
Copyright 2013. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 7, No. 2, June 2013, pp. 89-98

Overview of Real-Time Java Computing

Yu Sun

Department of Electrical and Computer Engineering, Southern Illinois University Carbondale, Carbondale, IL, USA

sunyu@engr.siu.edu

Wei Zhang*

Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA

wzhang4@vcu.edu

Abstract
This paper presents a complete survey of recent techniques that are applied in the field of real-time Java computing. It

focuses on the issues that are especially important for hard real-time applications, which include time predictable gar-

bage collection, worst-case execution time analysis of Java programs, real-time Java threads scheduling and compiler

techniques designed for real-time purpose. It also evaluates experimental frameworks that can be used for researching

real-time Java. This overview is expected to help researchers understand the state-of-the-art and advance the research in

real-time Java computing.

Category: Embedded computing

Keywords: Performance; Reliability; Java; WCET analysis; Compiler; Hard real-time systems

I. INTRODUCTION

Real-time systems ranging from aircraft and nuclear

power plant controllers to video games and speech recog-

nition have become an increasingly important part of our

society. The small stand-alone real-time applications of

the past are giving way to a new type of networked real-

time systems that are running on heterogeneous comput-

ing and networking environments; for example, integrated

battleship management, VoIP-based telecommunications,

stock arbitrage, and automotive systems [1]. The soft-

ware development for real-time systems has also become

more and more complex, due to the increase in the size,

longevity, and required features of these systems. Follow-

ing its successful use in Web applications, middleware,

and enterprise software development, Java can offer sig-

nificant advantages such as productivity, reliability, and

portability for developing large and complex real-time

software, and thus becomes an attractive option for real-

time software design. A study by Nortel Networks indi-

cated that using real-time Java doubled their productivity

in developing telecom equipment and base stations [2].

For real-time systems, especially hard real-time and

safety-critical systems, it is crucial to know the worst-

case execution time (WCET) [3] to ensure that each task

can meet its deadline. WCET should be computed based

on static timing analysis, rather than measurement alone,

because in general it is impossible to exhaustively mea-

sure all program paths in order to locate the longest exe-

cution time. The WCET of a real-time task however, is

heavily dependent on the programming language used to

implement this task, as well as the target processor and

Received 21 April 2013, Accepted 12 May 2013

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2013.7.2.89 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 7, No. 2, June 2013, pp. 89-98

http://dx.doi.org/10.5626/JCSE.2013.7.2.89 90 Yu Sun and Wei Zhang

the compiler optimizations. Java, designed to run its byte

code on Java Virtual Machine (JVM) for portability across

different computing platforms, is a serious challenge for

predictable execution and WCET analysis. Without solv-

ing this problem, Java cannot be safely used in hard real-

time and safety-critical systems. Even for firm or soft real-

time systems, unpredictable and varied execution time of

Java computing may significantly compromise the qual-

ity of service.

Traditional JVM designs have mainly focused on improv-

ing the average-case performance, which may result in

too much unpredictability with the use of multiple threads,

dynamic compilation, automatic garbage collection, and

so on. Since the first discussion of issues in design and

implementation of real-time Java [4] was proposed in the

1990s, a considerable amount of remarkable research work

has been done to adapt Java to real-time purpose. The

Real-Time for Java Experts Group began to develop Real-

Time Specification for Java (RTSJ) in March 1999 [5].

The RTSJ has been evaluated for uses in avionics and

space systems by Boeing and Jet Propulsion Laboratory

(JPL) [6, 7]. There are also a number of commercial

implementations such as Sun Microsystems Mackinac,

IBM WebSphere Real Time, TimeSys jTime, and Aicas

JamaicaVM, as well as several open source implementa-

tions including OVM and jRate. A more recent effort

regarding safety-critical Java software is the Safety-Criti-

cal Java (SCJ) Specification [8].

Due to the widespread use of real-time applications

and the increasing use of Java in developing real-time

software with hard deadlines, it becomes important for

real-time researchers and developers to understand how

to achieve time predictability in Java based computing.

This paper presents an overview of the most recent and

important studies in the area of real-time Java computing.

More specifically, this paper will present related studies

on real-time Java in the following topics:

- Real-time threads and scheduling

- Time predictability of Java code

- Bounded garbage collection

- Suitable compilation and optimization

The rest of this paper is organized by these four main

issues. Sections II to V present the newest work on one of

the above topics. Section VI describes a special way to

implement real-time Java by hardware, that is, Java pro-

cessor. Section VII discusses available tools and frame-

works that may be used for real-time Java research and

the last section gives the summary and conclusion.

II. REAL-TIME THREADS AND SCHEDULING

The RTSJ [5] by Java Expert Group firstly gives an

abstract definition of real-time threads and scheduling.

Two kinds of real-time threads are defined in addition to

normal Java threads. One is real-time thread and another

is no-heap real-time thread. NHRTs are not permitted to

access the heap so that it can avoid the possible delay

caused by garbage collection. On the other hand, RTs can

access heap so that they have more flexibility in coding

and are suitable for code with a higher tolerance for

longer delays, such as soft real-time application.

The RTSJ also provided minimum requirements for

real-time Java scheduling. All implementation of RTSJ must

provide a fixed-priority preemptive scheduler with no

fewer than 28 unique priorities. RTSJ is open for exten-

sion of other scheduling algorithms, and the implementa-

tion relies on the support of real-time operating systems.

Similarly to RTSJ definition, the Ravenscar-Java [9]

defines its real-time threads and scheduler. Additionally,

it derives two specific types of threads from RTSJ: peri-

odic real-time threads and sporadic event handlers. This

design is based on the behavior of real-time applications

whereby most threads wake up and do their job after

fixed time intervals.

III. TIME PREDICTABILITY OF JAVA CODE

It is necessary for real-time Java applications to know

the WCET of Java programs. Since Java code is firstly

compiled into Java byte code (JBC) and then executed on

JVMs, it is quite natural to analyze the WCET of a Java

program in two steps: JBC level and lower platform-

dependent level.

A. WCET Analysis at JBC Level

There have been many research efforts to conduct

WCET analysis for C programs. Lundqvist and Stenstrom

[10] discovered timing anomalies in out-of-order super-

scalar processors. Li and Malik [11] and Li et al. [12]

proposed the implicit path enumeration technique (IPET)

to compute the worst-case path for deriving the WCET

accurately. Recently, the timing analysis has been extended

from single-core processors [13-19] to multicore proces-

sors [20-28]. A good summary of contributions in the area

of WCET analysis can be found in [3].

Java itself is very friendly to JBC level WCET static

analysis with its well-formed object-oriented structure

and features. JBC stored in Java class files is easily read

and analyzed by the WCET analyzer, which generates

control flow graph (CFG) and basic block (BB) of given

Java programs. With Java annotations which are sup-

ported by most modern Java compilers, additional infor-

mation such as loop bounds can also be provided.

A series of works have been done in this area. Puschner

and Bernat [29] described a general method that can be

applied for the Java program using the integer linear pro-

Overview of Real-Time Java Computing

Yu Sun and Wei Zhang 91 http://jcse.kiise.org

gramming (ILP) technique. Bernat et al. [30] provided an

implementation of the WCET analyzer based on Java

annotations. Bate et al. [31] modified the Kaffe [32] and

Komodo [33] to support WCET of Java applications run-

ning on these two JVMs. Control flow and data flow are

both considered in these studies. The works in [34, 35]

designed an extension to bring loop bounds, timing modes,

and dynamic dispatch semantics into the WCET analyzer.

Harmon and Klefstad [36] then attempted to construct a

standard of Java annotations for WCET analysis, based

on all previous works. Hepp and Schoeberl [37] explored

WCET-based optimizations for Java programs.

B. Platform-Dependent WCET Analysis for
Java

The only gap between JBC WCET and reality is the

low level, platform-dependent timing model of JVMs.

The exact execution time of each JBC and combination

of JBCs is needed to compute the final WCET of any

Java program. Hu et al. [38] attempted to solve this prob-

lem by two methods: profiling based and benchmark

based. The profiling method inserts instrument codes into

the Java program and collects execution times of JBCs.

As another way, by running specially designed bench-

marks, the same job can be done on all kinds of platforms

without changing the instrument codes. Bate et al. [39]

studied the JBC execution overhead due to the JVMs and

processor pipelines, as well as the effects on the WCET

of each JBC. However, these works are all measurement

based. There is still no way to statically analyze the low

level WCET for a particular JVM and platform.

IV. REAL-TIME JAVA MEMORY MANAGEMENT

Java’s automatic memory management, garbage col-

lection (GC), is a very good feature and brings great ben-

efit to software development. However, most current

garbage collectors are not time predictable. As a result,

GC actually prevents Java programs from being adapted

in the real-time area. It is totally unacceptable that a real-

time task is interrupted by GC thread and does not know

when it can be up and running again.

A. Bypassing Garbage Collection

The first idea is to remove the unpredictable GC from

the real-time Java system. That is why the scoped mem-

ory and immortal memory section are defined in RTSJ

[5]. In this case, the objects in real-time threads are man-

aged by programmers instead of JVMs. The developers

take care of the memory areas that are used for real-time

tasks and leave the other part to GC. The GC thread holds

lower priority than real-time threads and thus cannot

interfere with them. Time predictability is guaranteed but

the flexibility is lost in development. Most of the imple-

mentations of RTSJ support this kind of technique bypass-

ing GC. Besides, researchers made an effort to improve

the efficiency of this scoped memory. Beebee and Rinard

[40] implemented the scoped memory model and evalu-

ated its efficiency. Corsaro and Schmidt [41] presented

another implementation of real-time JRate. Pizlo et al.

[42] presented an informal introduction to the semantics

of the scoped management rules of the RTSJ, and it also

provided a group of design patterns which can be applied

to achieve a higher efficiency of scoped memory. Andreae

[43] provided a complete programming model of the

scoped memory model to simplify the memory analysis

that has to be done by developers. Bypassing GC is proved

to be easy to apply to existing JVMs and brings small

overhead to runtime memory management. However, it is

limited because of the great difficulty it brought to the

developers. Without the GC feature, programmers have

to pay much more attention to the objects in real-time

tasks to avoid memory error. Although scoped memory

may be a good solution of small short-term projects, real-

time GC is definitely necessary for future real-time Java

systems.

B. Time-Predictable Garbage Collection

Baker’s incremental copying collector [44] is the first

idea of real-time GC. In this work, the memory mutator

operation leads to the GC operation. Hence, GC is pre-

dictable and the worst case is that every read or allocation

invokes a certain amount of collection operations. It is

not very efficient yet provides a way to implement real-

time GC. This so called work-based GC is then devel-

oped by many other following researchers, such as [45]

and [46] in JamaicaVM. The basic idea is kept while

overhead of allocation detection and unnecessary collec-

tion is significantly reduced. Even hardware can be used

to assist GC efficiency and reduce WCET bounds, as pre-

sented in [47].

On the other hand, Bacon et al. [48] developed a time-

based approach that invokes a collector at regular inter-

vals. This kind of GC requires read/write barriers in order

to maintain consistency, and the memory allocation must

be time predictable. The quota of CPU time for GC can

be dynamically computed and set at runtime based on the

memory usage of real-time threads. This technique is

then applied in IBM’s real-time JVM [49] named as Met-

ronome [50, 51]. Henriksson [52] also proposed a time-

based GC strategy which set the collector to active only

when the processor is idle. The idea then is improved in

[53]. The key issue of time-based real-time GC is how

much time should be given to the collector. Schoeberl

and Vitek [54] presented the algorithm to compute the

GC quota and interval in their study. Cho et al. [55] used

Journal of Computing Science and Engineering, Vol. 7, No. 2, June 2013, pp. 89-98

http://dx.doi.org/10.5626/JCSE.2013.7.2.89 92 Yu Sun and Wei Zhang

statistical tools to guarantee the algorithm’s effectiveness

and superiority.

C. Concurrent Garbage Collection

Both time-based and work-based real-time GC have

the same problem, that is, the processor is fully occupied

by the collector thread at the GC stage. Thus thread

switching has to be performed when a real-time task is

presented. Fortunately, the improvement of multiproces-

sor technique brings a new approach that can avoid this

problem. The concurrent GC runs on a different proces-

sor other than real-time tasks. As a result, the overhead of

switching threads is reduced to a minimum. However, there

are several serious challenges: synchronization between

processors, access lock to memory objects, and so on.

The first multiprocessor concurrent GC implementa-

tion was presented by [56], which applied the algorithm

in [57] on a 64-processor machine. It greatly reduced the

pause time of GC to the millisecond level. After that, var-

ious kinds of concurrent GC algorithms and implementa-

tions were presented by researchers to further improve it.

Xian and Xiong [58] showed that their technique can

effectively reduce the memory amount used by concur-

rent real-time GC, which is relatively huge. Sapphire [59]

implemented a copying collector for Java with low over-

head and short pause time. Pizlo et al. [60] compared

three lock-free concurrent GC algorithms: STOPLESS

[61], CHICKEN, and CLOVER, which have the pause

time as microsecond level. Although these algorithms are

designed for and implemented by C#, it is easy to adapt

them to Java since they are similar VM based language.

V. COMPILATION FOR REAL-TIME JAVA

Compilation and optimization are also critical issues of

real-time Java. Just-in-time (JIT) compilation is already

widely used in modern JVMs because of the performance

boost it provides. Speculative optimizations are also an

essential part now in many advanced JVMs. However,

the JIT compiler and some optimizations bring unpredict-

ability into Java applications, so that they cannot be sim-

ply used in real-time Java systems, where an old interpreter

and ahead-of-time (AOT) compiler take their chances.

A. Interpretation

Interpretation is the most original way to execute

JBCs. It reads the JBCs from classes and translates them

into native code, and then executes them. It is slow but

has excellent time predictability as the interpretation of

each JBC can be easily measured. For this reason, most

real-time JVMs, such as IBM WebSphere VM [49], Sun

Java Real-Time System [62], and Open VM [63], provide

the interpreter mode. However, the performance limits

this mode to be used in modern real-time systems.

B. JIT Compilation

To improve interpreter performance, JVMs use the JIT

compiler to compile the code sequence into native code

on the fly before it executes. However, the JIT-only strat-

egy introduces compilation overhead at runtime. To address

this problem, a JVM can focus on optimizing only “hot-

spots”, while the rest of the code can be either interpreted

or compiled by a basic compiler without optimization.

Examples of adaptive optimization systems include HotSpot

virtual machine [64] from Sun (now Oracle), Jikes RVM

[65] from IBM, and Open Runtime Platform (ORP) [66]

from Intel Corporation. To identify hot-spots, researchers

have proposed to use online hardware profiling mecha-

nisms such as counters and samplings [67-71], or to use

program instrumentation [72-78], combined instrumenta-

tion and sampling [79-81], or coupled offline and online

profiling [82]. To further improve adaptive optimization,

a number of techniques have been developed; for exam-

ple, recompilation [83], deferred and partial compilation

[84-86], and dynamic deoptimization [87]. The idea of

dynamic and adaptive compilation has also been extended

and studied in other contexts, among them hybrid JIT

compilation [88], trace-based parallelization [89-93], and

adaptive garbage collection [94].

While the JIT compiler is useful for improving the aver-

age-case performance of non-real-time Java applications,

for real-time systems, the JIT compiler has two main

drawbacks. One is that it interrupts other threads from

execution and the time it takes is unpredictable. Sec-

ondly, the speculative optimizations are not suitable for

real-time applications. [95] compared AOT and JIT com-

pilers and [96] introduced their implementation and eval-

uation in IBM WebSphere VM. However, the JIT compiler

is still capable of soft real-time systems, as reported in

[1]. A carefully managed priority is necessary and some

optimizations must be turned off. In addition, Sun and

Zhang [97, 98] explored multicore processors to improve

time predictability of dynamic compilation.

C. AOT Compilation

The AOT compiler does most of the work before exe-

cution, with only the dynamic part left to runtime. The

AOT compilation can provide higher performance than

interpretation, while keeping good time predictability.

However, the part that the AOT compiler cannot com-

plete before execution is very crucial to the performance.

For example, the AOT compiler has no idea of class ref-

erences nor dynamically generated classes. It has to use a

resolution thread to patch such information during runt-

ime. Furthermore, none of the aggressive inlining can be

performed by the AOT compiler due to lack of class ref-

erences, which loses a great chance to improve perfor-

Overview of Real-Time Java Computing

Yu Sun and Wei Zhang 93 http://jcse.kiise.org

mance. In any case, the AOT compiler is still the best

choice for hard real-time systems, and is included in most

modern real-time JVMs [49, 62, 63].

VI. JAVA PROCESSORS FOR REAL-TIME
COMPUTING

Beside all the above software approaches, hardware

implementation of JVM which is called Java processor is

also presented as a solution of real-time systems. Basi-

cally, a Java processor is a stack based processor and exe-

cutes JBC directly. Method cache and stack cache take

the places of instruction cache and data cache, separately,

inside of Java processors. It is possible that Java proces-

sors are designed to be deterministic in terms of execu-

tion time. Komodo [33] is an early implementation of

Java processors that provide the main Java features and

support real-time tasks. [99] continued working on Komodo

processor with advanced scheduling and event-handling

algorithms. SHAP [100] is another Java processor that is

designed specifically for real-time systems. It imple-

ments fast context switching and concurrent GC. JOP

[101, 102] is a well-developed Java processor which is

WCET analyzable. Method cache in JOP simplifies the

analysis of WCET in control flow, because only thread

switching can introduce cache misses. Tools for perform-

ing WCET analysis on JOP is provided in [103]. The

high level WCET analysis is based on ILP and a low

level timing model is provided by JOP properties. Similar

works have also been done in [104, 105]. Besides, Har-

mon and Klefstad [106] adapted their work of WCET

annotation to Java processors, and made it interactive to

developers in order to offer various feedbacks.

VII. EXPERIMENTAL FRAMEWORKS

The research resources of real-time Java are quite lim-

ited. Only a few real-time JVMs are completed and fewer

of them are under an open-source license.

IBM [49] and Sun Microsystem (now Oracle) [62] are

two main companies who provide well-developed com-

mercial real-time Java products. Evaluation or academic

version of their real-time JVM can be obtained from the

Internet. However, the source code is unavailable.

OVM [63] is a good choice. It is open-sourced, sup-

ports most of RTSJ’s features, and is still an active research

project [6, 107] with some documents. It has been tested

in our lab and appears to work well. There are two main

problems with OVM: first, its JIT compiler is quite sim-

ple and incomplete (lack of dynamic class loading);

second, OVM is obviously designed for a single proces-

sor. Extra work is needed if we want to do some research

on multicore systems.

An alternative may be jRate [108], whose source code

is also available. jRate is an extension to the GNU GCJ

compiler and a group of runtime libraries. It implemented

most features needed by RTSJ.

Another candidate is Jikes RVM [65]. Although Jikes

RVM is not designed for real time purpose, it is the most

completed open-source JVM. Actually the prototype of

the Metronome garbage collector is implemented on Jikes

RVM. So it is possible to develop real-time extension for

Jikes RVM.

A Java library named Javolution [109] may be helpful.

It is an extended library on Sun Java implementing RTSJ.

It is open-sourced.

Aside from these software solutions, the JOP [101]

Java processor is also open-sourced, in VHDL format. So

it is possible to combine it with some simulators such as

SimpleScalar or Trimaran so as to build a multiprocessor

system. There is some research work [110] focusing on

multiprocessor, and I think this is a very promising research

field.

VIII. CONCLUSIONS

Real-time embedded systems have increasingly become

integral to our society. Real-time applications range from

safety-critical systems such as aircraft and nuclear power

plant controllers, to entertainment software such as video

games and graphics animation. Recently, there have been

growing interests in using Java for a wide variety of both

soft- and hard-real-time systems, primarily due to Java’s

inherent features such as platform independence, scalabil-

ity and safety. However, to enable real-time Java comput-

ing, the computation time of Java applications must be

predictable, which is especially important for hard real-

time and safety-critical systems.

This paper surveys this relatively new research area,

which is expected to help researchers understand the

state-of-the-art and to advance the real-time Java comput-

ing. In this work, we have reviewed the RTSJ and the

WCET analysis of Java applications at both the byte code

level and the architectural level. Since garbage collection

can disrupt the time predictability, we have surveyed the

state-of-the-art solutions of real-time Java GC for both

uniprocessors and multiple processors. Due to the impor-

tance of JIT compilation on the performance of Java pro-

grams, we have also discussed the compiler issues for

real-time Java applications. In addition to the software-

based solutions to achieve time-predictable Java comput-

ing, we have also briefly explained the current work in

designing real-time Java processors. To assist new research-

ers in selecting a suitable real-time Java experimental

framework, this paper also listed a number of current

open-source and private real-time JVMs, libraries and

soft Java processors.

As can be seen in this overview, real-time Java com-

puting is an active and promising research field. There

Journal of Computing Science and Engineering, Vol. 7, No. 2, June 2013, pp. 89-98

http://dx.doi.org/10.5626/JCSE.2013.7.2.89 94 Yu Sun and Wei Zhang

are many research challenges and opportunities as well.

Based on this survey, further investigation is still needed

in the following directions:

- Time-predictable dynamic compilation for real-time

Java applications

- Real-time Java on multiprocessor (multiple unipro-

cessor OR uniprocessor+Java processor)

- Low level Java WCET analysis with architectural

timing information (cache, branch prediction, etc.)

- Multiprocessor/multicore real-time GC algorithms.

REFERENCES

1. J. Auerbach, D. F. Bacon, B. Blainey, P. Cheng, M. Daw-

son, M. Fulton, D. Grove, D. Hart, and M. Stoodley,

“Design and implementation of a comprehensive real-time

Java virtual machine,” in Proceedings of the 7th ACM &

IEEE International Conference on Embedded Software,

Salzburg, Austria, 2007, pp. 249-258.

2. D. Lammers (2005, Mar 28), “Real-time Java: reliability

quest fuels RT Java projects,” Electronic Engineering Times,

http://www.eetimes.com/electronics-news/4052151/REAL-

TIME-JAVA-Reliability-quest-fuels-RT-Java-projects.

3. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thes-

ing, D. B. Whalley, G. Bernat, C. Ferdinand, R. Heckmann,

T. Mitra, et al., “The worst-case execution time problem:

overview of methods and survey of tools,” ACM Transac-

tions on Embedded Computing Systems, vol. 7, no. 3, arti-

cle no. 36, 2008.

4. K. Nilsen, “Issues in the design and implementation of real-

time Java,” http://www.cs.cornell.edu/courses/cs614/1999sp/

papers/rtji.pdf.

5. J. Gosling and G. Bollella, The Real-Time Specification for

Java, Boston, MA: Addison-Wesley, 2000.

6. J. Baker, A. Cunei, C. Flack, F. Pizlo, M. Prochazka, J.

Vitek, A. Armbruster, E. Pla, and D. Holmes, “A real-time

Java virtual machine for avionics: an experience report,” in

Proceedings of the 12th IEEE Real-Time and Embedded

Technology and Applications Symposium, San Jose, CA,

2006, pp. 384-396.

7. D. Sharp, “Real-time distributed object computing: ready

for mission-critical embedded system applications,” in Pro-

ceedings of the 3rd International Symposium on Distrib-

uted Objects and Applications, Rome, Italy, 2001, pp. 3-4.

8. T. Henties, J. Hunt, D. Locke, K. Nilsen, M. Schoeberl, and

J. Vitek, “Java for safety-critical applications,” in 2nd Inter-

national Workshop on the Certification of Safety-Critical

Software Controlled Systems, York, UK, 2009.

9. J. Kwon, A. Wellings, and S. King, “Ravenscar-Java: a high

integrity profile for real-time Java,” in Proceedings of the

2002 Joint ACM-ISCOPE Conference on Java Grande,

Seattle, WA, 2002, pp. 131-140.

10. T. Lundqvist and P. Stenstrom, “Timing anomalies in dynam-

ically scheduled microprocessors,” in Proceedings of the

20th IEEE Real-Time Systems Symposium, Phoenix, AZ,

1999, pp. 12-21.

11. Y. S. Li and S. Malik, “Performance analysis of embedded

software using implicit path enumeration,” in Proceedings

of the ACM SIGPLAN Workshop on Languages, Compil-

ers, and Tools for Real-Time Systems, San Francisco, CA,

1995, pp. 456-461.

12. Y. S. Li, S. Malik, and A. Wolfe, “Efficient microarchitec-

ture modeling and path analysis for real-time software,” in

Proceedings of the 16th Real-Time Systems Symposium,

Pisa, Italy, 1995, p. 298.

13. R. Arnold, F. Mueller, D. Whalley, and M. Harmon, “Bound-

ing worst-case instruction cache performance,” in Proceed-

ings of the 15th IEEE Real-Time Systems Symposium, San

Juan, Puerto Rico, 1994, pp. 172-181.

14. Y. S. Li, S. Malik, and A. Wolfe, “Cache modeling for real-

time software: beyond direct mapped instruction cache,” in

Proceedings of the 17th Real-Time Systems Symposium,

Washington, DC, 1996, pp. 254-263.

15. M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm, “Cache

behavior prediction by abstract interpretation,” Static Analy-

sis, Lecture Notes in Computer Science vol. 1145, R. Cou-

sot and D. Schmidt, editors, Heidelberg: Springer, pp. 52-

66, 1996.

16. J. Yan and W. Zhang, “WCET analysis of instruction caches

with prefetching,” in Proceedings of the ACM SIGPLAN/

SIGBED Conference on Languages, Compilers, and Tools

for Embedded Systems, San Diego, CA, 2007, pp. 175-184.

17. B. Lesage, D. Hardy, and I. Puaut, “WCET analysis of

multi-level set-associative data caches,” in Proceedings of

the 9th International Workshop on Worst-Case Execution

Time Analysis, Dublin, Ireland, 2009.

18. B. Huynh, L, Ju, and A. Roychoudhury, “Scope-aware data

cache analysis for WCET estimation,” in Proceedings of the

17th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium, Chicago, IL, 2011, pp. 203-212.

19. X. Li, A. Roychoudhury, and T. Mitra, “Modeling out-of-

order processors for software timing analysis,” in Proceed-

ings of the 25th IEEE International Real-Time Systems

Symposium, Lisbon, Portugal, 2004, pp. 92-103.

20. J. Yan and W. Zhang, “WCET analysis for multi-core pro-

cessors with shared instruction caches,” in Proceedings of

14th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium, St. Louis, MO, 2008, pp. 80-89.

21. W. Zhang and J. Yan, “Accurately estimating worst-case

execution time for multi-core processors with shared

instruction caches,” in Proceedings of the 15th IEEE Inter-

national Conference on Embedded and Real-Time Comput-

ing Systems and Applications, Beijing, China, 2009, pp.

455-463.

22. Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roy-

choudhury, “Timing analysis of concurrent programs run-

ning on shared cache multi-cores,” in Proceedings of the

IEEE Real-time System Symposium, Washington, DC, 2009,

pp. 57-67.

23. W. Zhang and J. Yan, “Static timing analysis of shared

caches for multicore processors,” Journal of Computing Sci-

ence and Engineering, vol. 6, no. 4, pp. 267-278, 2012.

24. L. Wu and W. Zhang, “A model checking based approach

to bounding worst-case execution time for multicore proces-

sors,” ACM Transactions on Embedded Computer Systems,

vol. 11, no. S2, article no. 56, 2012.

Overview of Real-Time Java Computing

Yu Sun and Wei Zhang 95 http://jcse.kiise.org

25. Y. Ding and W. Zhang, “Multicore real-time scheduling to

reduce inter-thread cache interferences,” Journal of Com-

puting Science and Engineering, vol. 7, no. 1, pp. 67-80,

2013.

26. M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract

interpretation with model checking for timing analysis of

multicore software,” in Proceedings of the 31th IEEE Inter-

national Real-time System Symposium, San Diego, CA,

2010, pp. 339-349.

27. T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A.

Roychoudhury, “Bus-aware multicore WCET analysis

through TDMA offset bounds,” in Proceedings of the 23rd

Euromicro Conference on Real-time Systems, Porto, Portu-

gal, 2011, pp. 3-12.

28. S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Model-

ing shared cache and bus in multi-cores for timing analy-

sis,” in Proceedings of the 13th International Workshop on

Software and Compilers for Embedded Systems, St. Goar,

Germany, 2010, article no. 6.

29. P. Puschner and G. Bernat, “Wcet analysis of reusable por-

table code,” in Proceedings of the 13th Euromicro Confer-

ence on Real-Time Systems, Delft, the Netherlands, 2001,

pp. 45-52.

30. G. Bernat, A. Burns, and A. Wellings, “Portable worst-case

execution time analysis using Java byte code,” in Proceed-

ings of the 12th Euromicro conference on Real-time sys-

tems, Stockholm, Sweden, 2000, pp. 81-88.

31. L. Bate, G. Bernat, and P. Puschner, “Java virtual-machine

support for portable worst-case execution-time analysis,” in

Proceedings of the 5th IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, Wash-

ington, DC, 2002, pp. 83-90.

32. Kaffe Java Virtual Machine, http://www.kaffe.org/.

33. U. Brinkschulte, C. Krakowski, J. Kreuzinger, and T.

Ungerer, “A multithreaded Java microcontroller for thread-

oriented real-time event handling,” in Proceedings of the

International Conference on Parallel Architectures and

Compilation Techniques, Newport Beach, CA, 1999, pp.

34-39.

34. E. Y. Hu, G. Bernat, and A. Wellings, “Addressing dynamic

dispatching issues in WCET analysis for object-oriented

hard real-time systems,” in Proceedings of the 5th IEEE

International Symposium on Object-Oriented Real-Time

Distributed Computing, Washington, DC, 2002, pp. 109-

116.

35. E. Y. Hu, A. Wellings, and G. Bernat, “XRTJ: an extensible

distributed high-integrity real-time Java environment,” Real-

Time and Embedded Computing Systems and Applications,

Lecture Notes in Computer Science vol. 2968, J. Chen and

S. Hong, editors, Heidelberg: Springer, pp. 208-228, 2004

36. T. Harmon and R. Klefstad, “Toward a unified standard for

worst-case execution time annotations in real-time Java,” in

Proceedings of 21th International Parallel and Distributed

Processing Symposium, Long Beach, CA, 2007, pp. 1-8.

37. S. Hepp and M. Schoeberl, “Worst-case execution time

based optimization of real-time Java programs,” in Proceed-

ings of IEEE 15th International Symposium on Object/Com-

ponent/Service-Oriented Real-Time, Guangdong, China,

2012, pp. 64-70.

38. E. Y. Hu, A. Wellings, and G. Bernat, “Deriving Java vir-

tual machine timing models for portable worst-case execu-

tion time analysis,” On The Move to Meaningful Internet

Systems 2003: OTM 2003 Workshops, Lecture Notes in

Computer Science vol. 2889, R. Meersman and Z. Tari, edi-

tors, Heidelberg: Springer, pp 411-424, 2003.

39. I. Bate, G. Bernat, G. Murphy, and P. Puschner, “Low-level

analysis of a portable Java byte code WCET analysis

framework,” in Proceedings of Seventh International Con-

ference on Real-Time Computing Systems and Applications,

Cheju, Korea, 2000, pp. 39-48.

40. W. S. Beebee and M. C. Rinard, “An implementation of

scoped memory for real-time Java,” in Proceedings of the

1st International Workshop on Embedded Software, Lon-

don, UK, 2001, pp. 289-305.

41. A. Corsaro and D. C. Schmidt, “The design and perfor-

mance of the jRate real-time Java implementation,” On the

Move to Meaningful Internet Systems 2002: CoopIS, DOA,

and ODBASE, Lecture Notes in Computer Science vol.

2519, R. Meersman and Z. Tari, editors, Heidelberg:

Springer, pp. 900-921, 2002.

42. F. Pizlo, J. Fox, D. Holmes, and J. Vitek, “Real-time Java

scoped memory: design patterns and semantics,” in Pro-

ceeding of the 7th IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, Vienna,

Austrai, 2004, pp. 101-110.

43. C. Andreae, Y. Coady, C. Gibbs, J. Noble, J. Vitek, and T.

Zhao, “Scoped types and aspects for real-time Java mem-

ory management,” Real-Time Systems, vol. 37, no. 1, pp. 1-

44, 2007.

44. J. Henry and G. Baker, “List processing in real time on a

serial computer,” Communications of the ACM, vol. 21, no.

4, pp. 280-294, 1978.

45. M. Kero, J. Nordlander, and P. Lindgren, “A correct and

useful incremental copying garbage collector,” in Proceed-

ings of the 6th International Symposium on Memory Man-

agement, Montreal, Canada, 2007, pp. 129-140.

46. F. Siebert, “Hard real-time garbage-collection in the Jamaica

virtual machine,” in Proceedings of the 6th International

Conference on Real-Time Computing Systems and Applica-

tions, Hong Kong, 1999, pp. 96-102.

47. W. J. Schmidt and K. D. Nilsen, “Performance of a hard-

ware-assisted real-time garbage collector,” in Proceedings of

the 6th International Conference on Architectural Support

for Programming Languages and Operating Systems, San

Jose, CA, 1994, pp. 76-85.

48. D. F. Bacon, P. Cheng, and V. T. Rajan, “A real-time gar-

bage collector with low overhead and consistent utiliza-

tion,” ACM SIGPLAN Notices, vol. 38, no. 1, pp. 285-298,

2003.

49. IBM WebSphere Virtual Machine, http://www-306.ibm.com/

software/webservers/realtime/.

50. D. Bacon and P. Cheng, “The metronome: an simpler

approach to garbage collection in real-time systems,” On

The Move to Meaningful Internet Systems 2003: OTM 2003

Workshops, Lecture Notes in Computer Science vol. 2889,

R. Meersman and Z. Tari, editors, Heidelberg: Springer, pp

466-478, 2003.

51. D. F. Bacon, P. Cheng, and V. T. Rajan, “Controlling frag-

Journal of Computing Science and Engineering, Vol. 7, No. 2, June 2013, pp. 89-98

http://dx.doi.org/10.5626/JCSE.2013.7.2.89 96 Yu Sun and Wei Zhang

mentation and space consumption in the metronome, a real-

time garbage collector for Java,” ACM SIGPLAN Notices,

vol. 38, no. 7, pp. 81-92, 2003.

52. R. Henriksson, “Scheduling garbage collection in embed-

ded systems,” Ph.D. dissertation, Department of Computer

Science, Lund University, Lund, Sweden, 1998.

53. S. G. Robertz and R. Henriksson, “Time-triggered garbage

collection: robust and adaptive real-time GC scheduling for

embedded systems,” ACM SIGPLAN Notices, vol. 38, no.

7, pp. 93-102, 2003.

54. M. Schoeberl and J. Vitek, “Garbage collection for safety

critical Java,” in Proceedings of the 5th International Work-

shop on Java Technologies for Real-Time and Embedded

Systems, Vienna, Austria, 2007, pp. 85-93.

55. H. Cho, C. Na, B. Ravindran, and E. D. Jensen, “On sched-

uling garbage collector in dynamic real-time systems with

statistical timing assurances,” Real-Time Systems, vol. 36,

no. 1-2, pp. 23-46, 2007.

56. P. Cheng and G. E. Blelloch, “A parallel, real-time garbage

collector,” in Proceedings of the ACM SIGPLAN Confer-

ence on Programming Language Design and Implementa-

tion, Snowbird, UT, 2001, pp. 125-136.

57. G. E. Blelloch and P. Cheng, “On bounding time and space

for multiprocessor garbage collection,” ACM SIGPLAN

Notices, vol. 34, no. 5, pp. 104-117, 1999.

58. Y. Xian and G. Xiong, “Minimizing memory requirement of

real-time systems with concurrent garbage collector,” ACM

SIGPLAN Notices, vol. 40, no. 3, pp. 40-48, 2005.

59. R. L. Hudson and J. E. B. Moss, “Sapphire: copying GC

without stopping the world,” in Proceedings of the Joint

ACM-ISCOPE Conference on Java Grande, Palo Alto, CA,

2001, pp. 48-57.

60. F. Pizlo, E. Petrank, and B. Steensgaard, “A study of con-

current real-time garbage collectors,” in Proceedings of the

ACM SIGPLAN Conference on Programming Language

Design and Implementation, Tucson, AZ, 2008, pp. 33-44.

61. F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard,

“Stopless: a real-time garbage collector for multiproces-

sors,” in Proceedings of the 6th International Symposium on

Memory Management, Montreal, Canada, 2007, pp. 159-

172.

62. Sun Microsystem Real-Time Java System, http://Java.sun.com/

Javase/technologies/realtime/.

63. Open Virtual Machine, Purdue University, http://www.cs.

purdue.edu/homes/jv/soft/ovm/.

64. Java SE HotSpot at a Glance, http: //www.oracle.com/tech-

network/Java/Javase/tech/index-jsp-136373.html.

65. Jikes RVM, http://www.jikesrvm.org/.

66. B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.

Cheng, J. D. Choi, A. Cocchi, S. J. Fink, D. Grove, M.

Hind, et al., “The Jalapeno virtual machine,” IBM Systems

Journal, vol. 39, no. 1, pp. 211-221, 2000.

67. U. Hlzle and D. Ungar. “Reconciling responsiveness with

performance in pure object-oriented languages,” ACM

Transactions on Programming Languages and Systems, vol.

18, no. 4, pp. 355-400, 1996.

68. M. P. Plezbert and R. K. Cytron, “Does ‘just in time’ =

‘better late than never’?,” in Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, Paris, France, 1997, pp. 120-131.

69. R. M. Karp, “On-line algorithms versus off-line algorithms:

How much is it worth to know the future?,” in Proceed-

ings of the IFIP 12th World Computer Congress on Algo-

rithms, Software, Architecture, Madrid, Spain, 1992, pp.

416-429.

70. T. P. Kistler, “Continuous program optimization,” Ph.D. dis-

sertation, University of California, Irvine, CA, 1999.

71. T. Kistler and M. Franz, “Continuous program optimiza-

tion: a case study,” ACM Transactions on Programming

Languages and Systems, vol. 25, no. 4, pp. 500-548, 2003.

72. K. Pettis and R. C. Hansen, “Profile guided code position-

ing,” ACM SIGPLAN Notices, vol. 25, no. 6, pp. 16-27,

1990.

73. P. P. Chang, S. A. Mahlke, and W. W. Hwu, “Using profile

information to assist classic code optimizations,” Software-

Practice & Experience, vol. 21, no. 12, pp. 1301-1321,

1991.

74. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J.

Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank, T.

Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery, “The

superblock: an effective technique for VLIW and supersca-

lar compilation,” Journal of Supercomputing, vol. 7, no. 1,

pp. 229-248, 1993.

75. R. Cohn and P. G. Lowney, “Design and analysis of profile-

based optimization in Compaq’s compilation tools for

alpha,” Journal of Instruction-Level Parallelism, vol. 3, pp.

1-25, 2000.

76. M. Mock, C. Chambers, and S. Eggers, “Calpa: a tool for

automating selective dynamic compilation,” in Proceedings

of the 33rd annual ACM/IEEE international symposium on

Microarchitecture, Monterey, CA, 2000, pp. 291-302.

77. M. Arnold, M. Hind, and B. G. Ryder, “Online feedback-

directed optimization of Java,” ACM SIGPLAN Notices,

vol. 37, no. 11, pp. 111-129, 2002.

78. J. Whaley, “Partial method compilation using dynamic pro-

file information,” ACM SIGPLAN Notices, vol. 36, no. 11,

pp. 166-179, 2001.

79. M. Arnold and B. G. Ryder, “A framework for reducing the

cost of instrumented code,” ACM SIGPLAN Notices, vol.

36, no. 5, pp. 168-179, 2001.

80. M. Hirzel and T. Chilimbi, “Bursty tracing: a framework for

low-overhead temporal profiling,” in Proceeding of the 4th

ACM Workshop on Feedback-Directed and Dynamic Opti-

mization, Austin, TX, 2001, pp. 117-126.

81. T. M. Chilimbi and M. Hirzel, “Dynamic hot data stream

prefetching for general-purpose programs,” ACM SIG-

PLAN Notices, vol. 37, no. 5, pp. 199-209, 2002.

82. C. Krintz, “Coupling on-line and off-line profile informa-

tion to improve program performance,” in Proceeding of

the International Symposium on Code Generation and Opti-

mization, San Francisco, CA, 2003, pp. 69-78.

83. S. J. Fink and F. Qian, “Design, implementation and evalua-

tion of adaptive recompilation with on-stack replacement,”

in Proceedings of the International Symposium on Code

Generation and Optimization, San Francisco, CA, 2003, pp.

241-252.

84. G. J. Hansen, “Adaptive systems for the dynamic run-time

optimization of programs,” Ph.D. dissertation, Carnegie-

Overview of Real-Time Java Computing

Yu Sun and Wei Zhang 97 http://jcse.kiise.org

Mellon University, Pittsburgh, PA, 1974.

85. C. Chambers and D. Ungar, “Making pure object-oriented

languages practical,” in Proceeding of ACM Conference

Object-Oriented Programming Systems, Languages, and

Applications, Phoenix, AZ, 1991, pp. 1-15.

86. T. Suganuma, T. Yasue, and T. Nakatani, “A region-based

compilation technique for a Java just-in-time compiler,”

ACM SIGPLAN Notices, vol. 38, no. 5, pp. 312-323, 2003.

87. U. Holzle, C. Chambers, and D. Ungar, “Debugging opti-

mized code with dynamic deoptimization,” ACM SIG-

PLAN Notices, vol. 27, no. 7, pp. 32-43, 1992.

88. H. S. Oh, S. M. Moon, and D. H. Jung, “Hybrid Java com-

pilation of just-in-time and ahead-of-time for embedded sys-

tems,” Journal of Circuits, Systems and Computers, vol. 21,

no. 2, 2012.

89. B. J. Bradel and T. S. Abdelrahman, “Automatic trace-

based parallelization of Java programs,” in Proceedings of

the International Conference on Parallel Processing, Xi'an,

China, 2007, p. 26.

90. B. J. Bradel and T. S. Abdelrahman, “The potential of

trace-level parallelism in Java programs,” in Proceedings of

the 5th International Symposium on Principles and Prac-

tice of Programming in Java, Lisboa, Portugal, 2007, pp.

167-174.

91. S. Guo and J. Palsberg, “The essence of compiling with

traces,” in Proceedings of the 38th annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages, Austin, TX, 2011, pp. 563-574.

92. H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani, “A

trace-based Java JIT compiler retrofitted from a method-

based compiler,” in Proceedings of the 8th Annual IEEE/

ACM International Symposium on Code Generation and

Optimization, Chamonix, France, 2011, pp. 246-256.

93. Y. Sun and W. Zhang, “On-line trace based automatic paral-

lelization of Java programs on multicore platforms,” Jour-

nal of Computing Science and Engineering, vol. 6, no. 2,

pp. 105-118, 2012.

94. Q. Zhu and D. Vergerov, “Adaptive optimization of the sun

Java real-time system garbage collector,” Sun Microsys-

tems, Mountain View, CA, Technical Report, 2009.

95. M. Stoodley, K. Ma, and M. Lut, “Real-time Java, part 2:

comparing compilation techniques,” IBM, Armonk, NY,

Technical Report, 2007.

96. M. Fulton and M. Stoodley, “Compilation techniques for

real-time Java programs,” in Proceedings of the Interna-

tional Symposium on Code Generation and Optimization,

San Jose, CA, 2007, pp. 221-231.

97. W. Zhang and Y. Sun, “Time-predictable Java dynamic

compilation on multicore processors,” Journal of Comput-

ing Science and Engineering, vol. 6, no. 1, pp. 26-38, 2012.

98. Y. Sun and W. Zhang, “Exploiting multi-core processors to

improve time predictability for real-time Java computing,”

in Proceedings of the 15th IEEE International Conference

on Embedded and Real-Time Computing Systems and

Applications, Beijing, China, 2009, pp. 447-454.

99. J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and T.

Ungerer, “Real-time event-handling and scheduling on a

multithreaded Java microcontroller,” Microprocessors and

Microsystems, vol. 27, no. 1, pp. 19-31, 2003.

100. M. Zabel, T. B. Preuber, P. Reichel, and R. G. Spallek,

“Secure, real-time and multi-threaded general-purpose

embedded Java microarchitecture,” in Proceedings of the

10th Euromicro Conference on Digital System Design

Architectures, Methods and Tools, Lubeck, Germany, 2007,

pp. 59-62.

101. M. Schoeberl, “JOP: a Java optimized processor for embed-

ded real-time systems,” Ph.D. dissertation, University of

Technology, Vienna, Austria, 2005.

102. M. Schoeberl, “A Java processor architecture for embed-

ded real-time systems,” Journal of Systems Architecture,

vol. 54, no. 1-2, pp. 265-286, 2008.

103. M. Schoeberl and R. Pedersen, “WCET analysis for a Java

processor,” in Proceedings of the 4th International Work-

shop on Java Technologies for Real-Time and Embedded

Systems, Paris, France, 2006, pp. 202-211.

104. C. Z. Lei, T. Z. Qiang, W. L. Ming, and T. S. Liang, “An

effective instruction optimization method for embedded

real-time Java processor,” in Proceedings of the Interna-

tional Conference on Parallel Processing Workshops, Oslo,

Norway, 2005, pp. 225-231.

105. Z. Chai, W. Zhao, and W. Xu, “Real-time Java processor

optimized for RTSJ,” in Proceedings of the ACM Sympo-

sium on Applied Computing, Seoul, Korea, 2007, pp. 1540-

1544.

106. T. Harmon and R. Klefstad, “Interactive back-annotation of

worst-case execution time analysis for Java microproces-

sors,” in Proceedings of the 13th IEEE International Con-

ference on Embedded and Real-Time Computing Systems

and Applications, Daegu, Korea, 2007, pp. 209-216.

107. A. Armbruster, J. Baker, A. Cunei, C. Flack, D. Holmes, F.

Pizlo, E. Pla, M. Prochazka, and J. Vitek, “A real-time Java

virtual machine with applications in avionics,” ACM Trans-

actions on Embedded Computing Systems, vol. 7, no. 1,

article no. 5, 2007.

108. jRate, http://jrate.sourceforge.net/.

109. Javolution Library, http://javolution.org/.

110. C. Pitter and M. Schoeberl, “Towards a Java multiproces-

sor,” in Proceedings of the 5th International Workshop on

Java Technologies for Real-Time and Embedded Systems,

Vienna, Austria, 2007, pp. 144-151.

Journal of Computing Science and Engineering, Vol. 7, No. 2, June 2013, pp. 89-98

http://dx.doi.org/10.5626/JCSE.2013.7.2.89 98 Yu Sun and Wei Zhang

Yu Sun

Yu Sun received his Ph.D. degree in Electrical and Computer Engineering in 2010 at Southern Illinois University

Carbondale, Carbondale, IL, USA, and B.E. degree in Computer Science at Tsinghua University, Beijing, China in

2003. His research interests include compiler optimization, parallelization, embedded system and real-time

system. He is currently working as a senior software engineer at MathWorks, Inc.

Wei Zhang

Dr. Wei Zhang is an associate professor in Electrical and Computer Engineering of Virginia Commonwealth
University. Dr. Wei Zhang received his Ph.D. from the Pennsylvania State University in 2003. From August
2003 to July 2010, Dr. Zhang worked as an assistant professor and then as an associate professor at Southern
Illinois University Carbondale. His research interests are in embedded and real-time computing systems,
computer architecture, compiler, and low-power systems. Dr. Zhang has received the 2009 SIUC Excellence
through Commitment Outstanding Scholar Award for the College of Engineering, and 2007 IBM Real-time
Innovation Award. His research has been supported by NSF, IBM, Intel, Motorola and Altera. He is a senior
member of the IEEE. He has served as a member of the organizing or program committees for several IEEE/
ACM international conferences and workshops.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

