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Abstract
In this paper, we propose a new framework for anomaly detection in medical wireless sensor networks, which are used

for remote monitoring of patient vital signs. The proposed framework performs sequential data analysis on a mini gate-

way used as a base station to detect abnormal changes and to cope with unreliable measurements in collected data with-

out prior knowledge of anomalous events or normal data patterns. The proposed approach is based on the Mahalanobis

distance for spatial analysis, and a kernel density estimator for the identification of abnormal temporal patterns. Our main

objective is to distinguish between faulty measurements and clinical emergencies in order to reduce false alarms trig-

gered by faulty measurements or ill-behaved sensors. Our experimental results on both real and synthetic medical

datasets show that the proposed approach can achieve good detection accuracy with a low false alarm rate (less than

5.5%).

Category: Embedded computing

Keywords: Healthcare monitoring; Wireless sensor networks; Security; Anomaly detection; Fault detection;

Mahalanobis distance

I. INTRODUCTION

In medical applications, implementations of special-

ized wireless sensor networks (WSNs), known as wire-

less body area networks (WBANs), are composed of

numerous small wireless devices attached to or implanted

in the body of a patient to collect various vital signs and

to transmit collected data to a central device (i.e., base

station, smart phone, etc.) for processing. It triggers med-

ical alarms for emergency medical services upon detec-

tion of anomalies in the gathered physiological data, to

quickly react by taking the appropriate actions [1, 2].

This allows real-time monitoring and early detection of

clinical deterioration [2-4].
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The medical applications of WSNs are closely related

to vital-sign monitoring and real-time detection of life-

threatening emergencies within a few seconds, like heart

attacks or sudden falls by elderly people, or to monitor

individuals for early detection of chronic illnesses and

cognitive disorders (e.g., cardiovascular, Alzheimer dis-

ease, Parkinson disease, diabetes, epilepsy, asthma). For

example, high blood pressure is an important indicator

for cardiovascular diseases. WBANs are also used in

kinematic for rehabilitation assessment and to collect

environmental parameters (temperature, humidity, light,

exposure to radiation, etc.) of the monitored patient.

At present, many existing medical wireless devices are

available in the market (i.e., MICAz, MICA2, Tmote

Sky, TelosB, IRIS, Imote2, Shimmer, etc.) and can be

used to collect various vital signs [5], such as heart rate

(HR), pulse, oxygen saturation (SpO2), respiration rate,

body temperature (T°), electrocardiogram (ECG), elec-

tromyogram, blood pressure, blood glucose levels, gal-

vanic skin response, etc. These small devices will improve

the life quality of patients by allowing in-home and

remote monitoring for the elderly, the immobile, and peo-

ple with long-term diseases. Wearable and invasive medi-

cal sensors provide mobility and freedom by allowing

monitored persons to continue their daily life activities

while being monitored. They also reduce the healthcare

costs (overcapacity, waiting, sojourn time, number of

nurses, etc.) through reducing the number of occupied

beds in hospital by patients under monitoring.

Patients in hospitals or elderly at home are under-mon-

itored (with about 3 checkups per day) [6] and 6,000 a

year die due to poor patient monitoring [7]. The use of

WSNs will reduce the healthcare costs by triggering an

alarm for caregivers when the health of remotely moni-

tored patients enters a critical phase. For example, when

the blood pressure of a diabetes patient is above 130/80,

he must be treated immediately because of the high risk

of heart attack. Similarly, low SpO2
 is a symptom of heart

and lung problems.

However, with the small size and weight of these

devices, their underlying constrained resources (such as

limited energy, small memory, reduced processing power,

limited transmission range, etc.) make them susceptible

to various sources of environmental noise—e.g., commu-

nication interference, transmission malfunctions, signal

fading, short hardware fault, errors, malicious attacks

through data injection/modification, replaying attacks

[1], or simply the energy outage of the used sensor. These

sources of environmental noise may lead to unreliable

measurements [8], faulty diagnosis results, false alarms,

and an unreliable monitoring [9, 10]. Medical applica-

tions have strict requirements for reliability, security, and

privacy [2]. The sensor measurements should be accurate

to avoid false alarms and misdetections. Anomalous data

(also called outliers) from badly attached or compro-

mised sensors must be identified and isolated to ensure

reliable operations. A medical WSN will be rejected by

healthcare personnel and patients if results are not reli-

able [3].

Consequently, faulty measurements heavily affect the

monitoring and medical diagnosis results. The false alarms

may threat the life of monitored patient and affect the

credibility of such monitoring application, where reliabil-

ity is extremely important to ensure accuracy in the med-

ical domain [11]. For example, an improperly attached

pulse oximeter clip or an external fluorescent light may

produce erroneous readings.

The sensing components are the first source of unreli-

ability in medical WSNs, not networking issues [3].

Therefore, abrupt deviations in collected data must be

detected and processed in real-time to distinguish between

a clinical emergency and faulty measurements, in order to

reduce false alarms. Both cases induce anomalous mea-

surements and should be accurately detected. Therefore,

an anomaly detection mechanism is required to identify

abnormal patterns and to distinguish between sick patients

and faulty measurements, thus reducing false alarms and

unnecessary intervention by healthcare professionals.

The physiological parameters are heavily correlated,

where changes occur in at least two or more parameters,

and the spatial correlation between monitored attributes

can be exploited to distinguish faulty measurements from

patient health degradation state.

Anomaly detection algorithms in sensor measurement

can be classified into two approaches: parametric and

non-parametric. Parametric methods assume a known

underlying distribution of collected measurements. The

parameters of the distribution function are calculated in a

training phase and are used in a test phase to determine if

the observation has been emitted by the associated distri-

bution function. However, this assumption is unrealistic

in medical applications for monitoring the variations of

physiological attributes. Many physiological parameters

are highly dynamic and do not have a matching statistical

distribution, e.g., the HR can vary from person to person,

and even for the same individual, the HR changes with

physical activities.

The non-parametric approach does not require any

prior knowledge (or assumptions) on the data distribution

and uses the distance between test instances (or observa-

tions) and the established model to detect deviations in

data patterns through the use of thresholds. The most

widely used approaches are the kernel density estimator

(KDE) and histograms. KDE uses kernel functions to

estimate the probability density function (PDF). The test

instance with low probability with respect to established

PDFs is considered as abnormal. The histogram method

is based on the frequency of occurrence of data and deter-

mines which category the test instance belongs to. The

accuracy of these methods heavily depends on the used

threshold.

These approaches assume the existence of training data
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without anomalies. In reality, training data is a challeng-

ing problem. Usually, unlabeled samples are used to build

an initial model, and data from a sliding window are used

to update the model. The training data is not free from

anomalies, which may induce masking (hiding second

outliers) and swamping (where normal values are consid-

ered as anomalies).

In this paper, we aim to accurately identify abnormal

measurements in the data gathered by medical WSNs. We

consider a scenario where many sensors are attached to

the patient, in order to monitor some physiological param-

eters, and transmit the data to a smart phone which must

analyze the collected data, and raise alarms to the care-

giver only when the patient health degrades. We seek to

detect and to remove outliers in order to reduce false

alarms triggered by inconsistent sensor readings which

significantly deviate from the normal data measurements.

The objective is to raise alarms only when the patient’s

health is abnormal (illness).

The proposed anomaly detection framework is based

on the Mahalanobis distance (MD) [12] and the KDE

[13]. The MD takes advantage of the correlation between

monitored attributes to detect deviations. Only when the

MD is greater than a pre-defined threshold, the KDE is

activated to detect temporal outliers and to pinpoint respon-

sible attributes. We have applied our anomaly detection

approach on real physiological datasets with anomalies.

Our experimental results show the effectiveness of our

proposed approach for accurate detection with low false

alarm rate.

The objective of our proposed framework is to provide

reliability in medical WSNs and to distinguish between

faulty measurements and critical health degradation. We

seek to reduce the false alarm rate triggered by inconsis-

tent sensor readings. Data processing is realized on the

base station (smart phone), which has a global view for

spatio-temporal analysis.

The rest of this paper is organized as follows. In Sec-

tion II, we review the related work. In Section III, a brief

overview of the techniques used in our approach is pre-

sented. Section IV describes the proposed approach for

the intrusion detection system. In Section V, experimental

results are presented to demonstrate the effectiveness of

the propose approach. Finally, Section VI concludes the

paper.

II. RELATED WORKS

Several medical applications for WSNs have been pro-

posed for health monitoring. An accelerometer-based

method was used to detect patient inactivity at home and

to trigger an alarm for an immobile patient for a long time

[14]. Another approach [15] deals with a wearable accel-

erometer to detect falls by elderly people under remote

monitoring.

Many other architectures for medical sensor networks

have been proposed and deployed to monitor patients and

to raise alarms in case of medical emergencies, such as

MEDiSN [4] and CodeBlue [16, 17] for monitoring HR,

ECG, SpO2, and pulse, LifeGuard [18] for ECG, respira-

tion, pulse oximeter, and blood pressure, AlarmNet [19]

and Medical MoteCare [20] for physiological (pulse and

SpO2) and environmental parameters (temperature and

light), Vital and Jacket [21] for ECG and HR. Surveys of

medical applications using WSNs are available [22, 23].

However, the data collected by WSNs have low quality

and poor reliability [10] due to their limited resources.

Data filtering techniques are used to reduce noise level

and retain good data. However, it may change and reduce

the shape of variation rather than only cleaning datasets

by removing outliers. Therefore, anomaly-based intru-

sion detection systems are used to build a normal data

model and detect unusual deviations. Different approaches

for anomaly detection have been proposed and applied in

WSNs to detect abnormal deviations in collected data and

have been analyzed in terms of their detection accuracy

and false alarm ratio [24, 25]. Machine learning [26]

algorithms for classification and data mining [26] tech-

niques for clustering have been widely applied, such as

neural networks, Naive Bayes, decision trees (C4.5) [27],

support vector machines (SVMs) [28-31], self-organizing

maps [32], k-means [33], k-nearest neighbor [34], expec-

tation maximization, hierarchical clustering, fuzzy C-

means, and Gaussian mixture model [35], etc. Various

classification and clustering techniques have been com-

prehensively studied [26].

Logistic regression modeling with a static threshold

was used to evaluate the reliability of a WSN in the

industrial field with a large number of sensors [36]. How-

ever, they do not update the parameters of the established

model to be able to identify the cause of potential loss of

reliability. On the same scale of large sensor networks, a

diagnosis method based on the enhanced C4.5 (J48 or

decision tree algorithm) was proposed, which merges the

local classifiers into a large spanning tree to answer for

the whole network accuracy [27]. The physical activity of

a person was monitored using Sun SPOT sensors attached

to the thighs [37]. They used the Naive Bayes algorithm

to determine if the person is sitting, standing, lying down,

or walking. However, they did not take into consideration

that the values can be corrupted due to faulty hardware.

Similarly, another system was able to distinguish between

mental stress states and relaxation states using logistic

regression based on the HR variability [38].

The SVM classifier has gained popularity due to its

optimum solution and its simple numerical comparison

for data classification. Several SVM-based approaches

have been proposed [29, 30, 39] for anomaly detection in

WSNs. Moreover, many nonlinear versions of SVMs

(kernel-based) have been investigated to find a boundary

(or hyperplane) that encompasses the majority of normal
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data in the training phase. When the decision boundary is

established, any new data outside the boundary is classi-

fied as abnormal.

However, machine learning algorithms need a pre-

classified (or labeled) training data set, which is often

skewed or unavailable in the real world. Skewed (unbal-

anced) labeled data occurs when one class is over-repre-

sented (e.g., 99% of data are normal), and anomalies are

almost not available in the training data set. Constructing

a labeled training set is often a laborious and expensive

task. To resolve these problems of training data in

machine learning methods, data mining (or unsupervised)

techniques group similar data in one cluster, and flag the

small-size clusters (containing less than t% of total val-

ues) as abnormal. However, these techniques assume that

anomalous data can be clearly distinguished from normal

data, and they are rare when compared to the size of a

normal data cluster. They also require the prior knowl-

edge of the number of clusters.

A survey of different techniques for outlier detection in

WSNs was proposed, with a comparative guideline to

select a suitable technique based on the characteristics of

the used data set [25]. Linear regression was used to pre-

dict missing data with low error in WSNs [40]. Different

approaches were used for anomaly detection in WSNs,

such as fixed and dynamic thresholds, linear least squares

estimation, auto regressive integrated moving average,

hidden Markov model, etc. [41].

A distance-based method was used to identify insider

malicious sensors, while assuming neighbor nodes moni-

tor the same attributes [42]. Each sensor monitors its one-

hop neighbors and uses the MD between measured and

received multivariate instances to detect an anomaly. How-

ever, it is impractical in medical applications to exploit

promiscuous modes and to place redundant sensors for

monitoring the same parameters. MD has been used to

classify electronic products as healthy or unhealthy [43].

A score-based approach was used for anomaly detec-

tion in collected data by sensors [44]. The proposed

approach was based on a Hampel filter and KDE to iden-

tify outliers, but it did not take into account the correla-

tion between attributes. Only limited research has used

spatial and temporal correlation for outlier detection [10].

The temporal dependency means that the current attribute

measurement depends on readings at the previous time

instants, while the spatial dependency means that the

observations from different attributes are correlated.

In health monitoring, the physiological parameters are

heavily correlated. To increase the accuracy of anomaly

detection systems, our proposed approach exploits the

spatial and temporal dependencies among the monitored

physiological parameters to distinguish between faulty

measurements and medical emergencies. The objective is

to ensure reliable operations of sensors and accurate med-

ical diagnosis results. Sensor measurements tend to be

correlated in time and space, and errors are usually uncor-

related with other attributes. 

The first attempt to capture spatio-temporal correla-

tions was introduced [10] using regression to build two

models using previous observations. However, as the

model keeps a sliding window of the past collected

instances, the model is subject to false alarms if outliers

are not discarded from the training data.

Our proposed framework measures the spatial dissimi-

larity between multivariate vectors (p-dimensional), through

the use of MD to detect abnormal instances. When an

abnormal instance is detected, the KDE is activated to

detect the change point (temporal deviation). As the

physiological parameters are heavily correlated, clinical

emergency induces changes in many attributes (at least

k), and faulty/abnormal measurements are uncorrelated

with other attributes. Therefore, based on the number of

deviated attributes, we can distinguish between faulty

measurements and a patient entering in an emergency sit-

uation.

In this paper, we propose a simple and lightweight

approach for online anomaly detection in collected data

by medical wireless sensors. The proposed approach is

based on MD for spatial analysis and KDE for temporal

analysis. The objective is to reduce false alarms resulting

from faulty measurements, thus enhancing the reliability

and the accuracy of the monitoring system.

III. BACKGROUND

In this section, we briefly review the MD and the KDE

used in our framework.

A.  Mahalanobis Distance

The MD is a commonly used method for outlier detec-

tion in multivariate data. Let X = (A1, A2, …, Ap) be a mul-

tivariate data, where Ak = (x1k, x2k, … , xnk) is a set of n

observations of the kth attribute, and Xi represents an

instance vector Xi = (xi1, xi2, … , xip)

(1)

The MD measures the distance between attributes

while taking into account the correlation between them:

(2)

where µ = (µ1, µ2, ..., µp)
T is the mean vector (1 × p) and Σ

is the covariance matrix (p × p) of these p attributes, cal-

culated as:
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(3)

(4)

A large value of MDi means a large deviation between

attributes.  follows a chi-square distribution 

with p degrees of freedom (p is the number of attributes)

and the 97.5% quantile is used as a threshold for anomaly

detection by MD2 (0.025 significance level for cutoff

value). The alarm decision function is given by:

(5)

B.  Kernel Density Estimator

The KDE is a nonparametric method used to estimate

the PDF for statistical analysis. Let Ak = {x1k, x2k, … , xnk}

be i.i.d. random variables having a common PDF .

The cumulative distribution function F(x) can be esti-

mated by the empirical cumulative distribution function

:

(6)

To estimate the density , we consider the discrete

derivative (for a small h):

(7)

which can be written as: 

   

   (8)

where:

(9)

K(.) is the kernel of uniform density function on [−1,1],
and h is the bandwidth.  counts the probability that

the point x is close to observations (xik). A large value

(near 1) indicates that many observations are near the

point x, and a low value indicates that x is an outlier. The

uniform kernel in Eq. (9) is a special case of kernel esti-

mator, and in the rest of this paper, we use the Gaussian

kernel given by:

(10)

and the optimal bandwidth:

(11)

where µ and σ are the mean and the variance of the vec-

tor Xk. In hypothesis testing, KDE is used to estimate the

probability of new observations, and when the p-value

(probability value) is less than threshold α (α ∈ [0.01 −
0.05]), the null hypothesis is rejected and the observation

is considered as abnormal.

IV. PROPOSED APPROACH

We consider a general medical deployment scenario,

where N (N ≤ p) wireless nodes (S1, …, SN) with restricted

resources are placed on the patient body (as shown in

Fig. 1). These sensors are used to collect vital signs and

transmit the collected data at regular time interval to a

sink device. A portable smart phone is placed on the

patient arm to collect data from sensors. The collected

data are processed in real time on the smart phone to

detect an anomaly and raise alarms for caregivers only

when patient health degrades (respiratory failure, cardiac

arrest, etc.). Faulty measurements must be detected and

isolated in order to reduce false alarms and prevent fault

diagnosis.

Sensor measurements are sent periodically every dis-

crete time interval T (e.g., 1 minute) to the smart phone,

which has more processing power and storage resources

than sensors. The real-time analysis of the gathered data

on the smart phone is required for the early detection of

clinical deterioration, and to alert healthcare profession-
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Fig. 1. Remote collection of vital signs in real-time. SpO2:
oxygenation ratio, ECG: electrocardiogram, BP: blood pressure,
RESP: respiration rate.
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als upon detection of a clinical emergency. To detect

abnormal patterns with unsupervised models, a sliding

window of the last observations (as shown in Fig. 2a and

as detailed in Fig. 2b) is used as training data for estimat-

ing the mean µ and covariance matrix Σ. The size of the
window has a tradeoff between accuracy and complexity

of processing and storage.

After the arrival of a new instance, MD is calculated

between the training data in the sliding window and the

current attributes values. If MD is greater than 

with p degrees of freedom, the univariate KDE is used to

pinpoint the abnormal attribute(s), and the window slides

one slot by removing the oldest first instance and adding

the new one. The architecture of the proposed approach is

shown in Fig. 3.

However, the data in the sliding window is not reliable

and may contain outliers, which disrupt the estimated

values for these statistical parameters. When outliers are

in the training set, they dominate and pull the statistical

parameters toward them, and this inappropriately leads to

a large value of MD for normal data (swamping), or a

small value of MD for outliers (masking or misdetec-

tion). To provide accurate results of MD, the used data in

the sliding window must be cleaned to guarantee anom-

aly-free training data.

Many robust estimation methods for mean and covari-

ance matrixes of multivariate data have been proposed

and used to remove outliers, e.g., minimum volume ellip-

soid, orthogonalized Gnanadesikan-Kettenring [45], min-

imum covariance matrix (MCD) [46], fast-MCD [47],

and deterministic MCD [47]. These methods seek to find

a subset h out of w instances not contaminated by outli-

ers. In this paper, we look for a simpler method with low

computational complexity and storage requirements to

derive a subset h of instances without outliers (h ≤ w).
To achieve this objective, we use the hierarchical

agglomerative clustering to aggregate data points with

low distance (or resemblance coefficient) in one cluster.

The resemblance matrix containing the distance between

each point and whole others is used to identify the mini-

mal coefficient and merge the two data points into one

cluster. This procedure is repeated to build the dendro-

gram (or cluster tree) shown in Fig. 4. Clustering is

obtained by cutting the dendrogram at a desired level. In

this paper, when the distance between clusters (interclus-

ter distance) becomes large enough (at least 3 times the

previous distance), we stop the aggregation procedure.

The stop point will determine the number of clusters, and

χp,0.975

2

Fig. 2. Sliding window: (a) sliding window used to estimate µ
and Σ and (b) reference window and testing instance.

Fig. 3. Flow diagram of the implementation. KDE: kernel density
estimator.

Fig. 4. Dendrogram formed from 6 instances and 2 clusters
associated with the cutting level.
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the cluster containing the majority of data points is used to

robustly estimate the statistical parameters (  and ).

After the robust estimation of mean ( ) and covari-

ance ( ), MD is used to detect deviations using the

threshold in Eq. (5). If MD is larger than a threshold

(MDi( , ) ≥ ), an alarm is triggered without

any indication about underlying attribute(s). Therefore,

we apply the univariate KDE (iff Ai = 1) on each attribute

to pinpoint suspicious attributes before raising any medi-

cal alarm to alert caregivers or emergency teams.

However, KDE is also sensitive to outliers through the

bandwidth, which is directly proportional to standard

deviation (  in Eq. (11)). To overcome this problem and

to provide training data without anomalies and without

additional computational complexity, we use the subset

of values in a sliding window with weight equal to one in

the reweighted estimator as a reference:

(12)

For a new observation xnew in each attribute, KDE is

used to calculate the probability of the new observation

PDF . The p-value (probability value) test is

used to detect outliers. If the probability is smaller than

the pre-defined significance level α, the observation is

considered as abnormal. Strong outliers have a signifi-

cance level between 0 and 0.01, and weak outliers

between 0.01 and 0.05.

When only one attribute is anomalous, the measure-

ment is considered faulty, and no alarm will be raised.

However, if at least k attributes are abnormal, we trigger

an alarm for healthcare professionals to react; e.g., heavy

changes in the HR and reduced rate of SpO2 are symp-

toms of patient health degradation and require immediate

medical intervention. We assume that the probability of

many attributes (k = 2 in our experiments) being faulty is

very low.

V. EXPERIMENTAL RESULTS

In this section, we present the application results of the

proposed framework for online anomaly detection in

gathered data by medical WSNs. We use a real medical

dataset from the PhysioNet database (MIMIC Database)

[48]. The dataset contains 7 attributes: mean values of

blood pressure (BPmean), systolic blood pressure, dias-

tolic blood pressure, HR, pulse, respiration rate (RESP),

and oxygenation ratio (SpO2). We only focus on five

attributes (p = 5): BPmean, HR, pulse, RESP, and SpO2.

We assume no prior knowledge about existing anomalies

or faulty measurements in this dataset. We use a sliding

window of 24 (w = 24) and k = 2 attributes.

The variations of BPmean, HR, pulse, RESP, and SpO
2

are presented in Figs. 5–9, respectively. BP is measured

in millimeters of mercury (mmHg) with normal values (∈
[90 – 140]. HR and pulse are in beats per minute (bpm)

with normal values for a healthy adult in rest ∈ [60 –
100]. The RESP is measured in respiration per minute

(rpm) and SpO2 is the percentage of oxygen in the blood

with respect to normal values ∈ [95% – 100%]. As the

physiological parameters are usually not the same for all

people and they depend on many parameters (sex, age,

weight, activity, etc.), the use of a static interval for

anomaly detection heavily depends on many additional

dynamic parameters (environmental, ages, activities: rest,

moving, awake, sleep, etc.), and these parameters are not

easy to set dynamically.

Clearly in Fig. 5, there are two abnormal values of BP

falling to 30 and 55 bpm, and other variations associated

with clinical change of the monitored patient can be visu-

ally distinguished. Furthermore, some values in HR and

µ̂ R Σ̂R
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Fig. 5. Blood pressure.

Fig. 6. Heart rate.
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pulse fall to zero in different time instants (shown in

Figs. 6 and 7). HR and pulse measure the same physio-

logical parameter using two different devices, and usu-

ally, both curves must superpose. This is not the case

when comparing both figures. The same goes for the

RESP and the SpO2 in Figs. 8 and 9. We can visually

identify abnormal variations in Fig. 9, where we can see

some abnormal readings of SpO2 with zero values (3

spikes).

To prove the correlation between monitored attributes,

we show the variation curves of the 5 parameters in

Fig. 10, where we can notice that clinical emergency

induces changes in many parameters at the same time

instant. However, there is no spatial correlation among

monitored attributes for faulty measurements, where one

attribute heavily changes independently from others. It is

important to note that some variation curves in Fig. 10

are shifted for clarifying the shape of their variations. We

can visually identify 4 zones of clinical changes, where

either the values of many attributes increase at the same

time, or some attributes increase and others decrease.

First, we apply MD over the five physiological attributes

(with robust estimation of mean and covariance) to show

the utility of KDE used in the second phase. The varia-

tions of squared MD (without the applications KDE) are

presented in Fig. 11, with a threshold  = 12.83

(horizontal line). Most raised alarms by squared MD in

Fig. 12 are false alarms and result from benign deviations

or faulty measurements, as shown in Fig. 13, which con-

tains the raised alarms by robust MD and the variations of

the 5 attributes.

The raised alarms by the sequential execution of both

methods (MD followed by KDE) and the inspections of k

deviated attributes are shown in Fig. 14, where the raised

alarms are triggered by simultaneous variations in at least

χ5, 0.975

2

Fig. 10. All parameters. BP: blood pressure, HR: heart rate, RESP:
respiration rate, SpO2: oxygenation ratio.

Fig. 7. Pulse.

Fig. 8. Respiration rate.

Fig. 9. Oxygenation ratio.
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k attributes. A visual inspection in the variation of moni-

tored attributes in Fig. 14 confirms the accuracy and the

utility of raised alarms, where alarms resulted from

simultaneous changes in at least 2 attributes.

Furthermore, the false alarms triggered by inconsistent

measurements are discarded when comparing Figs. 12

and 15. It is important to note the difference between the

number of raised alarms by MD (shown in Fig. 11) and

the number of alarms transmitted to the healthcare emer-

gency team after the application of KDE and p-value

(shown in Fig. 15).

To evaluate the performance of our proposed approach,

we inject abnormal values at different time instants in the

different attributes. We use the receiver operating charac-

teristic (ROC) curve to analyze the impact of detection

threshold (h) on the detection accuracy and the false

alarm ratio. The ROC curve presented in Fig. 16 showsFig. 11. Squared Mahalanobis distance (MD) & threshold.

Fig. 12. Raised alarms by Mahalanobis distance.

Fig. 13. Mahalanobis distance alarms & 5 attributes.

Fig. 14. Medical alarms.

Fig. 15. Raised alarms
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the relationship between the detection rate (DR; Eq. (13))

and the false alarm rate (FAR; Eq. (14)).

(13)

where TP is the number of true positives and FP the num-

ber of false positives. The false positive rate is defined as:

(14)

As existing anomalies are not enough to realize this

analysis, we synthetically injected 100 anomalies at

known time instants in the used dataset. A good detection

mechanism should achieve a high detection ratio with the

lowest false alarm rate. Fig. 16 shows that our proposed

framework can achieve a DR of 100% with an FAR of

5.5%.

VI. CONCLUSION

In this paper, we proposed an unsupervised approach

for anomaly detection in medical WSNs, where faulty

measurements and injected data could threaten the life of

the monitored patient. The proposed approach is based on

the MD and a KDE to detect abnormal measurements and

to distinguish faulty measurement from a clinical emer-

gency, through the use of spatial and temporal correlation

between monitored attributes. The system keeps its rele-

vancy over time by updating the statistical parameters

and obtaining more precise evaluation of the normal state

of the patient. The proposed approach is suitable for

online detection and isolation of faulty or injected mea-

surements with low computational complexity and stor-

age requirement.

We have evaluated the proposed approach using real

and synthetic medical datasets. Our experimental results

show the effectiveness of our proposed approach in

reducing the number of false alarms triggered by faulty

measurements (or maliciously injected data) in medical

WSNs.

Most of the time, collected measurements are normal.

The reduction of exchanged data between wireless sen-

sors and sink node will be studied in future work. Our

next task will be oriented toward distributed detection of

an anomaly in sensors to reduce the wasted energy by the

transmission of faulty measurements.
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