
Copyright 2013. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 7, No. 1, March 2013, pp. 53-66

Bounding Worst-Case DRAM Performance on Multicore Processors

Yiqiang Ding, Lan Wu, and Wei Zhang*

Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA

dingy4@vcu.edu, wul3@vcu.edu, wzhang4@vcu.edu

Abstract
Bounding the worst-case DRAM performance for a real-time application is a challenging problem that is critical for
computing worst-case execution time (WCET), especially for multicore processors, where the DRAM memory is usually
shared by all of the cores. Typically, DRAM commands from consecutive DRAM accesses can be pipelined on DRAM
devices according to the spatial locality of the data fetched by them. By considering the effect of DRAM command pipe-
lining, we propose a basic approach to bounding the worst-case DRAM performance. An enhanced approach is proposed
to reduce the overestimation from the invalid DRAM access sequences by checking the timing order of the co-running
applications on a dual-core processor. Compared with the conservative approach, which assumes that no DRAM com-
mand pipelining exists, our experimental results show that the basic approach can bound the WCET more tightly, by
15.73% on average. The experimental results also indicate that the enhanced approach can further improve the tightness
of WCET by 4.23% on average as compared to the basic approach.

Categories: Embedded computing

Keywords: Performance; Reliability; Real-time scheduling; WCET; Multicore processor

I. INTRODUCTION

With the rapid development of computing technology
and the diminishing return of complex uniprocessors,
multicore processors are being used more widely in the
computer industry. Future high-performance real-time
systems are likely to benefit from multicore processors
due to the significant boost in processing capability, low
power consumption, and high density.

In real-time systems, especially hard real-time sys-
tems, it is crucial to accurately obtain the worst-case exe-
cution time (WCET) for real-time tasks to ensure the
correctness of schedulability analysis. Although the WCET
of a real-time application can be obtained by measure-
ment-based approaches, the results are generally unreli-
able due to the impossibility of exhausting all the possible

program paths. Alternatively, static WCET analysis [1]
can be used to compute the WCET, which should be safe
and as accurate as possible. The WCET of a real-time
application is not only determined by its own attributes,
but also affected by the timing of architectural compo-
nents, such as pipelines, caches, and branch predictors.
Most prior research works have focused on WCET analy-
sis for single-threaded applications running on uniproces-
sors [2-6], but these methods cannot be easily applied to
estimate the WCET on multicore processors with shared
resources, such as a shared L2 cache and DRAM mem-
ory. This is because the possible interferences in the shared
resources between different threads can significantly
increase the complexity of WCET analysis.

Due to its structural simplicity, high density, and vola-
tility, DRAM is usually utilized in current popular proces-

Received 12 February 2013, Accepted 1 March 2013

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2013.7.1.53 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 7, No. 1, March 2013, pp. 53-66

http://dx.doi.org/10.5626/JCSE.2013.7.1.53 54 Yiqiang Ding et al.

sors, including multicore processors. A DRAM system
consists of multiple components, such as a memory access
controller, command/address bus, data bus, and DRAM
devices. The latency of an access to the DRAM varies
due to the status of each component when accessed. One
recent work studied the vulnerability of current multicore
processors due to a new class of denial of service (DoS)
attacks [7]. Under the current DRAM architecture, a
thread with a particular memory access pattern can over-
whelming the shared resources in the DRAM, preventing
other threads from using these resources efficiently.
Therefore, the latencies of the DRAM accesses from
other threads could be prolonged.

There have been several studies to model and predict
DRAM memory performance. Ahn et al. [8] performed a
performance analysis of scientific and multimedia appli-
cations on DRAM memory with various parameters, and
found that the most critical performance factors are high
read-write turnaround penalties and internal DRAM bank
conflicts. They then developed an accurate analytical
model for the effective random-access bandwidth given
DRAM technology parameters and the burst-length.
Yuan and Aamodt [9] proposed a hybrid analytical model
to predict DRAM access efficiency based on memory
trace profiling. Bucher and Calahan [10] modeled the
performance of an interleaved common memory of a
multiprocessor using queuing and simulation methods.
Choi et al. [11] presented an analytical model to predict
the DRAM performance based on the DRAM timing and
memory access pattern parameters. However, these prior
studies have focused on predicting the average-case
DRAM performance, rather than the worst-case. For
example, the DRAM access patterns assumed in these
studies were based on typical access patterns or derived
from simulated traces, which cannot be safely used to
represent the worst-case DRAM access patterns to derive
the WCET.

Research was performed recently to bound the worst-
case DRAM performance on a uniprocessor by consider-
ing the impact of the row-buffer management policy [12].
However it is more challenging to conduct WCET analy-
sis on a multicore processor by bounding the worst-case
DRAM performance for the following reasons. First, the
DRAM access pattern of a thread depends on its accesses
to higher-level cache memories, such as the L2 cache. If
the DRAM memory is shared with different cores, the
accesses of a thread can be greatly impacted by inter-core
DRAM access interference. Second, the worse-case latency
of a DRAM access of a thread is determined by not only
the number of the simultaneous DRAM accesses from
other threads, but also the timing order of all these DRAM
accesses and the spatial locality of the data fetched by
them. However, the timing order of simultaneous DRAM
accesses from co-running threads is hard to determine
through static analysis, because all the threads are run-
ning independently on different cores.

To overcome these difficulties, this paper first investi-
gates the timing characteristics of DRAM accesses with a
focus on DRAM devices. Our study shows that the DRAM
commands from multiple consecutive DRAM accesses
can be pipelined on DRAM devices, and the degree of the
DRAM command pipelining varies according to the spa-
tial locality of the data accessed, which may impact the
worst-case latency of each access. A basic approach is
then proposed to estimate the worst-case situation of
DRAM command pipelining, which leads to the worst-
case latency for a DRAM access among a sequence of
consecutive DRAM accesses. An enhanced approach is
proposed to reduce the overestimation from the invalid
DRAM access sequences by checking the timing order
constraints of concurrent applications. In addition, we
utilize the extended integer linear programming (ILP)
approach [4] to model the constraints between the accesses
to the higher-level cache memory and the DRAM accesses.
The worst-case DRAM performance is integrated into the
objective function of the extended ILP approach to bound
the WCET of a real-time task running on a multicore pro-
cessor.

The rest of the paper is organized as the follows. First,
the multicore architecture studied in this work is described
in Section II. Next, the background of the DRAM system
is introduced in Section III. Section IV presents the tim-
ing characteristics of DRAM accesses, with a focus on
DRAM devices. Then, we introduce two approaches to
bound the worst-case DRAM performance in Section V.
Section VI introduces the evaluation methodology, and
Section VII gives the experimental results. Finally, con-
clusions are presented in Section VIII.

II. SYSTEM ARCHITECTURE

Fig. 1 shows the system architecture of a multicore
processor with N cores studied in this paper (N > 1). Each

Fig. 1. Target system architecture.

Bounding Worst-Case DRAM Performance on Multicore Processors

Yiqiang Ding et al. 55 http://jcse.kiise.org

core is symmetrical, with its own processing unit, pipe-
line, L1 instruction and data caches, and private L2 cache,
which are not uncommon in commercial multicore
designs. The DRAM is shared by all cores through a
shared bus. In order to focus on bounding the worst-case
DRAM performance, the interactions between the DRAM
and the hard disk are ignored in our study. It is assumed
that all the code and data of a thread are loaded into the
DRAM beforehand, such that no page fault would occur
during subsequent execution.

III. DRAM MEMORY SYSTEM

Generally, a DRAM memory system comprises three
major components, as shown in Fig. 2. The DRAM devices
store the actual data; the memory controller is responsible
for the communication between the DRAM devices and
the processor; and the buses connect the DRAM devices
and the memory controller to transfer addresses, com-
mands, and data.

DRAM device: Multiple levels of store entities are
organized hierarchically in a DRAM device, such that
DRAM accesses can be served in parallel on a certain
level according to the spatial locality of the data being
accessed. The memory array is the fundamental storage
entity in a DRAM device. A bank is a set of independent
memory arrays, and has a two-dimensional structure with
multiple rows and columns. A bank also has a row buffer,
and data can only be read from this buffer. A rank con-
sists of a set of banks sharing the same I/O gating, and
operates in lockstep to a given DRAM command. A
channel is defined as a set of ranks that share the data
bus. For example, multiple DRAM accesses to different
ranks in the same channel can be executed in parallel,
except when the data are transferred on the shared data
bus.

Memory controller: The memory controller manages
the flow of data in and out of DRAM devices connected
to it. The row-buffer management policy, the addressing
mapping scheme, and the memory transaction and DRAM
command ordering scheme are three important design

considerations and implementations for the memory con-
troller.

There are two types of row-buffer management poli-
cies: the open-page policy and the close-page policy. The
open-page policy is designed to favor memory accesses
to the same row of memory by keeping the row buffer
open and holding a row of data for ready access. In con-
trast, the close-page policy is designed to favor accesses
to random locations in the DRAM, and optimally sup-
ports the DRAM access patterns with low degrees of spa-
tial locality. In a multicore processor, the intermixing of
DRAM access sequences from multiple threads reduces
the spatial locality of the access sequence. The close-
page policy can achieve better performance [13] without
any optimization on the memory controller [14]. The
DRAM access transactions and DRAM commands are
queued in the memory controller. The queuing delay also
affects the performance of DRAM. DRAM commands
can be scheduled by various scheduling algorithms [15,
16] based on different factors, such as the availability of
resources in DRAM devices. In our study, the memory
controller is assumed to have no optimization, and the
close-page policy and the first come first serve (FCFS)
scheduling algorithm are used.

IV. TIMING OF ACCESSING DRAM MEMORY
SYSTEMS

In this section, we study the timing characteristics of the
DRAM access, both in the case of an individual DRAM
access and multiple consecutive DRAM accesses. Also,
the worst-case latency for a DRAM access among a
sequence of consecutive DRAM accesses is derived.

Generally, the timing of a DRAM access consists of
three parts: the latency through the bus between the pro-
cessor and the memory controller, the queuing delay in
the memory controller, and the latency of accessing the
DRAM device. In this paper, as we focus on the estima-
tion of the latency of accessing DRAM devices, the
worst-case bus latency and the worst-case queuing delay
in the memory controller are estimated safely as con-

Fig. 2. DRAM architecture.

Journal of Computing Science and Engineering, Vol. 7, No. 1, March 2013, pp. 53-66

http://dx.doi.org/10.5626/JCSE.2013.7.1.53 56 Yiqiang Ding et al.

stants by a conservative approach, assuming that a given
DRAM access from one core should wait for the bus
transferring and the memory controller queuing of the
other N-1 DRAM accesses issued from other cores simul-
taneously on a multicore processor with N cores.

A. Generic DRAM Access Protocol

Typically, a DRAM access can be translated into sev-
eral DRAM commands to move data between the mem-
ory controller and the DRAM devices. A generic DRAM
access protocol can be modeled by only considering
some necessary basic DRAM commands and related tim-
ing constraints. It is assumed that two different com-
mands can be fully pipelined on a DRAM device only if
they do not have any conflict on a shared resource at a
given time, which can be called DRAM command pipe-
lining. The whole procedure for DRAM commands of a
given DRAM access to fulfill the data movement are
illustrated in Fig. 3. The figure also shows the resources
required by these commands that cannot be shared by the
commands from other DRAM accesses concurrently. In
the first phase, the command is transported via the com-
mand and address buses and decoded by the DRAM
device. In the second phase, the data are moved into a
bank. The data are transported on the shared I/O gating
circuit in the third phase. Finally, the data are transferred
to the memory controller by the data bus.

In the generic DRAM access protocol, three generic
DRAM commands are defined: row access commands,
column access commands, and precharge commands. The
timing parameters related to these commands are shown in
Table 1. tRCD, tCAS, and tBURST are all a part of tRAS, as shown

in Fig. 4. The DRAM refresh command is not covered in
the generic DRAM protocol, because it is not issued from
any DRAM access, and could interrupt the command
pipeline periodically.

B. Timing of an Individual DRAM Device Access

A typical cycle of an individual DRAM device access
to read data consists of three major phases: row access,
column access, and precharge. The details of the cycle
are illustrated in Fig. 4. Including the time of command
transferring, the latency for the whole cycle can usually
be computed by using Equation (1), the timing parame-
ters of which are illustrated in Fig. 4. As the data move-
ment for a DRAM access is finished at the end of the
column access, the latency of a read cycle without con-
sidering the precharge phase can be described by Equa-
tion (2), the timing parameters of which are also shown in
Fig. 4.

Fig. 3. Command and data movement for an individual DRAM device access on a generic DRAM device [13].

Table 1. Timing parameters defined in the generic DRAM access
protocol

Parameter Description

tBURST Data burst duration

tCMD Command transport duration

tCAS Column access strobe latency

tRAS Row access strobe latency

tRCD Row to column command delay

tRP Row precharge duration

Bounding Worst-Case DRAM Performance on Multicore Processors

Yiqiang Ding et al. 57 http://jcse.kiise.org

(1)

(2)

C. Timing of Consecutive DRAM Device Accesses

Multiple consecutive DRAM accesses happen more
frequently on a multicore processor than on a uniproces-
sor for the following reasons. First, the number of DRAM
accesses issued concurrently increases as the number of
cores increases. Second, there is no data dependency or
control flow constraint between the DRAM accesses
from the threads running on different cores. However, the
DRAM commands of consecutive DRAM accesses can
rarely be fully pipelined, because these commands need
to share resources in the DRAM devices concurrently.
The degree of the DRAM command pipelining depends
on the spatial locality of the data fetched by the consecu-
tive DRAM accesses, as well as the state of the DRAM
devices, which can possibly impact the latency of a DRAM
access among a sequence of consecutive DRAM accesses.

Fig. 5 demonstrates the latencies of two consecutive
DRAM device accesses in three cases with different data
spatial locality between them. Both DRAM accesses are
ready to be executed at the same time. The latency of the
first access T1 is the same in all cases according to Equa-
tion (2), which is not affected by the second access at all.
However, the latency of the second access T2 varies,
because the degrees of DRAM command pipelining are
different in three cases. As the data fetched by both
accesses are in the same bank in Fig. 5a, the first com-
mand of the second access is not released until the data
fetched by the first access are restored and the row has
been precharged. Because the second access has to wait
for the full cycle of the first access, and only the transpor-
tation of its row access command is pipelined with the
precharge phase of the first access, its latency T2 can be
described in Equation (3). In Fig. 5b, where both accesses
fetch the data in different banks of the same rank, both
accesses will only conflict on the I/O gating circuit and
the data bus. Also, as the row required by the second
access should be precharged in the case of a bank con-

flict, the first command of the second access is executed
after the start of the first access with the time interval of
at least tRP + tRCD to avoid conflicts. So, the latency of the
second access is defined as the sum of this minimal time
interval and the latency of a read cycle without the pre-
charging phase, as described in Equation (4). In Fig. 5c,
the data fetched by both accesses are on different ranks,
so both accesses only conflict on the data bus. Similar to
Fig. 5b, the minimal timing interval between the start of
both accesses to avoid the conflict turns out to be only
tBURST. T2 in this case can be computed by Equation (5).

(3)

(4)

(5)

It can easily be concluded that the later of two consec-
utive DRAM accesses will have the worst-case latency if
both accesses fetch data on the same bank. Furthermore,
it can be extended to the case of N consecutive DRAM
accesses (N > 2), since they can be divided into multiple
instances of two consecutive DRAM accesses. Therefore,
the worst-case latency of a given access is Tn, as shown in
Equation (6), if it is the last one in the sequence of con-
secutive DRAM accesses, and all the accesses fetch the
data in the same bank as well.

(6)

V. ANALYZING WORST-CASE DRAM PERFOR-
MANCE

Our assumptions: In this work, we develop a WCET
analysis method to derive the WCET for real-time appli-
cations running on multicore processors by modeling and
bounding the worst-case DRAM performance. We focus
on studying the instruction accesses through the memory
hierarchy, and assume the data cache is perfect. Also, in
our WCET analysis, we have not considered the timing

tREAD tCMD tRAS tRP+ +=

tREAD tCMD tRCD tCAS tBURST+ + +=

T2_case_a tRAS tRP tCMD tRCD tCAS tBURST+ + + + +=

T2_case_b tRCD tRP tCMD tRCD tCAS tBURST+ + + + +=

T2_case_c tBURST tCMD tRCD tCAS tBURST+ + + +=

Tn N 1–() * tRAS tRP+() tCMD tRCD tCAS tBURST+ + + +=

Fig. 4. A cycle of a DRAM device access to read data [13].

Journal of Computing Science and Engineering, Vol. 7, No. 1, March 2013, pp. 53-66

http://dx.doi.org/10.5626/JCSE.2013.7.1.53 58 Yiqiang Ding et al.

caused by bus conflicts and DRAM memory refreshing.
We assume in-order pipelines without using branch pre-
diction. In our software model, we assume a set of inde-
pendent tasks execute concurrently on different cores,
and there is no data sharing or synchronization among
those tasks.

We extend the implicit path enumeration technique
(IPET) technique [4] to obtain the WCET of a real-time
application on a multicore processor with its worst-case
DRAM performance. In IPET, the objective function of
the integer ILP problem to calculate the WCET is subject
to structural constraints, functionality constraints, and
micro-architecture constraints, all of which can be usually
described as linear equations or inequalities. Also, some
equations are created to describe the equality relationship
between the execution counts of basic blocks and cache

line blocks to connect the control flow graph (CFG) and
the cache conflict graph (CCG).

As there are only private L1 and L2 caches in the multi-
core architecture studied, our WCET analysis approach
only needs to construct the CCG on each L1 and L2
cache to build the cache constraints. The CCG on an L2
cache describes the constraints between the L2 cache
accesses and the DRAM accesses, as an L2 cache miss
will result in a DRAM access. In order to consider the
worst-case DRAM performance, the objective function
of the WCET for each thread is given in Equation (7),
which includes the computing time, the latency to access
the L1 cache, and the latency to access the L2 cache. The
last part indicates the total latency of the
DRAM accesses. Specifically, Ci is the worst-case latency
of a given DRAM access, and Mi denotes its number of

n

i=1∑ Ci*Mi

Fig. 5. The latencies of two consecutive DRAM device accesses with different spatial locality, which are calculated using Equations (3)-
(5), respectively. (a) Two consecutive DRAM memory accesses to the same bank, (b) two consecutive DRAM memory accesses to different
banks on the same rank, and (c) two consecutive DRAM memory accesses to different ranks.

Bounding Worst-Case DRAM Performance on Multicore Processors

Yiqiang Ding et al. 59 http://jcse.kiise.org

execution, which is bounded by the cache constraints
from the CCG of the L2 cache.

(7)

A. Conservative Approach

If there are N identical cores sharing the DRAM on a
multicore processor, it will be safe but pessimistic to esti-
mate the worst-case latency of each DRAM access based
on two assumptions. The first assumption is that each
DRAM access from a thread is always issued with other
N-1 DRAM accesses simultaneously from other N-1 co-
running threads, and this access starts to be executed after
all other accesses finish the execution. Second, all these
consecutive DRAM accesses fetch the data in the same
bank, which will result in the worst-case scenario, as
described in Section IV-C. Therefore, the worst-case latency
of a DRAM access can be computed by Equation 8,
where is the delay to wait for the fin-
ish of the other N-1 accesses, and
stands for the actual DRAM device access latency for this
access. In addition, the calculation of Ci should include
the latency of bus access tBUS and the queuing delay from
the memory controller tQUEUE, both of which are safely
estimated as constants, as discussed in Section IV. Although
it is safe, this approach is pessimistic, which may result in
much overestimation.

 (8)

B. A Basic Approach

In order to reduce the overestimation in the conserva-
tive approach, the basic approach is proposed by consid-
ering the effect of DRAM command pipelining. As
discussed in Section IV-C, the performance of DRAM
command pipelining among consecutive DRAM accesses
depends on the spatial locality of the data fetched. The
worst-case situation of DRAM command pipelining hap-
pens when the data fetched by consecutive DRAM
accesses are on the same bank, which would degrade the
degree of DRAM command pipelining mostly. Given a
thread (task), the basic approach first checks the DRAM
address of the data fetched by each DRAM access. Then,
it determines the maximum number of DRAM accesses
from other threads fetching the data on the same bank
with this access. If no DRAM access from other threads
is found to fetch the data on the same bank, it then exam-
ines the number of DRAM accesses from other threads
fetching the data on the same rank.

The basic approach is described in Algorithm 1. The

input of this algorithm is N co-running threads, and the
output is the WCET objective function of each thread.
The worst-case DRAM performance of each co-running
thread is estimated individually. The worst-case latency
for a given DRAM access Mj in a given thread Ti is esti-
mated as follows. First, addr, the DRAM address of the
data fetched by Mj, is translated from the physical address
according to the given address mapping policy, and the
bank id b and rank id r are both derived from addr. Then,
the number of other co-running threads with DRAM mem-
ory accesses fetching the data on the same bank b is
denoted as Nb at line 9. These Nb threads are excluded
from the remaining procedure. Since it is possible that
DRAM accesses from the remaining threads are still fetch-
ing data on the same bank bk other than b, the maximum
number of threads with DRAM accesses fetching data on
the bank of bk is calculated as N0b[k] and stored in an
array from lines 11 to 15. These threads are also excluded
from the remaining procedure. In the next step, the num-
ber of threads with DRAM accesses fetching the data in
the same rank of r is calculated as Nr. At the end of the
processing for Mj, the number of the threads with DRAM
accesses fetching the data on different ranks is computed
as Ndr. The worst-case latency Cj for Mj is calculated based
on Equations (3)-(5). The algorithm will terminate when
the worst-case DRAM performance has been estimated
and added into the WCET objective function based on
Equation (7) for all the co-running threads.

C. An Example of the Basic Approach

An example of the basic approach is shown in Fig. 6.
In this example, there are 4 threads running concurrently
on a multicore processor with 4 cores. In each thread,
there are multiple DRAM accesses. It is supposed that
there are 4 ranks in the DRAM of this example, and each
rank has 4 banks. A DRAM access is represented by a
rectangle with the name Mi. The numbers inside the
parentheses denote the DRAM address of the data
fetched by this access, where the first number is the rank

id and the second number is the bank id. For example, the
first DRAM access in Thread A is named M1 and its rank

id and bank id are both 1. In addition, all the DRAM
accesses are connected by the edges to indicate the timing
order derived from the CFG.

The estimation procedure for Thread A starts with
checking the DRAM address in M1. Then, M5 in Thread B

and M10 in Thread C are found to fetch the data in bank 1

of rank 1 as well. So, Nb for M1 is 2. As Thread D does
not have any DRAM access to rank 1, Nr is equal to 0 and
Ndr is 1. Therefore the worst-case latency of M1 can be
computed by Equation (9). Only one DRAM access M9 in
Thread C fetches the data in bank 2 of rank 1, which is
the same as M2, and M8 and M13 are found to access rank

3 in Thread B and Thread D, respectively, so Nb is 1, Nr is
2, and Ndr is 1 for M2. The worst-case latency for M2 can

WCET Computing Time∑ L1$ Latency∑ + +=

L2$ Latency∑ Ci * Mi

i=1

n

∑+

N 1–() * tRAS tRP+()

tCMD tRCD tCAS+ + +tBURST

Ci N 1–() * tRAS tRP+() tCMD tRCD tCAS tBURST+ + + + +=

tBUS tQUEUE+

Journal of Computing Science and Engineering, Vol. 7, No. 1, March 2013, pp. 53-66

http://dx.doi.org/10.5626/JCSE.2013.7.1.53 60 Yiqiang Ding et al.

be calculated by Equation (10). This case is similar to the
cases of M3 and M4. Although no other DRAM access
fetches the data on the same bank as M3 and M4, there are
either M5 and M10 or M6 and M11 in Thread B and Thread

C accessing the same bank. However, there is no DRAM
access fetching the data in same rank with M3, such that
the worst-case latency of M3 can be derived as Equation
(11). In contrast, either M12 or M14 fetches the data in rank

4. Therefore, the worst-case latency of M4 can be com-
puted by Equation (12).

Following the specific timing parameters given in
Table 2, the worst-case latency for C1, C2, C3, and C4 are
calculated as 63, 59, 63, and 66 cycles, respectively. In
contrast, the worst-case latency for all these DRAM
accesses in this example is estimated to be 73 cycles by
the conservative approach. It is clear that the overestima-
tion of the worst-case DRAM performance in the conser-
vative approach can be reduced by the basic approach.

(9)

(10)

(11)

(12)

D. An Enhanced Approach

Although the basic approach considers the effect of
DRAM command pipelining on the worst-case DRAM
performance, there is still overestimation due to the tim-
ing order constraints of the co-running DRAM accesses,
since the order of DRAM accesses of a given thread can
impact the timing order of DRAM accesses of other
threads. This problem can be explained by the example in
Fig. 7. Assuming that there are two DRAM accesses in
each thread, Thread 1 contains Mi, Mj and Thread 2 con-
tains Mk, Mi, where Mi and Ml fetch data on the same bank

C1 tCMD tRCD tCAS 2* tBURST 2* tRAS tRP+() tBUS + + + + + +=

tQUEUE

C2 tCMD tRCD tCAS tBURST tRAS tRP 2* tRP tRCD+() + + + + + + +=

tBUS tQUEUE+

C3 tCMD tRCD tCAS 2* tBURST 2* tRAS tRP+() tBUS + + + + + +=

tQUEUE

C4 tCMD 2* tRCD tCAS tBURST 2* tRAS 3* tRP+ tBUS + + + + + +=

tQUEUE

Algorithm 1 Basic Approach

Fig. 6. An example of estimating the worst-case DRAM performance
by the basic approach.

Bounding Worst-Case DRAM Performance on Multicore Processors

Yiqiang Ding et al. 61 http://jcse.kiise.org

and so do Mj and Mk. If the timing order is not taken into
account, there are two bank conflicts. However, it is clear
that the timing order of the threads is violated in the case
of two bank conflicts. If Mi and Ml are issued simulta-
neously from both threads and a bank conflict is taken
into account, Thread 2 must have reached the end of Ml,
and Thread 1 has not started the execution of Mj. This
indicates that the bank conflict between Mj and Mk cannot
happen. The same analysis can be applied between Mj

and Mk. Therefore, there is possibly only one bank con-
flict in the worst-case. Similarly, the same analysis can be
applied to rank conflicts.

An enhanced approach is proposed to compute the
worst-case DRAM performance more accurately by elim-
inating the bank conflicts and rank conflicts that can
never occur. A type of variables named Cpair is introduced
to define a pair of conflicting DRAM accesses between
two co-running threads. The value of Cpair is 1 when the
conflict may happen, whereas it is 0 if a conflict cannot
happen. Initially, a Cpair set is constructed on both bank
and rank levels to denote the possible bank or rank con-
flicts between the DRAM accesses from both threads only
based on the DRAM addresses of the data to be fetched.
The next step is to remove the Cpair set that are logically
impossible due to the execution order of both threads
from the Cpair set. This is implemented according to the
algorithms of the construction of the Cgraph and finding
the valid Cpair sets proposed by Yan and Zhang [17].

The construction of Cgraph is described in Algorithm 2.
The Cgraph is a directed graph, where all the vertices are
the Cpair set, and they are connected by edges. An edge is
added if and only if the execution of the DRAM accesses
in the two Cpair are logically possible by checking the
control flow graph of each thread. The next step is to con-
struct the valid Cpair set as described in Algorithm 3. This
algorithm initially uses Tiernan’s algorithm [18] to find
all the cycles in Cgraph, and then inserts them into V. Then,
the algorithm validates each cycle in V, as shown in Lines
6 to 10. If a cycle is invalid, it is then removed from V.
The algorithm finishes if all the cycles contained by other
cycles are removed from V.

VI. EVALUATION METHODOLOGY

In our evaluation, the simulation tool SimpleScalar [19]
is extended to simulate the multicore architecture to obtain
the simulated WCET. Also, the DRAM simulation tool
named DRAMSim [20] is integrated into the extended
SimpleScalar to support the accurate timing simulation of
DRAM memory access. The WCET analysis tool con-
sists of a front end and a back end. The front end of the
WCET analysis tool compiles benchmarks into common
object file format (COFF) binary code using the GCC
compiler, which is targeted to SimpleScalar. Then, it
obtains the global CFG and related information about the

instructions by disassembling the binary code generated.
Subsequently, the back end compiler performs static
cache analysis and the DRAM memory access timing
analysis with the enhanced ILP method. Finally a com-
mercial ILP solver, CPLEX [21], is used to solve the ILP
problem to obtain the estimated WCET.

In our evaluation, a homogeneous multicore processor
is simulated, and each core has an inclusive two-level

Algorithm 2 Cgraph Construction

Algorithm 3 V alid Cpair Set Construction

Fig. 7. An example of the overestimation without considering
the timing order constraints of different threads.

Journal of Computing Science and Engineering, Vol. 7, No. 1, March 2013, pp. 53-66

http://dx.doi.org/10.5626/JCSE.2013.7.1.53 62 Yiqiang Ding et al.

cache [22]. The cache configuration in each core is
described in Table 3. In order to focus on DRAM mem-
ory accesses from instruction accesses, the L1 data cache
in each core is assumed to be perfect. The size of the
shared DRAM memory between different cores in our
evaluation architecture is 128 kbytes, and its configura-
tion is shown in Table 4. The timing parameters of the
DRAM memory are given in Table 2.

We use 14 benchmarks from the Malardalen WCET
benchmark suite [23], and run them on processors with 2
cores, 4 cores, and 8 cores. The salient characteristics of
the benchmarks can be found in Table 5. In our experi-
ments, we study the following four schemes:

Conservative scheme: the WCET is computed by the
conservative approach.

Basic scheme: the WCET is calculated by the basic
approach.

Enhanced scheme: the WCET is derived by the
enhanced approach.

Simulated scheme: the WCET is obtained by the sim-
ulation.

VII. EXPERIMENTAL RESULTS

A. Results of Basic Scheme

We first study the estimated WCET obtained by both
the conservative approach and the basic approach in

cases of 2 cores, 4 cores, and 8 cores. Fig. 8 demonstrates
the averaged WCETs of the conservative scheme and the
basic scheme, which are normalized with those of the
simulated scheme in case of 2 cores, 4 cores, and 8 cores.

The overestimation of the conservative scheme, as
compared to the simulated scheme, increases with the
increase of the number of cores in the experiments. For 2
cores, the normalized WCET of the conservative scheme
is 27.5% larger than that of the simulated scheme on
average, and this difference increases to 37.5% and
46.7% for 4 cores and 8 cores, respectively. This can be
explained by Equation (8) derived from the conservative

Table 3. Basic configuration of the cache in the simulated
processor

L1 I-cache 256 bytes, direct-map, 16 bytes block,

1 cycle latency

L1 D-cache perfect

L2 cache 1024 bytes, direct-map, 32 bytes block,

10 cycle latency

Table 4. Basic configuration of the DRAM memory

Channel 1 Rank 2

Bank 8 Row 64

Column 16 Column width 8 bytes

Table 2. Timing parameters of the DRAM memory

Parameter Value Parameter Value

tBUS 10 cycles tQUEUE 10 cycles

tBURST 4 cycles tCMD 1 cycles

tCAS 3 cycles tRAS 10 cycles

tRCD 3 cycles tRP 4 cycles

Table 5. Salient characteristics of the benchmarks in case of 2
cores

Benchmark WCET
Memory

access time

L1

miss rate

(%)

L2

miss rate

(%)

Bs 689 373 28.24 45.83

Fibcall 589 342 10.53 45.45

Insertsort 1397 507 5.33 45.45

Matmul 1812 673 8.55 27.03

Biquad 2066 1113 16.57 35.56

Sqrt 2155 1096 9.34 48.44

Jfdct 2832 1564 14.91 38.18

Startup 4640 1220 7.42 16.51

Qurt 7175 2827 6.00 42.93

Ud 11846 1990 8.17 5.89

Ludcmp 14207 4560 11.10 15.87

Select 20483 7544 5.64 27.95

Qsort 20786 10831 10.32 34.71

Fft1 32523 15791 9.19 31.09

Fig. 8. The comparison of the averaged worst-case execution times
(WCETs) of the conservative scheme and the basic scheme
normalized with those of the simulated scheme in case of 2 cores,
4 cores, and 8 cores.

Bounding Worst-Case DRAM Performance on Multicore Processors

Yiqiang Ding et al. 63 http://jcse.kiise.org

approach, where the number of cores N is an important
factor to determine the value of this equation. With the
increase of N, the assumed conditions of the conservative
approach are less likely to happen.

In contrast, the WCET differences between the basic
scheme and the simulated scheme are much lower, at
20.7%, 21.8%, and 21.9% for 2 cores, 4 cores, and 8
cores, respectively. The reason for the lower overestima-
tion is that the basic approach considers the effects of
DRAM command pipelining among the consecutive DRAM
accesses. The overestimation of the basic approach origi-
nates from the assumption that a given DRAM access is
always executed after other co-running DRAM accesses,
and from the ignorance of the timing order constraints of
the co-running threads.

We also compare the memory access time of the con-
servative scheme, the basic scheme, and the simulated

scheme in Fig. 9. For the conservative scheme, the mem-
ory access time is overestimated by 56.3%, 69.8%, and
72.1% compared to the simulated scheme for 2 cores, 4
cores, and 8 cores, respectively. The Basic Scheme over-
estimates the memory access time by 39.9%, 39.7%, and
33.3% compared with the simulated scheme for 2 cores, 4
cores, and 8 cores, respectively.

B. Results of Enhanced Scheme

Fig. 10 compares the WCETs of each benchmark for
all four schemes. As expected, the enhanced scheme has
the tightest WCET results, which are only 16.8% higher
on average than that of the simulated WCET. The tighter
WCET estimation is a result of the more accurate analy-
sis of the memory access time. Fig. 11 shows the compar-
ison of the memory access time of each benchmark for all

Fig. 9. The comparison of the averaged memory access time of
the conservative scheme and the basic scheme normalized with
that of the simulated scheme in case of 2 cores, 4 cores and 8
cores.

Fig. 10. The comparison of the worst-case execution times
(WCETs) of the conservative scheme, the basic scheme, and the
enhanced scheme normalized with that of the simulated scheme
in case of 2 cores.

Fig. 11. The comparison of the memory access time of the conservative scheme, the basic scheme, and the enhanced scheme
normalized with that of the simulated scheme in case of 2 cores.

Journal of Computing Science and Engineering, Vol. 7, No. 1, March 2013, pp. 53-66

http://dx.doi.org/10.5626/JCSE.2013.7.1.53 64 Yiqiang Ding et al.

four schemes. Clearly, the enhanced scheme has the small-
est overestimation, which is 30.4% on average. In con-
trast, the conservative approach and the basic approach
result in 57.7% and 40.6% overestimation on average,
respectively.

C. Sensitivity Analysis

In addition, the basic configuration of the DRAM
memory in our experiment is extended to two configura-
tions by changing the number of the banks while keeping
the total size of the DRAM the same. In extended config-
uration I, the number of banks is increased to 16, and the
number of rows in each bank is reduced to 32. In contrast,
the number of banks is decreased to 4, but the number of
rows is increased to 128 in extended configuration II.
Experiments are conducted for the Enhanced Scheme and
the Simulated Scheme in these three DRAM configura-
tions for 2 cores. Fig. 12 shows the comparison of the
WCET of the enhanced scheme normalized with that of
the simulated scheme in the basic configuration, extended
configuration I, and extended configuration II for 2 cores.
The estimated WCETs of the enhanced scheme are
16.8%, 17.3%, and 16.3% larger than those of the simu-
lated scheme for the basic configuration, extended con-
figuration I, and extended configuration II, respectively,
indicating that the enhanced approach also works well
with different numbers of banks.

VIII. CONCLUSIONS

We have address the difficulties in bounding the worst-
case DRAM performance for a real-time application run-
ning on a multicore processor. The timing characteristics
of DRAM accesses were investigated based on a generic
DRAM access protocol, and it was found that the DRAM
command pipelining of consecutive DRAM accesses can
possibly impact the worst-case DRAM performance of a
real-time application running on a multicore processor. A

basic approach has been proposed for bounding the worst-
case DRAM performance by considering the worst-case
timing effects of DRAM command pipelining for the
sequences of consecutive DRAM accesses. An enhanced
approach has also been proposed for reducing the overes-
timation of DRAM access time by checking the timing
order constraints of the co-running applications to iden-
tify and remove impossible DRAM access sequences.

Our experiments show that compared with the conser-
vative approach, which assumes that no DRAM com-
mand pipelining exists, the basic approach can bound the
WCET more tightly. For example, 15.7% improved per-
formance was achieved on average for a 4-core proces-
sor. Moreover, the enhanced approach further improves
the tightness of WCET by 4.2% on average compared
with the basic approach.

In the future, our work will be extended to bound the
worst-case DRAM performance with data DRAM accesses.
The impact of the DRAM refresh on the WCET of a real-
time application [24] will be integrated in future work.

ACKNOWLEDGMENTS

This work was funded in part by the United States
National Science Foundation (NSF) Computing and Com-
munication Foundations (CCF) grant 0914543.

REFERENCES

1. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thes-

ing, D. Walley et al., “The worst-case execution time prob-

lem: overview of methods and survey of tools,” ACM

Transactions on Embedded Computing Systems, vol. 7, no.

3, article no. 36, 2008.

2. C. A. Healy, D. B. Whalley, and M. G. Harmon, “Integrat-

ing the timing analysis of pipelining and instruction cach-

ing,” in Proceedings the 16th IEEE Real-Time Systems

Symposium, Pisa, Italy, 1995, pp. 288-297.

3. F. Stappert, A. Ermedahl, and J. Engblom, “Efficient longest

executable path search for programs with complex flows and

pipeline effects,” in Proceedings of the International Confer-

ence on Compilers, Architecture, and Synthesis for Embed-

ded Systems, Atlanta, GA, 2001, pp. 132-140.

4. Y. T. S. Li and S. Malik. “Performance analysis of embed-

ded software using implicit path enumeration,” in Proceed-

ings of the 32nd Annual ACM/IEEE Design Automation

Conference, San Francisco, CA, 2005, pp. 456-461.

5. Y. T. S. Li, S. Malik, and A. Wolfe, “Cache modeling for

real-time software: beyond direct mapped instruction caches,”

in Proceedings of the 17th IEEE Real-Time Systems Sympo-

sium, Washington, DC, 1996, p. 254.

6. G. Ottosson and M. Sjodin, “Worst-case execution time anal-

ysis for modern hardware architectures,” in Proceedings of

ACM/SIGPLAN Workshop on Languages, Compilers and

Tools for Real-Time Systems, Las Vegas, NV, 1997.

Fig. 12. The comparison of the worst-case execution time
(WCET) of the enhanced scheme normalized with that of the
simulated scheme in basic configuration, extended configuration I
and extended configuration II for 2 cores.

Bounding Worst-Case DRAM Performance on Multicore Processors

Yiqiang Ding et al. 65 http://jcse.kiise.org

7. T. Moscibroda and O. Mutlu, “Memory performance attacks:

denial of memory service in multi-core systems,” in Pro-

ceedings of the 16th USENIX Security Symposium, Boston,

MA, 2007.

8. J. H. Ahn, M. Erez, and W. J. Dally, “The design space of

data-parallel memory systems,” in Proceedings of the ACM/

IEEE Conference on Supercomputing, Tampa, FL, 2006, arti-

cle no. 80.

9. G. L. Yuan and T. M. Aamodt, “A hybrid analytical DRAM

performance model,” in Proceedings of the 5th Annual

Workshop on Modeling, Benchmarking and Simulation, Aus-

tin, TX, 2009.

10. I. Y. Bucher and D. A. Calahan, “Models of access delays in

multiprocessor memories,” IEEE Transactions on Parallel

Distributed Systems, vol. 3, no. 3, pp. 270-280, 1992.

11. H. Choi, J. Lee and W. Sung, “Memory access pattern-aware

DRAM performance model for multi-core systems,” in Pro-

ceedings of the IEEE International Symposium on Perfor-

mance Analysis of Systems and Software, Austin, TX, 2011,

pp. 66-75.

12. R. Bourgade, C. Ballabriga, H. Casse, C. Rochange, and P.

Sainrat, “Accurate analysis of memory latencies for WCET

estimation,” in Proceedings of the 16th International Confer-

ence on Real-Time and Network Systems, Rennes, France,

2008, pp. 161-170.

13. B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems:

Cache, DRAM, Disk, Amsterdam: Elsevier, 2008.

14. E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana, “Self-

optimizing memory controllers: a reinforcement learning

approach,” in Proceedings of the 35th International Sympo-

sium on Computer Architecture, Beijing, China, 2008, pp.

39-50.

15. K. J. Nesbit, N. Aggarwal, J. P. Laudon, and J. E. Smith,

“Fair queuing memory systems,” in Proceedings of the 36th

Annual IEEE/ACM International Symposium on Microarchi-

tecture, Orlando, FL, 2006, pp. 208-222.

16. S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.

Owens, “Memory access scheduling,” in Proceedings of the

27th Annual International Symposium on Computer Archi-

tecture, Vancouver, Canada, 2000, pp. 128-138.

17. J. Yan and W. Zhang, “WCET analysis for multi-core pro-

cessors with shared L2 instruction caches,” in Proceedings of

14th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium, St. Louis, MO, 2008, pp. 80-89.

18. J. C. Tiernan, “An efficient search algorithm to find the ele-

mentary circuits of graph,” Communication of the ACM, vol.

13, no. 12, pp. 722-726, 1970.

19. SimpleScalar, http://www.simplescalar.com.

20. DRAMSim2, http://www.ece.umd.edu/dramsim/.

21. IBM ILOG CPLEX Optimizer, http://www.ilog.com/prod-

ucts/cplex/.

22. D. Hardy and I. Puaut, “WCET analysis of multi-level non-

inclusive set-associative instruction caches,” in Proceedings

of the 29th Real-Time Systems Symposium, Barcelona, Spain,

2008, pp. 456-466.

23. J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The

Malardalen WCET benchmarks: past, present and future,” in

Proceedings of the 10th International Workshop on Worst-

Case Execution Time Analysis, Brussels, Belgium, 2010, pp.

137-147.

24. P. Atanassov and P. Puschner, “Impact of DRAM refresh on

the execution time of real-time tasks,” in Proceedings of

IEEE International Workshop on Application of Reliable

Computing and Communication, Seoul, Korea, 2001.

Yiqiang Ding

Yiqiang Ding is currently a Ph.D. student in Electrical and Computer Engineering at Virginia Commonwealth
University. He received the B.S. degree of computer science in 2002 and the M.S. degree of computer
engineering in 2005 from the Beijing University of Posts and Telecommunications in China. He worked in
Motorola China Design Center as a system engineer from 2005 to 2007. His research interests are in
embedded and real-time computing systems, computer architecture and compiler.

Journal of Computing Science and Engineering, Vol. 7, No. 1, March 2013, pp. 53-66

http://dx.doi.org/10.5626/JCSE.2013.7.1.53 66 Yiqiang Ding et al.

Lan Wu

Lan Wu received her B.S. of Computer Science in July 2004 from University of Science and Technology of
China, and M.S. of Computer Engineering in July 2007 from North China Institute of Computing Technology.
She is now a Ph.D. student of Computer Engineering in Virginia Commonwealth University. Her research
interests focus on Real-time and Embedded Systems, Computer Architecture and Virtualization.

Wei Zhang

Wei Zhang is an associate professor in Electrical and Computer Engineering of Virginia Commonwealth
University. Dr. Zhang received his Ph.D. from the Pennsylvania State University in 2003. From August 2003 to
July 2010, Dr. Zhang worked as an assistant professor and then as an associate professor at Southern Illinois
University Carbondale. His research interests are in embedded and real-time computing systems, computer
architecture, compiler, and low-power systems. Dr. Zhang has received the 2009 SIUC Excellence through
Commitment Outstanding Scholar Award for the College of Engineering, and 2007 IBM Real-time Innovation
Award. His research has been supported by NSF, IBM, Intel, Motorola and Altera. He is a senior member of the
IEEE. He has served as a member of the organizing or program committees for several IEEE/ACM
international conferences and workshops.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

