Total 5 V 3.3 V 2.4 V Total

 7.stg  7  1  1  3  5  1  0  3  4  2  2  2  6  2  1  3  6 

 10.stg  10  1  1  4  6  1  0  3  4  2  1  2  5  2  0  3  5 

 50.stg  50  2  1  13  16  1  0  14  15  7  3  6  16  6  3  7  16 

 sparse.stg  96  1  1  62  64  1  0  61  62  12  3  44  59  14  0  47  61 

 100.stg  100  3  5  46  54  2  3  41  46  19  7  15  41  20  3  18  41 

 300.stg  300  1  0  120  121  1  0  122  123  49  15  57  121  53  8  64  125 

 500.stg  500  6  4  205  215  2  2  201  205  79  33  87  199  91  20  96  207 

SaS: scheduling after scaling, SbS: scheduling before scaling, PbS: probability based scheduling, E-PbS: energy-probability based scheduling.
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Table 4. Average power consumed by each processor in nWatts for the scheduling algorithms

Benchmark #T

SaS SbS PbS E-PbS

5.0 V 3.3 V 2.4 V Total 5.0 V 3.3 V 2.4 V Total 5.0 V 3.3 V 2.4 V Total 5.0 V 3.3 V 2.4 V Total

7.stg 7 125.00 181.17 68.00 102.03 450.00 - 64.00 160.50 150.00 130.68 46.08 108.92 150.00 152.46 55.68 103.25

10.stg 10 275.00 49.50 101.64 121.84 575.00 - 112.00 227.75 325.00 141.57 106.56 200.94 250.00 - 128.64 177.18

50.stg 50 487.50 372.90 156.41 211.32 1375.00 - 177.43 257.27 471.43 254.10 182.40 322.29 475.00 214.17 201.60 306.48

sparse.stg 96 1500.00 370.26 345.79 364.20 3050.00 - 356.85 400.29 1387.50 471.90 325.70 549.09 1107.14 - 338.25 514.71

100.stg 100 333.33 65.34 116.06 123.43 600.00 348.26 126.44 161.50 360.53 272.25 137.09 263.71 338.75 119.79 177.92 252.12

300.stg 300 1325.00 - 259.90 268.71 2350.00 - 291.15 307.89 838.78 294.76 247.48 492.79 663.21 201.47 298.44 446.90

500.stg 500 600.00 193.30 254.00 262.52 2075.00 1115.90 294.63 320.01 906.33 337.92 243.38 522.24 689.29 209.63 318.60 471.03

Average power (PE) 663.69 205.41 185.97 207.72 1496.43 732.08 203.21 262.17 634.22 271.88 184.10 351.43 524.77 179.50 217.02 324.53

SaS: scheduling after scaling, SbS: scheduling before scaling, PbS: probability based scheduling, E-PbS: energy-probability based scheduling.

Table 5. Utilization of the processors for the scheduling algorithms

Benchmark #T

SaS SbS PbS E-PbS

5.0 V Util 3.3 V Util 2.4 V Util 5.0 V Util 3.3 V Util 2.4 V Util 5.0 V Util 3.3 V Util 2.4 V Util 5.0 V Util 3.3 V Util 2.4 V Util

7.stg 7 1 0.99 1 0.62 3 0.44 1 0.67 0 0.00 3 0.41 2 1.00 2 0.80 2 0.67 2 1.00 1 0.61 3 0.78

10.stg 10 1 0.98 1 0.29 4 0.51 1 0.67 0 0.00 3 0.56 2 0.65 1 0.39 2 0.68 2 0.84 0 0.00 3 0.67

50.stg 50 2 0.76 1 0.70 13 0.33 1 0.67 0 0.00 14 0.38 7 0.47 3 0.52 6 0.42 6 0.72 3 0.79 7 0.43

sparse.stg 96 1 0.63 1 0.31 62 0.33 1 0.67 0 0.00 61 0.34 12 0.54 3 0.31 44 0.90 14 0.95 0 0.00 47 0.90

100.stg 100 3 0.82 5 0.52 46 0.43 2 0.52 3 0.69 41 0.47 19 0.57 7 0.65 15 0.76 20 0.92 3 0.95 18 0.85

300.stg 300 1 0.95 0 0.00 120 0.32 1 0.67 0 0.00 122 0.36 49 0.57 15 0.42 57 0.75 53 0.99 8 0.95 64 0.76

500.stg 500 6 0.40 4 0.30 205 0.31 2 0.58 2 0.72 201 0.36 79 0.61 33 0.47 87 0.69 91 0.94 20 0.89 96 0.78

SaS: scheduling after scaling, SbS: scheduling before scaling, PbS: probability based scheduling, E-PbS: energy-probability based scheduling.
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The performance of the SaS, SbS, PbS, and E-PbS is

summarized below, based on the results obtained for the

various benchmarks, as shown in Tables 3-5. From Table 3,

we conclude that the SbS algorithm results in the smallest

required processors to complete the task graphs. How-

ever, the SaS and SbS algorithms have more processors

operating at 2.4 V (lowest operation voltage), and hence

will have larger completeion times for the task graphs.

Almost 90% of the processors operate at this voltage. On

the other hand, the PbS and E-PbS algorithms have pro-

cessors equally operating at all voltages (distributed almost

uniformally). Table 4 shows the average processor power

consumed by each algorithm (SaS = 208, SbS = 262, PbS

= 351, E-PbS = 324), for each benchmark. The following

conclusions are derived from Table 4: the SaS and SbS

algorithms have lesser average processor power con-

sumption (≈25% less) compared to the PbS and E-PbS

algorithms. Table 5 shows the processor utilization (SaS

= 42%, SbS = 43%, PbS = 65%, E-PbS = 81%) achieved

by the algorithms for the various benchmarks. In this case,

the PbS and E-PbS algorithms outperform (≈35%) the

SaS and SbS algorithms. Typically, the SaS algorithm

results in lower power consumption and higher comple-

tion times. This is evident by the large number of proces-

sors and tasks operating at 2.4 V (Table 3). Similarly, the

SbS algorithm results in a smaller number of processors,

and better completion times. The proposed PbS and E-

PbS algorithms results in higher processor utilizations,

but with smaller completion times (Table 5). Hence, the

PbS and E-PbS algorithms results in smaller energy con-

sumption (average processor power × completion times

(or utilization)), as shown in Fig. 5. In this section we

provide a quick time complexity analysis of the various

algoirthms implemented in this work. Let ‘n’ be the num-

ber of tasks, ‘m’ the number of processors, and ‘k’ the

number of voltage levels of the processors. Also, for the

PbS and E-PbS scheduling algorithms, let ‘∆t’ be the

fixed time interval for which the probability distibutions

are determined. Given the above variables, the worst case

complexity of the SaS and SbS algorithms can be derived

as O(knlog2n) and O(knm), respectively. Similarly, the

complexity of the PbS and E-PbS algorithms can be

determined as O(∆tn3) and O(∆tk2n3), respectively.

VII. CONCLUSIONS

Scheduling of applications or task graphs in multipro-

cessor or multicore systems is an important research

question that needs to be addressed, in light of today’s

emerging embedded system demands. It is often neces-

sary to develop scheduling and task mapping algorithms

that optimize processor utilization and processor power

consumption. This work proposes an integrated schedul-

ing and mapping algorithm, called PbS, that optimizes

the above requirements. The proposed PbS algorithm,

and its variation, called E-PbS algorithm, are based on

the force directed scheduling algorithm used in high-level

Fig. 5. Comparison of utilization, average power/processor consumption, and total average energy consumption for the SaS, SbS, PbS
and E-PbS algorithms.
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synthesis of digital circuits. The algorithms were imple-

mented and tested with synthetic and real application task

graphs (benchmarks). The proposed algorithms are com-

pared with traditional scheduling approaches like FCFS

(SaS) and EDF (SbS). The SaS and SbS algorithms also

implement an explicit mapping, or voltage scaling algo-

rithms, after and before scheduling, respectively. The

algorithms are compared for processor utilization, aver-

age power consumed per processor, and the number of

processors required to implement the given set of task

graphs. Based on the results discussed in Section VI, we

can conclude that the PbS and E-PbS algorithms provide

better processor utilization and lower energy consump-

tion, compared to the SaS and SbS algorithms.
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