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Abstract
In recent years, progress in hardware technology has resulted in the possibility of monitoring many events in real time.

The volume of incoming data may be so large, that monitoring all individual data might be intractable. Revisiting any

particular record can also be impossible in this environment. Therefore, many database schemes, such as aggregation,

join, frequent pattern mining, and indexing, become more challenging in this context. This paper surveys the previous

efforts to resolve these issues in processing data streams. The emphasis is on specifying and processing sliding window

queries, which are supported in many stream processing engines. We also review the related work on stream query pro-

cessing, including synopsis structures, plan sharing, operator scheduling, load shedding, and disorder control.
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I. INTRODUCTION

The past few years have witnessed the emergence of

applications that monitor streams of data items, such as

sensor readings, network measurements, stock exchanges,

online auctions, and telecommunication call logs [1-4]. In

these applications, fast, approximated results are more

meaningful than delayed, accurate results. For example,

consider a medical center where biosensors are used to

monitor the body status of patients. In this example, a

life-threatening event should be detected on time, and

notified to the medical staff immediately, even if it proves

to be a false alarm. Delayed detection of critical events is

unacceptable. Similar examples can be found in network

intrusion detection, plant monitoring, and so on.

Stream monitoring applications do not fit the tradi-

tional database model. Data streams are potentially

unbounded. Therefore, it is not feasible to store an entire

stream in a local database. Also, queries posed to a data-

base system may not be answered, because an input

stream can be infinite. Instead, stream applications adopt

the notion of continuous queries. In this scheme, queries

over data streams run continuously over a period of time

and incrementally return new results, as new data arrives.

For example, consider a query that asks for the maxi-

mum value of sensor readings over the latest 30 seconds.

This can be specified as a structured query language

(SQL)-like query Q1, where window specification is

defined in square brackets.
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Q1. SELECT MAX(value)

FROM Sensors [RANGE 30 seconds]

During run time, the query is evaluated for each tuple

arrival. Whenever a new tuple arrives at time t, window-

ing tuples is first performed: tuples whose timestamps are

within (t – 30, t] belong to the current window, and other

tuples are discarded. Then, the maximum sensing value

over tuples in the window is calculated. The same pro-

cess is repeated, whenever a tuple arrives on the input

stream.

As shown in the example, continuous queries generally

use sliding windows, to limit the scope of query process-

ing to recent data [3-6]. From this, the queries can be

answered over unbounded data streams, even when they

involve blocking operators, such as joins and aggre-

gates—operators that cannot start processing until entire

inputs are ready.

Fig. 1 shows a system structure to process window

queries. The query processing engine is also called a data

stream management system (DSMS). Well-known exam-

ples of the system include Aurora [1], STREAM [4],

TelegraphCQ [7], Gigascope [8], NiagaraCQ [9], and

StreamMill [10]. The system can be viewed as a real-time

processing engine with the support of an SQL interface,

which enables users to specify their applications in a

declarative fashion. It consists of the following compo-

nents:

● Query compiler translates user-specified window

queries into a query plan tree. The plan tree can be

viewed as a filter, through which input streams pass.

As mentioned above, queries specified for stream

applications can be characterized as window queries

(Section II).
● Query manager runs the generated plan trees over

input data streams. Some parts of the trees can be

shared to reduce execution time (Section III-A). The

behavior of stateful operators, such as aggregates and

joins, can differ from those in the traditional DBMSs

(Section III-B). The operators in the plan trees can be

scheduled dynamically, according to changing sys-

tem status (Section III-C).
● Memory manager provides storage for input tuples

and intermediate results generated from the operators

in plan trees. It is organized to maximize the sharing

of tuples, to avoid disk accesses by reducing memory

size (Section III-A).
● Load shedder monitors system status including

arrival rates of input tuples and memory growth dur-

ing query execution. If the system is overloaded, it

prompts the memory manager or the input manager

to discard some portion of the tuples (Section III-D).
● Input manager synchronizes multiple data streams

(for a join) and resolves disorder of the streams. Dis-

order control is necessary to clearly determine the

boundaries of sliding windows and to avoid tuple

discards that can occur from windowing tuples (Sec-

tion III-E).

In this paper, we provide an overview of data stream

processing. In what follows, we consider the specifica-

tions and processing of stream queries. We also review

related work in this area.

II. QUERY SPECIFICATION

So far, many query languages have been proposed to

specify stream queries, including AQuery [11], the box

and arrow scheme [1] in Aurora, CQL [5] in STREAM,

StreaQuel [7] in TelegraphCQ, and ESL [10] in Stream-

Mill. There are also the special-purpose query languages

that are used in Gigascope [8] and Tribeca [12].

In Aurora [1], users construct query plans via a graphi-

cal interface by arranging boxes corresponding to query

operators, such as selections, joins, and aggregates. The

boxes are connected with directed arcs to specify data

flows. The boxes can be rearranged in the optimization

phase. On the other hand, most other systems including

STREAM support SQL-like languages for query specifi-

cation. The query languages have syntax to specify slid-

ing windows to deal with unbounded data streams. This

section focuses on the specification of window queries.

A. Window Query Model

A real-time data stream is a sequence of data items that

arrive in some order (e.g., timestamp order). In the

STREAM project [2, 4, 5], assuming a discrete time

domain T, a stream is defined as follows.

DEFINITION 1 (Stream). A stream S is a possibly infi-

nite bag (multiset) of elements (s, t), where s is a tuple

belonging to the schema of S, and t ∈ T is the timestamp

of the element.Fig. 1. Structure of a query processing engine.
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A relation is also defined with the notion of time,

which is different from the conventional relation.

DEFINITION 2 (Relation). A relation R is a mapping

from T to a finite bag of tuples belonging to the schema of R.

To denote a relation at any time instant t ∈ T, R(t) is

used. In the window query model, an unbounded stream

is translated into finite relations using windows. Suppose

that the latest tuple arrives at a certain time τ for query

Q1. Then, R(τ) will consist of tuples whose arrival times-

tamps are in the interval of (τ – 30, τ]. The aggregate max

will then be applied to R(τ). In this example, R(·) will be

updated, whenever a new tuple arrives.

The relation R(·) can be organized differently, if a dif-

ferent type of window is applied to the query. The win-

dow models can be classified according to the following

criteria [3, 7].

● Movement of the window’s endpoints: Two fixed end-

points define a fixed window, while two sliding end-

points define a sliding window. One fixed endpoint

and one moving endpoint define a landmark window.
● Physical vs. logical: Physical or time-based windows

are defined in terms of a time interval, while logical

or count-based windows are defined in terms of the

number of tuples. The latter windows are also called

tuple-based windows.
● Update interval: Eager re-evaluation updates the

window whenever a new tuple arrives on a stream,

while lazy re-evaluation induces a jumping window.

If the update interval is larger than or equal to the

window size, the window is called a tumbling window.

If sliding windows are used in a query, the query

becomes monotonic. Let A(Q, t) be the answer set of a

window query Q at time t, and 0 be the starting time. The

query is then re-evaluated over newly arriving tuples, and

qualifying tuples are appended to the result. The answer

set of Q at time t can be represented as follows.

On the other hand, if landmark windows are used, the

query will be non-monotonic. It will be recomputed from

scratch during every query re-evaluation. The answer set

of Q at time t can be represented as follows.

B. Window Syntax

To specify a sliding window, the syntax proposed in [6]

can be used. In the syntax, a window can be defined with

three parameters: 1) RANGE, to denote a window size;

2) SLIDE, to denote a slide interval of the window; and

3) WATTR, to denote a windowing attribute—the attribute

over which RANGE and SLIDE are specified.

In general, time-based sliding windows are most com-

monly used in stream applications [13, 14]. The previous

query Q1 is an example of a time-based window with a

size of 30 seconds. A tuple-based window can also be

defined with the RANGE parameter. The following shows

a query to compute the max value over the latest 100 tuples.

Q2. SELECT MAX(value)

FROM Sensors [RANGE 100 rows]

To define an update interval for the window, the SLIDE

parameter can be used. The following query updates the

max value every 30 seconds, which is calculated over

tuples arriving for the latest 30 seconds. The query is an

example of the tumbling window.

Q3. SELECT MAX(value)

FROM Sensors [RANGE 30 seconds, 

SLIDE 30 seconds]

Note that, with time-based windows, the window inter-

val is determined based on the arrival timestamp of the

last input tuple. On the other hand, windowing can also

be performed based on different attribute values, not only

arrival timestamps. For instance, a user may want to per-

form the windowing based on the tuples’ generation

timestamps. Let the attribute denoting a tuple’s genera-

tion timestamp be sourceTS. To use it for windowing, a

WATTR parameter can be used as follows.

Q4. SELECT MAX(value)

FROM Sensors [RANGE 30 seconds, 

SLIDE 30 seconds

WATTR sourceTS]

The following query shows another example of using

the WATTR parameter. The query will be posed to iden-

tify the list of product names of the latest 10 orders issued

from customers.

Q5. SELECT productName

FROM Orders [RANGE 10 rows, 

WATTR orderId]

When a windowing attribute is explicitly specified, as in

Q4 and Q5, input tuples may not be in an increasing order

of the windowing attribute. This is because input tuples

may experience different network transmission delays.

Out-of-order input tuples complicate the identification of

window boundaries and contents. To simplify this job,

existing approaches usually discard out-of-order tuples.

These tuple drops may lead to inaccuracy in aggregate

queries. This issue will be discussed in Section III-E.

A Q,t( ) A Q, i( ) A Q, i 1–( )–( ) A Q, 0( )∪
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C. Named Queries

To chain a number of relevant queries, the concept of

named queries was introduced in STREAM. Consider

that we want to identify congested segments on a high-

way. The highway is divided into a number of segments

with exit and entrance ramps at each segment boundary.

In this example, each vehicle periodically transmits its

speed and position measurements. Suppose the schema of

the measurements is PosSpeedStr(vid, speed, pos), where

PosSpeedStr is the name of the input stream. The attributes

vid, speed, and pos denote the id of a vehicle, its speed in

miles per hour (MPH), and its position on the highway in

feet, respectively.

To calculate the number of vehicles in each segment,

the position of a vehicle should first be converted to its

corresponding segment number. Assume that segments

are exactly 1 mile long. Then, the segment number can be

computed by dividing pos by 1760. The query for this

purpose can be specified as Q6, named SegSpeedStr. The

name of a query usually comes ahead of the SELECT-

FROM-WHERE clause.

Q6. SegSpeedStr

SELECT vid, speed, pos/1760 as segno

FROM PosSpeedStr

From SegSpeedStr, the congested segments can be iden-

tified. Suppose that a segment is considered congested, if

the average speed of vehicles in the segment in the latest

5 minutes is less than 40 MPH. Then, a query to identify

congested segments can be constructed as shown in Q7.

For the complete description of this Linear Road Bench-

mark example, refer to Arasu et al. [5] and Jain et al. [15].

Q7. CongestedSegRel

SELECT segno

FROM SegSpeedStr [RANGE 5 minutes]

GROUP BY segno

HAVING AVG(speed) < 40

As shown in this example, the outputs of a query Qi

can be fed to other queries Qj, by specifying the name of

Qi in the FROM clause of Qj. Using this scheme, complex

application requirements can be specified by chaining a

number of simple named queries without introducing a

nested query.

III. QUERY PROCESSING

This section discusses the issues in processing of win-

dow queries over continuous data streams. The discus-

sion consists of query plan structure, blocking operators,

operator scheduling, load shedding, and disorder control.

A. Query Plan Structure

A user-specified window query is translated into a plan

tree from the query compiler (Fig. 1). The structure of a

query plan is similar to one in a traditional DBMS. In gen-

eral, a query plan consists of three types of components:

● Query operators: Each operator reads a stream of

tuples from one or more input queues, processes the

tuples based on its semantics, and writes the results

to a single output queue.
● Inter-operator queues: A queue connects two differ-

ent operators and defines the path along which tuples

flow, as they are being processed.
● Synopses: An operator may have one or more synop-

ses to maintain states associated with operators. For

example, a join operator can have one hash table for

each input stream as a synopsis.

Fig. 2 illustrates plans for two queries, Q8 and Q9. The

plans consist of six operators denoted by ovals, four syn-

opses syn1 to syn4, and four queues q1 to q4. Query Q8 is a

projection over a join of two streams S1 and S2. Query Q9

is a join of three streams S1, S2, and S3. For all input

streams, the same sliding windows are given, which are

30 seconds long. Then, the two query plans can share a

subplan joining windowed streams of S1 and S2.

Q8. SELECT id, value

FROM S1 [RANGE 30 seconds], 

S2 [RANGE 30 seconds]

WHERE S1.id = S2.id

Q9. SELECT *

FROM S1 [RANGE 30 seconds], 

Fig. 2. Plans for queries Q8 and Q9.
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S2 [RANGE 30 seconds],

S3 [RANGE 30 seconds]

WHERE S1.id = S2.id and S2.id = S3.id

Synopses are maintained for stateful operators, such as

joins or aggregates. Simple filter operators, such as selec-

tions and duplicate-preserving projections, do not require

a synopsis, because they need not maintain state. For syn-

opses, various summarization techniques can be used,

including reservoir samples [16], sketches [17], wavelets

[18, 19], and histograms [20].

Queues are generally organized to have pointers to

tuples stored in the memory manager (Fig. 1). An opera-

tor reads the pointers from its input queues and accesses

tuples through the pointers. If a queue is shared by multi-

ple operators (e.g., q3 in Fig. 2), tuples in the queue can

be discarded only when they have been read by all parent

operators. From this, the size of a shared queue depends

on the rate at which the slowest parent operator consumes

the tuples. If consumption rates of parent operators are

significantly different, it is preferable not to share a sub-

plan [4].

B. Operators
 

As mentioned earlier, query operators can be stateless

or stateful. The behavior of stateless operators is the same

as in a traditional DBMS. On the other hand, the behavior

of stateful operators can differ. When stateful operators

are involved in stream queries, sliding windows are needed

to decompose infinite streams into finite subsets and pro-

duce outputs over the subsets. In this section, we focus on

aggregates and joins with sliding windows.

1) Window Aggregates 

To compute window aggregates, many existing algo-

rithms use the divide-and-conquer approach. For exam-

ple, a dataset X is divided into disjoint subsets X1, X2, ...,

Xn, where X = 1 ≤ i ≤ n Xi. Then, an aggregate over X, f(X),

is computed using sub-aggregates over Xi, as shown in

the following equation. Below, g(·) and h(·) are some

aggregate functions.

For any possible sub-aggregate function g(·), if there is

no constant bound on the size of storage needed to store

the result of g(·), the function f(·) is holistic. The exam-

ples of holistic aggregates include MEDIAN, QUAN-

TILE, and MODE. Otherwise, the function can again be

classified into distributive and algebraic [21]. If g(·) and

h(·) are equal to f(·), the function is distributive. Exam-

ples include SUM, COUNT, MAX, and MIN. Otherwise,

the function is algebraic. AVG is algebraic, since it can

be computed using SUM and COUNT.

Li et al. [22] proposed an approach for evaluating

aggregate queries when sliding windows are overlapping.

When adjacent windows overlap, a stream is divided into

disjoint subsets called panes. The panes are also called

basic windows in the literature. The size of a pane can be

obtained by GCD(VR, VS), where VR is the value of a

RANGE parameter, and VS is the value of a SLIDE

parameter in a window specification. Window-level aggre-

gates can then be computed from pane-level sub-aggre-

gates. For example, consider a query to find the maximum

bid price for the past 4 minutes and update the result

every minute. This query can be described as follows.

Q10. SELECT MAX(bid-price)

FROM Bids [RANGE 4 minutes, 

SLIDE 1 minute] 

Given Q10, a pane becomes a 1-minute-length subwin-

dow (Fig. 3). The method computes the max bid price for

each pane. The max price for each window can then be

obtained from the max values of four panes that contrib-

ute to the window. This approach can be applied to the

other aggregate functions mentioned above.

Arasu and Widom [23] proposed resource sharing

techniques, when a number of window queries are posed

over the same data. In their method, a time interval is

divided into a number of predefined smaller intervals

called base intervals. The base intervals form a basis for

intervals: any interval can be expressed as a disjoint

union of a small number of base intervals (Fig. 4). Using

this property, any f(I) can be computed using a small

number of precomputed f(Ib) values, where I is a window

interval in a query, and Ib is a base interval.

2) Window Joins

When discussing join algorithms, sliding window equijoins

are most commonly considered [24, 25]. Suppose we

want to join m input data streams over a common

attribute A. Let the i-th input stream be Si (1 ≤ i ≤ m), and

its window size be Wi (i.e., the value of a RANGE param-

eter). At time t, a tuple s belongs to a windowed substream

∪

f x( ) h g X_i( ){(= ┤|1 i n≤ ≤ })

Fig. 3. Windows composed of four panes.
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Si[Wi], if s has arrived on Si in time interval (t – Wi, t]. An

m-way window equijoin can then be represented as

S1[W1] A S2[W2] A ... A Sm[Wm]. The output of the join

consists of all m pairs of tuples, (s1, s2, ..., sm), satisfying

s1.A = s2.A = ... = sm.A, where si ∈ Si[Wi]. The windowed

substream Si[Wi] is also called a window extent.

Consider Q8, which is a join of two streams S1 and S2.

In this case, windows slide with each tuple arrival because

only RANGE parameters are given in the window speci-

fications. Subsequently, the join is evaluated whenever a

new tuple arrives in any input stream. Its algorithm can

be described as follows.

Algorithm 1. Sliding window equijoin

Whenever a new tuple s arrives on Sk (1 ≤ k ≤ m),

1. Update all Si[Wi] (1 ≤ i ≤ m) by discarding expired tuples

2. Join s with all Si[Wi] (i ≠ k)

3. Add s to Sk[Wk]

The algorithm consists of three steps: windowing streams

(step 1), producing join results over window extents (step 2),

and adding the new tuple to its window extent (step 3).

Assuming a symmetric hash join, step 2 can be described

in more detail:

2.1. Hash: calculate a hash value v for s 

2.2. Probe: scan all hash tables of Si (i ≠ k), to see if

matching tuples with value v exist in the tables

2.3. Output: generate results, if matching tuples exist

in all hash tables

Previous work [24-26] showed that a symmetric hash

join is faster than any tree of binary join operators,

emphasizing that its symmetric structure can reduce the

need for query plan reorganization. From this, an m-way

symmetric hash join is commonly considered in data

stream processing.

There has been substantial research in joining data

streams. Early studies in this area focused on a binary

join. Kang et al. [27] showed that when one stream is

faster than the other, an asymmetric combination of hash

join and nested loop join can outperform both the sym-

metric hash join, and the symmetric nested loop join.

Golab and Ozsu [24] showed that hash joins are faster

than nested loop joins, when performing equijoins. Assum-

ing that the query response can be delayed up to a certain

time, they discussed eager and lazy evaluation techniques

for a window join.

The discussion was extended to a multi-way hash join,

in a study by Viglas et al. [25]. They proposed MJoin, a

multi-way symmetric hash join operator and showed that

the m-way hash join is faster than any tree of binary join

operators. That idea was developed into AMJoin, pro-

posed by Kwon et al. [28, 29]. AMJoin improves the per-

formance of MJoin, by detecting join failures in advance.

In AMJoin, unnecessary probes for hash tables can be

avoided by using a bit-vector hash table, where each

table entry has a bit-vector, denoting whether matching

tuples exist in all streams.

The window join was also used to track the motion of

moving objects, or detect the propagation of hazardous

materials in a sensor network. This idea was captured by

Hammad et al. [30]. The same authors also proposed

scheduling methods for query operators, when a window

join is shared by more than two branches of operators in a

query plan tree [31]. Hong et al. [32] discussed techniques

for processing a large number of extensible markup lan-

guage (XML) stream queries involving joins over multi-

ple XML streams. The method focused on the sharing of

representations of inputs to multiple joins, and the shar-

ing of join computation.

C. Operator Scheduling

Query plans are executed via a global scheduler, which

runs each operator in query plans, to help move tuples

through the plans and produce results. The simplest

scheduling scheme is the round-robin, where operators

run in a circular order, and each operator runs until it con-

sumes all tuples in its input queue. This method is easy to

implement, and starvation-free, but far from optimal. 

In many stream management systems, more intelligent

scheduling techniques have been proposed and used,

including train scheduling [1] in Aurora, eddies [33, 34]

in TelegraphCQ, and chain scheduling [35] in STREAM.

The first two methods focused on improving throughputs,

Fig. 4. Base intervals for resource sharing in aggregate functions.
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while the objective of the last was to minimize peak

memory size (i.e., peak total queue size).

In Aurora, the contents of inter-operator queues can be

written to disk, which is different from STREAM. There-

fore, to improve performance of query execution, con-

text-switching between operators should be minimized.

For this purpose, their scheduling algorithm (called train

scheduling) focused on 1) generating long trains of tuples,

2) processing complete trains at once, and 3) passing

them to subsequent operators, without having to go to

disk. By batching the processing of tuples through opera-

tors, they attempted to reduce I/O overhead.

In TelegraphCQ, query scheduling is conducted by

eddies [33]. An eddy is a highly adaptive query process-

ing operator that continuously re-optimizes a query, in

response to changing runtime conditions. It does this by

treating query processing as the routing of tuples through

operators and making per-tuple routing decisions. The

cost of making per-tuple routing decisions might be high,

which has been asserted by various parties. Regarding

this, Deshpande [34] implemented eddies in a Postgre-

SQL open source database system in the context of a

TelegraphCQ project and showed that the overhead of the

eddy mechanism was negligible.

The chain scheduling in STREAM focused on mini-

mizing a peak total queue size during query processing.

For this purpose, they considered the selectivity of each

operator in query plan trees. Consider the following sim-

ple example. Suppose we have a query plan with two

unary operators, O1 and O2: O1 receives tuples from input

queue q1 and writes its output to q2, which connects to the

input of O2. Let the selectivity of O1 be 20%, i.e., it con-

sumes n tuples from q1 in one time unit, and introduces n/

5 tuples into q2. Also assume that O2 takes one time unit

to operate on n/5 tuples. Then, there are two possible

scheduling strategies:

● Round-robin scheduling: Tuples are processed to

completion in the order they arrive at q1. Each batch

of n tuples in q1 is processed by O1 and then O2,

requiring two time units overall.
● Selectivity-based scheduling: If there are n tuples in

q1, then O1 operates on them using one time unit, pro-

ducing n/5 new tuples in q2. Otherwise, if there are

any tuples in q2, then up to n/5 of these tuples are

operated on by O2, requiring one time unit.

Suppose we have the following arrival pattern: n tuples

arrive at every time instant from t = 1 to t = 7, then no

tuples arrive from t = 8 to t = 14. On average, n/2 tuples

arrive per unit of time, but with an initial burst. Fig. 5

shows the total size of queues q1 and q2 under the two

scheduling strategies during the burst, where each entry

is a multiplier for n. As shown in this example, selectiv-

ity-based scheduling is clearly preferable in terms of run-

time memory overhead during the burst. Babcock et al.

[35] extended this scheme to the chains of operators

within a query plan (i.e., the groups of operators in query

paths), when making scheduling decisions.

D. Load Shedding

Due to the high arrival rate of tuples, memory may not

be enough to run queries. In this case, some portion of

input or intermediate tuples can be moved out to a disk or

can simply be discarded from memory to shed system

load. In data stream management systems, the latter

approach is generally adopted, because in many stream

applications, fast, approximate results are considered more

meaningful than delayed, exact answers.

The load shedder in Fig. 1 continuously monitors mem-

ory status. If memory is inadequate, it determines 1) in

which query plan operators load shedding occurs and 2)

how many tuples should be discarded at that point in the

plan. Tatbul et al. [36] discussed the problem of deter-

mining these two points. In most cases, tuple drops occur

at the entry of query plan trees (e.g., input manager) to

maximize the effect of load shedding. In their work, the

number of tuples to be discarded is estimated based on

quality-of-service (QoS) specifications (e.g., importance

of tuple values). Babcock et al. [37] discussed the same

problem for aggregate queries. Their method focused on

minimizing the degree of inaccuracy introduced in query

answers. Al-Kateb and Lee [38] considered load shed-

ding for temporal queries and proposed a new accuracy

metric for their load shedding decision.

There has also been substantial research in operator-

level load shedding. Many studies focused on load shed-

ding in join operators. When memory is not enough for

the join, victims should be chosen from the synopses of a

join operator (e.g., hash tables). According to victim

selection strategies, load shedding algorithms for window

joins can be classified into the following three models.

● Frequency-based model [26, 39-42]: The priority of a

tuple s is determined in proportion to the number of

tuples in windows, whose value is the same as that of s.
● Age-based model [43]: The priority of a tuple is

determined based on the time since its arrival, rather

than its join attribute values.
● Pattern-based model [29]: The priority of a tuple is

determined based on its arrival pattern in data

Fig. 5. Total queue sizes: round-robin vs. selectivity-based
scheduling schemes.
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streams (e.g., the order of streams in which the tuple

appears).

Das et al. [26] proposed the concept of semantic load

shedding, as opposed to random load shedding. In seman-

tic load shedding, join attribute values are considered to

maximize a user-defined similarity measure. They con-

sidered the MAX-subset measure, which maximizes the

number of tuples in the approximate output of the join.

The MAX-subset measure was considered for load shed-

ding in many algorithms [40-42]. Das et al. [26] also pro-

posed two heuristics to determine the priority of tuples in

an online join: PROB and LIFE. The former discards the

tuple with the lowest probability to join with a partner

tuple in the other stream. The latter discards the tuple

with the lowest product of its remaining lifetime and the

probability that it joins with another tuple.

On the other hand, Srivastava and Widom [43] showed

that the frequency-based model (e.g., PROB) is not

appropriate in many applications and proposed an age-

based model for them. In their model, the expected join

multiplicity of a tuple depends on the time since arrival,

rather than its join-attribute value. Their method focused

on the memory-limited situation. Many other studies

including [26, 40-42] also assumed the memory-limited

situation, and then discussed their load shedding algo-

rithms. On the other hand, Gedik et al. [39, 44] empha-

sized a situation where the CPU becomes a bottleneck

(i.e., when an input arrival rate exceeds CPU processing

speed), and then proposed load shedding techniques to

shed the CPU load.

Kwon et al. [29] considered the load shedding problem

for applications where join attribute values are unique,

and each join attribute value occurs at most once in each

data stream. For these applications, the frequency-based

model cannot be used. To resolve this issue, they pro-

posed a new load shedding model, in which the priority

of a tuple is determined based on its arrival pattern in data

streams (e.g., the order of streams in which the tuple

appears).

E. Disorder Control

A data stream is an ordered sequence of data items.

The order is important in windowing data streams. In

general, window operators assume that tuples arrive in an

increasing order of their WATTR values. Out-of-order

tuple arrivals are ignored to facilitate the identification of

window boundaries [1, 6]. However, tuples may not

arrive in the WATTR order, since they often experience

different network transmission delays. These out-of-order

tuples are discarded in the windowing phase, and such

tuple drops can lead to inaccurate results in aggregate

queries.

To resolve this issue, input tuples are buffered in the input

manager (Fig. 1), until they can be outputted without vio-

lating the WATTR order. To determine which tuples can

go out, the notion of punctuations [45] can be used. A

punctuation p is an assertion indicating that no more

tuples with attribute value p will be seen in the future.

Heartbeats [13, 46] can be viewed as special kinds of

punctuation, where attributes are timestamps of tuples.

Heartbeats can be estimated internally in the system or

can be given externally from remote stream sources, such

as routers. Ding et al. [47] and Li et al. [6] assumed that

heartbeats were externally given, and proposed methods

for processing join or aggregate queries gracefully. How-

ever, external stream sources may not provide heartbeats

in real-world applications. In addition, the heartbeats

themselves can be out-of-ordered, when stream sources

are in remote locations.

When estimating heartbeats internally, existing approaches

generally use the maximum network delay seen in the

streams. Let the max delay until time t be m. Then, the

heartbeat is estimated to t – m, and all tuples with genera-

tion timestamps smaller than t – m are outputted from the

buffer. The k-ordering mechanism [48], the skew bound

estimation [14], the timestamp mechanism in Gigascope

[8, 13], and the ordering mechanism in NiagaraCQ [9]

are similar to this approach.

The heartbeat estimation algorithms focus on saving as

many discarded tuples as possible. Consequently, they

tend to keep the buffer size larger than necessary. For

example, the adaptive method proposed by Srivastava

and Widom [14] estimates the max delay m by (m1 + m2)/2,

where m1 is the max delay seen in the stream at time t,

and m2 is the second max delay seen for the W interval of

time from t (Fig. 6). We can easily see that m is kept large

most of the time, since it is determined by the two largest

values of network delays seen in the stream in a certain

period of time.

To resolve this issue, Kim et al. [46] proposed a

method to estimate the buffer size based on stream distri-

bution parameters monitored during query execution,

such as tuples’ interarrival times and their network

Fig. 6. Estimation of the max delay proposed by Srivastava and
Widom [14].



Journal of Computing Science and Engineering, Vol. 7, No. 4, December 2013, pp. 220-230

http://dx.doi.org/10.5626/JCSE.2013.7.4.220 228 Hyeon Gyu Kim and Myoung Ho Kim

delays. In particular, their method supports an optional

window parameter DRATIO (an abbreviation for a drop

ratio), to enable a user to control disorder according to

application requirements.

Q11. SELECT MAX(value)

FROM Sensors [RANGE 30 seconds, 

  DRATIO 1%] 

The query above specifies that the percentage of tuple

discards permissible during query execution should be

less than or equal to 1%. By specifying DRATIO, a user

can control the quality of query results according to

application requirements; a small value for the drop ratio

provides more accurate query results at the expense of

high latency (due to a large buffer), whereas a large value

gives faster results with less accuracy (from a smaller

buffer).

IV. FINAL REMARKS

In this survey, we have tried to coherently present the

major technical concepts for data stream processing. To

keep the task manageable, we restricted the scope of this

paper to the specification and processing of window que-

ries. This is meaningful, because most major stream pro-

cessing engines, such as Borealis [49] (the successor of

Aurora), STREAM, TelegraphCQ, and StreamMill, support

an SQL interface, to receive application requirements in

the form of window queries [50]. The discussions in this

paper included synopses structures, plan sharing, block-

ing operators, operator scheduling, load shedding, and

disorder control.

Many interesting issues related to data stream process-

ing could not be included in this survey, for example:

● Classification and clustering
● Frequent pattern mining
● Synopsis structures, such as reservoir samples, sketches,

wavelets, and histograms
● Indexing streams
● Multi-dimensional analysis of data streams

Some of the issues were discussed in other papers. For

example, Gaber et al. [51] presented a survey related to

mining data streams. Aggarwal and Yu [52] provided a

survey on synopsis construction in data streams. Mah-

diraji [53] provided a survey on the algorithms for clus-

tering data streams. These surveys can augment the

discussions given in this paper.
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    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


