
Copyright 2014. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 8, No. 1, March 2014, pp. 1-10

Analysis and Improvement of the Bacterial Foraging Optimization
Algorithm

Jun Li

Lanzhou Jiaotong University, Lanzhou , China

Lijane@mail.lzjtu.cn

Jianwu Dang*, Feng Bu, and Jiansheng Wang

Key Laboratory of Opto-electronics Technology and Intelligent Control, Ministry of Education, Lanzhou , China

Dangjw@ mail.lzjtu.cn, 64927171@qq.com, Wangjsh@mail.lzjtu.cn

Abstract
The Bacterial Foraging Optimization Algorithm is a swarm intelligence optimization algorithm. This paper first analyzes

the chemotaxis, as well as elimination and dispersal operation, based on the basic Bacterial Foraging Optimization Algo-

rithm. The elimination and dispersal operation makes a bacterium which has found or nearly found an optimal position

escape away from that position, which greatly affects the convergence speed of the algorithm. In order to avoid this

escape, the sphere of action of the elimination and dispersal operation can be altered in accordance with the generations

of evolution. Secondly, we put forward an algorithm of an adaptive adjustment of step length we called improved

bacterial foraging optimization (IBFO) after making a detailed analysis of the impacts of the step length on the efficiency

and accuracy of the algorithm, based on chemotaxis operation. The classic test functions show that the convergence

speed and accuracy of the IBFO algorithm is much better than the original algorithm.

Category: Smart and intelligent computing

Keywords: Bacterial Foraging optimization algorithm; Chemotaxis; Step; Elimination and dispersal; Escape

I. INTRODUCTION

Swarm intelligence, as an emerging intelligent comput-

ing technology, has been the focus of attention of artificial

intelligence researchers. In 2002, Passino [1] who was

inspired by the social foraging behavior of Escherichia

coli, proposed the Bacteria Foraging Optimization Algo-

rithm (BFOA), which has become a new member in the

coveted realm of swarm intelligence. Since its inception,

BFOA has drawn the attention of researchers in different

fields of knowledge, in terms of its biological motivation,

and elegant structure. The algorithm has been instructed

in optimal search by swarm intelligence, which is pro-

duced by cooperation and competition among individuals

within groups. It has advantages, such as parallel distrib-

uted processing, insensitivity to initial value, and global

optimization.

In recent years, the BFO algorithm has gradually aroused

the wide attention of experts and scholars at home and

abroad, and corresponding research about the theory and

its application has been launched. Abraham et al. [2], a

research team on the BFO algorithm carried out a series

Received 8 May 2013; Revised 26 December 2013; Accepted 8 January 2014

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2014.8.1.1 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 1-10

http://dx.doi.org/10.5626/JCSE.2014.8.1.1 2 Jun Li et al.

of studies, and concluded that a reproduction operator in

the BFO algorithm is conducive to improve the conver-

gence speed of the algorithm. They used genetic algo-

rithms and a differential evolution algorithm to improve

the ability of searching for the global optimum of the BFO

algorithm [3]. The improved algorithm has been success-

fully applied to the optimization of the PID parameter.

Also, Das et al. [4], Indian scholars, analyzed the influ-

ence of adaptive step size on its convergence and stabil-

ity, from a theoretical point of view. However, their

analysis was based on certain assumptions, which only

consider the chemotaxis operation of a single particle in

one-dimensional continuous space. A fast bacterial swarm-

ing algorithm based on the improved quorum sensing

mechanism was proposed by Ying et al. [5], and applied

to image compression. In addition, Li and Yang [6] pro-

posed a bacterial colony optimization algorithm based on

the improved mechanism of BFOA, and proved that the

algorithm is effective. Tripathy et al. [7] solved the prob-

lem of optimal power flow by the BFOA. The BFO and

other intelligent algorithms [8-10] are also combined, in

order to improve the algorithm applied to predictive con-

trol [11], image clustering [12], and multi-objective opti-

mization [13].

II. THE CLASSICAL BFO ALGORITHM

The foraging strategy of E. coli bacteria is governed by

four processes, which are chemotaxis, reproduction, elimi-

nation and dispersal, and swarming. Below, we briefly

describe each of these processes.

A. The Chemotaxis

Chemotaxis is achieved by swimming and tumbling.

When a bacterium meets a favorable environment (rich in

nutrients, and noxious free), it will continue swimming in

the same direction. When it meets an unfavorable envi-

ronment, it will tumble, i.e., change direction. Let S be

the total number of bacteria in the population, and a bac-

terium position represents a candidate solution of the

problem and information of the i-th bacterium with a d-

dimensional vector represented as , i = 1,

2, ..., S. Suppose θ i(j,k,l) represents the i-th bacterium at the

j-th chemotactic, k-th reproductive, and l-th elimination

and dispersal step. Then in computational chemotaxis,

the movement of the bacterium may be represented by

θ
i(j+1, k, l)=θ i(j, k, l)+C(i)Φ(j) (1)

where C(i) is the size of the step taken in the random

direction specified by the tumble (run length unit), and

Φ(j) is in the random direction specified by the tumble.

B. The Reproduction

The health status (fitness) of each bacterium is calcu-

lated after each completed chemotaxis process. The sum

of the cost function is

(2)

where NC is the total number of steps in a complete

chemotaxis process. Locations of healthier bacteria rep-

resent better sets of optimization parameters. To further

speed up and refine the search, a greater number of bacte-

ria are required to be placed at these locations in the opti-

mization domain. This is done in the reproduction step.

The healthier half of bacteria (with minimum value of

cost function) are allowed to survive, while the other half

die. Each surviving bacterium splits up into two bacteria

and they are placed at the same location. In this way, the

population of bacteria remains constant.

C. The Elimination and Dispersal Operation

The chemotaxis provides a basis for local search, and

the reproduction process speeds up the convergence,

which has been simulated by the classical BFO. While to

a large extent, chemotaxis and reproduction alone are not

enough for global optima searching, since bacteria may

get stuck around the initial positions or local optima, it is

possible for the diversity of BFO to change either gradu-

ally or suddenly to eliminate the accident of being trapped

into the local optima. In BFO, the dispersion event hap-

pens after a certain number of reproduction processes.

Then, some bacteria are chosen to be killed according to

a preset probability Ped or moved to another position

within the environment.

D. The Swarming

E. coli bacterium has a specific sensing, actuation, and

decision-making mechanism. As each bacterium moves,

it releases attractant to signal other bacteria to swarm

towards it. Meanwhile, each bacterium releases repellent

to warn other bacteria to keep a safe distance between

each other. BFO simulates this social behavior by repre-

senting the combined cell-to-cell attraction and repelling

effect as:

 (3)

θ
i

θ 1

i
,θ 2

i
,...θ D

i[]=

J health

i
P

Nc i,j,k,l

j=1∑=

Jcc θ,P j,k,l()() Jcc θ,θ
i

j,k,l()()
i=1

S

∑ = =

dattrac ttan exp ωattrac ttan θm θm

i
–()2

m=1

D

∑–⎝ ⎠
⎛ ⎞–

i=1

S

∑ +

hrepellant exp ωrepellant θm θm
i

–()2

m=1

D

∑–⎝ ⎠
⎛ ⎞

i=1

S

∑

Analysis and Improvement of the Bacterial Foraging Optimization Algorithm

Jun Li et al. 3 http://jcse.kiise.org

where Jcc(θ
i,θ) is the cost function value, which is added

to the actual cost function. It is minimized to present a

time varying cost function. S is the total number of bacte-

ria and P is the number of parameters to be optimized in

each bacterium. dattractant, ωattractant, hrepellant, and ωrepellant are

different coefficients that are properly chosen.

III. ANALYSIS OF BFOA

A. Analysis of the Elimination and Dispersal
Step in BFOA

The elimination and dispersal operator is an indispens-

able link in BFOA. With the probability Ped, each bacte-

rium eliminates and disperses in order to keep the number

of bacteria in the population constant. If a bacterium is

eliminated, another bacterium is simply dispersed to a

random location on the optimization domain. As per the

optimization of multi-modal function, the bacterium is

easily trapped into local optima and it is difficult to

escape. Thus, the convergence speed and accuracy of the

algorithm is affected. The elimination-dispersal operator

helps bacteria that are trapped into local optima to

escape. A greater probability of migration can provide

more opportunity for the bacteria to escape from the local

optimum. However, at the same time, the solution of the

local optimum brings a new problem, called “escape”. It

results in reducing the convergence speed and accuracy

of the algorithm. Such a situation is not expected to exist.

 For example, the classical BFO algorithm is applied

into solving a simple nonlinear function: z = (x – 15)2 +

(y – 15)2, where x∈[0,30], y∈[0,30]. Assuming that the

total number of bacteria is 10 in the population, the num-

ber of evolution generations is 4, the chemotaxis opera-

tion is performed 10 times in each generation, and the

probability of elimination and dispersal is 20%, the bac-

terial individual trajectories are shown in Fig. 1.

This function has an optimal solution that z equals 0,

where x = 15, y = 15. The origin shows the position of the

bacterial individual in Fig. 1, and the arrow lines show

the change in position of individual bacteria, after a gen-

eration optimization. As shown in the figure, most bacteria

are constantly moving to the optimal position. However,

some bacteria marked as dashed lines at or close to the

optimal value have suddenly moved away from the opti-

mum value, due to the operation of elimination-dispersal.

How to avoid escaping? In the optimization process of

an individual bacterium, if the individual bacterium that

is selected for the elimination-dispersal operator is found

at, or close to, the global optimal solutions, escape will

essentially happen. Thus, in order to avoid the escape, we

should prevent such bacteria from being selected.

Therefore, the elimination-dispersal operator needs to be

improved. The bacterial individuals are sorted in accor-

dance with their current fitness values. The elimination-

dispersal operator selects bacterial individuals, according

to the probability of Ped, only from the fitness value

ranked behind some bacteria individuals; while the others

will not be selected, because the bacterial individual

standing in the front of the individual is found at, or very

close to, the global optimal solution. Thus, escape can be

effectively avoided. By increasing generations, bacterial

individuals continue to move closer to the optimal posi-

tion. The proportion of the elimination and dispersal steps

of bacteria should be appropriately reduced. Let Q be the

percentage of elimination and dispersal of bacteria, and

its initial value is 1. The generation is the chemotactic

generation counter, and its initial value is 0. An elimina-

tion and dispersal step is done after every ten generations

in the algorithm, and the scope of the elimination and dis-

persal should be reduced in every 20 generations. This

means that if generation MOD 10 = 0, then the elimina-

tion and dispersal step can be done. Let ged = generation

DIV 20, Q = 1 − (2ged*L), where L is the percentage of

initial value of bacteria that do not participate in the elim-

ination and dispersal. As the generations increase, ged

increases, and the percentage of elimination and dispersal

decreases. Therefore, the occurrence of escape can be

avoided, and the speed of convergence can be greatly

improved.

B. Analysis of the Chemotaxis Step in BFOA

The chemotaxis operation is one of the most important

steps in BFOA. During the chemotaxis operation, bacte-

ria are continually swimming to find the optimal solution

to the problem. At the initial location, a bacterium tum-

bles to take a random direction and then measures the

food concentration. After that, it swims a fixed distance

and then measures the concentration there. This action of

tumble and swim constitutes one chemotactic step. If the

concentration is superior at the next location, the bacteria

will take another step toward that direction. If the con-Fig. 1. Bacteria trajectories landscape.

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 1-10

http://dx.doi.org/10.5626/JCSE.2014.8.1.1 4 Jun Li et al.

centration at the next location is lesser than that of the

previous location, the bacteria will tumble to find another

direction, and swim in this new direction. This process is

carried out repeatedly, until the maximal number of steps,

which is limited by the lifetime of the bacteria.

In the chemotactic steps, step size is an important

parameter, when the bacteria select to swim forward in a

certain direction [14-17]. How to set the step size? In the

conventional BFOA, a simply fixed step size was selected

based on experience. However, such treatment often

makes the convergence speed of the algorithm slow, or

falls into a local optimum. Thus, there should be better

parameter values.

The selection of the step sizes is a critical issue, through-

out the design process of the algorithm. If the step sizes

are too small, the search will be trapped into local optima.

On the other hand, if the steps are too long, the search

will miss the global optimum. After taking this into con-

sideration, equations for long tumble size (LT), short tum-

ble size (ST), and swim size (SW) were defined. Almost

every user intervention is needed, due to it being auto-

matically updated during the process.

The BFOA was applied, to solve the Schaffer function.

, .

This function has a global optimum, where xi = 0 (i =1,

2, ..., n), and the optimal value is 0, but there are too

many local optima (the function value is about -0.9903)

surrounding the optimal point.

We assume that the total number of bacteria is 50 in the

population, the dimension of the solution space is set to

be 2, the maximum number of steps in the same direction

is 4, the depth of the attractant and the height of the repel-

lant are both 0.1, the width of the attractant is 0.2, the

width of the repellant is 10, the initial probability of the

elimination-dispersal is 30%, the evolution generation is

100, the step size is 0.1 and 0.001, respectively, and the

mean minimum value H of function is plotted as shown

in Fig. 2, after the algorithm is implemented 20 times. In

addition, assume that the evolution generation is 50, and

the step size is 0.5. The mean minimum value H of the

function is plotted in Fig. 3, after the algorithm is imple-

mented in one run of every 10 generations.

In Fig. 2, we can get a result that if the step size is set

to be 0.1, the convergence speed of the algorithm is very

high, but no longer converges after 60 generations. If the

step size is set to be 0.001, the convergence speed of the

algorithm is apparently reduced after 100 iterations. It

has not yet met the expected precision. In order to reach

the required accuracy, the iteration times must be

increased, and its efficiency will be greatly reduced.

After 20 generations have evolved in Fig. 3, the curve

decreases stepwise every 10 generations, and the optimal

value converges once. The reason is that the algorithm is

designed to reduce half of the step sizes every 10 genera-

tions. Obviously, the small step length can improve the

accuracy of the algorithm.

From the above discussion, it is clear that the selection

of the step sizes is a critical issue, throughout the design

process of the algorithm. If the step sizes are too small,

the search can be trapped into local optima. If step sizes

are too long, the search will miss the global optimum.

Bacteria with larger step sizes will move in the entire

search space, while the bacteria with smaller step sizes

can do fine only in search around local optimal solutions.

Hence, the chemotactic operator (i.e., the step size)

should be chosen, in order to allow the bacteria to explore

the entire search space, and search effectively around the

potential solutions. Therefore, the fixed step size cannot

meet the requirements of accuracy and convergence

f x() sin xi

2

xi 1+

2

+() 0.5–

1 0.001 xi
2

xi 1+

2

+()+()2
-- 0.5+

i=1

n

∑= xi 4,4–[]∈

Fig. 2. The mean minimum value H of the Schaffer function (the
step size is 0.1 and 0.001, respectively).

Fig. 3. The mean minimum value H of the Schaffer function (the
step size is 0.5).

Analysis and Improvement of the Bacterial Foraging Optimization Algorithm

Jun Li et al. 5 http://jcse.kiise.org

speed at the same time.

It is convincing that variable step sizes can not only

meet the high convergence speed, but also satisfy the

requirement of high precision. By means of the variable

step size, we let the initial value of the step size, STEP =

0.002R, where R is the optimal interval width. It is gradu-

ally reduced, along with an increasing number of itera-

tions. In an early iterative algorithm, the step size decreases

slowly, but it shrinks faster and faster, along with an

increasing number of iterations. Thus, in the early algo-

rithm execution, bacteria rush to the optimal solution space,

and accelerate the convergence speed. This improves

the convergence precision, with the step size decreasing

rapidly.

C. Improved BFO Algorithm

We briefly outline the novel BFO algorithm step-by-

step, as follows.

[Step 1] Initialize parameters S, try_number, STEP,

dattractant, ωattractant, hrepellant, ωrepellant, Ped, L.

where,

S: the number of bacteria in the population,

try_number: the maximum number of steps in the

same direction,

STEP: the step size,

dattractant: the depth of the attractant,

ωattractant: the width of the attractant,

hrepellant: the height of the repellant,

ωrepellant: the width of the repellant,

Ped: elimination-dispersal with probability,

L: the percentage of the initial elimination-dispersal.

[Step 2] Compute the initial fitness values of each bac-

terium.

[Step 3] Let i = 0, generation = 0, t = 0, Q = 1.

[Step 4] Chemotactic operator and quorum sensing

mechanism:

[SubStep 4.1] If generation MOD 10 == 0, {g= gen-

eration DIV 10, STEP=STEP/2g},

[SubStep 4.2] let Jlast be represented as the current

fitness value,

[SubStep 4.3] get the new fitness value Jnext, when a

bacterium runs length unit STEP in

the random direction,

[SubStep 4.4] Jcc, the influence value of other bacteria

on an bacterium, is calculated accord-

ing to Step 2, let Jnext = Jnext + Jcc,

[SubStep 4.5] if t < try_number, then t = t +1, else t

= 0, go to SubStep 4.8,

[SubStep 4.6] if Jnext is superior to Jlast, then Jlast =

Jnext, else t = 0, go to SubStep 4.8,

[SubStep 4.7] to walk step length STEP in the same

direction, Jnext = fitness value of the

new position, go to SubStep 4.4,

[SubStep 4.8] let i = i + 1, if i < S, then go to Sub-

Step 4.1, else i = 0, generation= gen-

eration + 1, go to Step 5.

[Step 5] Reproduction steps:

[SubStep 5.1] Reproduction operator will be done

every 5 generations,

[SubStep 5.2] sort descending order by the current

fitness values of each bacterium,

[SubStep 5.3] locations of one half of bacteria, with

inferior fitness values, are replaced by

the other half, with superior fitness

values.

[Step 6] Elimination and dispersal operator:

[SubStep 6.1] Elimination-dispersal operator will be

done every 20 generations,

[SubStep 6.2] update range of the current elimina-

tion and dispersal Q = 1 – (2ged*L),

if Q < 0, then let Q = 0,

[SubStep 6.3] sort descending order by the current

fitness values of each bacterium,

[SubStep 6.4] let Sed = S*Q, select bacterial from

queue rear sorted Sed, in accordance

with the probability of the elimination

and dispersal Ped, to take the elimina-

tion-dispersal operator,

[Step 7] Check the terminal condition (usually reaches

a predetermined evolution generations or good

enough fitness values), and if the terminal con-

dition is satisfied, output optimal solution and

algorithm terminates; otherwise, go to Step 4.

IV. EXPERIMENTAL RESULTS

To illustrate the performance of the improved BFO

algorithm, we present the results of the improved BFOA,

using a test-suite of five well-known benchmark func-

tions:

1) Rosenbrock function

The local minimum of the Rosenbrock function which

is two-dimensional, odd behaving, and hard to minimize, is

calculated, where x∈[-2.048, 2.048]. The function has the

global optimum, which is 0, when xi = 1 (i = 1, 2, ..., n–1).

2) Rotated hyper-ellipsoid function

The rotated hyper-ellipsoid function that is unimodal is

calculated, and its global minimum is xi = 0 (i = 1, 2, ..., n).

f1 x() 100 xi 1+ xi
2

–()2 1 xi–()2+[]
i=1

n 1–

∑=

f2 x() xj

j=1

i

∑⎝ ⎠
⎛ ⎞

2

i=1

n

∑=

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 1-10

http://dx.doi.org/10.5626/JCSE.2014.8.1.1 6 Jun Li et al.

Its value is 0, where x∈[-65.536, 65.536].

3) Ackley function

This function that is multimodal is calculated. Its glo-

bal minimum is at xi = 0 (i = 1, 2, ..., n), and the value is

0, where x∈[-32.768, 32.768], a = 20, b = 0.2, c = 2*pi.

4) Rastrigin function

This function that is a multimodal is calculated. Its glo-

bal minimum is at xi = 0 (i = 1, 2, ..., n), and the value is

0, where x∈[-5.12, 5.12].

5) Griewank function

This function that is multimodal is calculated. Its glo-

bal minimum is at xi = 0 (i = 1, 2, ..., n), and the value is

0, where x∈[-600, 600].

Using a computer PC (Pentium 4/3.0 G, Memory 4 G)

with OS platform for Windows 7, C programming lan-

guage, the performance of the algorithm is evaluated

according to the following methods: 1) with fixed evolu-

tionary iteration, the convergence speed and precision of

the algorithm is evaluated; 2) with fixed target value of

convergence precision, the number of iterations of the

algorithm that reaches the required accuracy is evaluated;

and 3) the performance of the algorithm is compared to

other algorithms.

A. Convergence Speed and Accuracy of the
Algorithm under the Fixed Evolutionary
Iterations

Suppose that the rest of the parameter settings that

were kept in the algorithms are as follows. The total num-

ber of bacterial population is 50. The dimension of solu-

tion space for the four testing functions is set to be 2. The

maximum number of steps in the same direction is 4. The

number of fixed evolutionary iterations is 200. The depth

of the attractant and the height of the repellant are both

0.1. The width of the attractant is 0.2 and the width of the

repellant is 10. Let the initial probability of the elimina-

tion-dispersal Ped be 15%, and the step sizes STEP =

0.001R, based on the BFO algorithm. In addition, let the

initial probability of the elimination-dispersal Ped be 30%,

the step sizes STEP=0.002R, and L=3% in the improved

IBFO. Fig. 4 presents the convergence characteristics

using the basic bacterial foraging algorithm and the

improved algorithm (IBFO) to run 20 times in terms of

the best fitness value of the median run of each algorithm

for each test function.

The figures above depict optimal results, for different

test functions. We can see that the classical BFO algo-

rithm with a fixed step size almost stops converging,

when it optimizes to a certain value, or even jumps, due

to the escape of bacteria; whereas, the improved BFO

(IBFO) algorithm overcomes these shortcomings. With

an increasing number of iterations, and decreasing step

sizes, the accuracy of the algorithm is greatly improved,

and the convergence speed of the algorithm is signifi-

cantly increased. Therefore, the improved algorithm per-

formance is much better than that of the basic algorithm.

f3 x() a– e
b

x
i

2

i=1

n

∑
n

-----------------–

e

cos c x
i

×()

i=1

n

∑
n

a e
1

+ +–×=

f4 x() 10 n xi
2

10 cos 2πxi()×–()
i=1

n

∑+×=

f5 x() xi
2

4000
------------ cos

xi

i
-----⎝ ⎠

⎛ ⎞

i=1

n

∏ 1+–
i=1

n

∑=

Table 1. The number of iterations under the specified convergence accuracy for benchmark functions f1, f2, f3, f4, and f5

Algorithm Function Success rate (%) Mean minimum Minimum Maximum

BFO f
1

46 310 240 440

f2 38 340 236 450

f3 22 410 339 580

f
4

26 325 248 466

f5 8 529 442 592

IBFO f
1

100 63 56 101

f2 100 70 62 113

f3 100 91 88 190

f
4

100 89 78 138

f5 100 169 93 468

BFO: bacteria foraging optimization, IBFO: improved BFO.

Analysis and Improvement of the Bacterial Foraging Optimization Algorithm

Jun Li et al. 7 http://jcse.kiise.org

B. Evolutionary Iterations under the Fixed
Convergence Accuracy of the Algorithm

Experimental parameters of the evolution iterations in

the fixed convergence precision are set as follows: the

target convergence precision is 0.0001; the maximum

number of iterations is 600; and the other parameters are

as shown above.

It is shown in Table 1 that five test functions indepen-

dently operate 60 times, to acquire the number of itera-

tions under the specified convergence accuracy, where

the success rate is the number of runs to the target accu-

Fig. 4. Convergence results of the classical bacteria foraging optimization (BFO) and the improved BFO (IBFO) algorithm on the
benchmark functions. (a) Rosenbrock, (b) rotated hyper-ellipsoid, (c) Ackley, (d) Rastrigin, and (e) Griewank functions.

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 1-10

http://dx.doi.org/10.5626/JCSE.2014.8.1.1 8 Jun Li et al.

racy divided by the total number of experiments.

As shown in Table 1, the success rate of the basic BFO

algorithm is small. The maximal success rate is only 46%

in the four test functions, whereas the success rate in the

improved algorithm (IBFO) is 100%. The improved algo-

rithm (IBFO) in the case of successful convergence is

better than the basic algorithm, in the required minimum

number of iterations, and the maximum number of itera-

tions. The above results indicate that the improved BFO

(IBFO) algorithm is superior to the basic BFO algorithm.

C. Comparison with Other Algorithms

We have compared IBFO with BFO and particle

swarm optimization (PSO). The comparison ends up with

the condition that the number of iterations achieves 105,

or the optimal value reaches the target value, i.e., 0.001.

The solutions of 100 times operations of IBFO, BFO, and

PSO on f1, f2, f3, f4, and f5 are shown in Table 2. The

parameters are the same as mentioned before. The param-

eters of PSO [18] are shown in Table 3.

V. CONCLUSIONS

The algorithm is improved in the elimination-dispersal

and chemotaxis operations, based on the basic BFO. By

limiting the range of the elimination-dispersal of bacteria,

the escape phenomenon can be avoided and the conver-

gence speed of the algorithm is effectively improved.

Furthermore, the influence of the step size in the chemot-

axis operations on the algorithm has been analyzed; the

convergence speed and the precision of the algorithm

with variable step size have been improved. Experiments

show that the IBFO greatly improves its convergence

speed and precision, and it is suitable for both unimodal

and multimodal functions.

ACKNOWLEDGMENTS

This work was supported by the Plan of the Gansu Pro-

vincial Department of Education, 2012, under Grant

1204-13.

REFERENCES

1. K. M. Passino, “Biomimicry of bacterial foraging for distrib-

uted optimization and control,” IEEE Control Systems, vol.

22, no. 3, pp. 52-67, 2002.

2. A. Abraham, A. Biswas, S. Dasgupta, and S. Das, “Analy-

sis of reproduction operator in bacterial foraging optimiza-

tion algorithm,” in Proceedings of the IEEE Congress on

Evolutionary Computation, Hong Kong, 2008, pp. 1476-

1483.

3. D. H. Kim, A. Abraham, and J. H. Cho, “A hybrid genetic

algorithm and bacterial foraging approach for global optimi-

zation,” Information Sciences, vol. 177, no. 18, pp. 3918-

3937, 2007.

4. S. Das, A. Biswas, S. Dasgupta, and A. Abraham, “Bacte-

Table 2. Average and standard deviation (in parenthesis) of the best-of-run for 50 independent runs tested on five benchmark functions

Function Dim. Maximum no. of FEs
Mean best value (standard deviation)

IBFO BFO PSO

f1 15 5 × 104 0.0416 (0.0046) 0.5950 (0.5623) 0.0721 (0.0276)

30 1 × 105 0.8841 (0.3221) 1.2160 (0.9254) 1.0630 (0.0533)

f2 15 5 × 104 1.3552 (0.7145) 4.8372 (3.3287) 0.8341 (0.6386)

30 1 × 105 8.4228 (1.1683) 12.3243 (10.8654) 5.5988 (1.2147)

f3 15 5 × 104 0.3552 (0.3259) 1.0332 (0.0287) 0.2341 (0.0186)

30 1 × 105 0.4228 (0.1683) 2.3243 (1.8833) 1.3984 (0.8217)

f
4

15 5 × 104 1.9625 (0.2853) 3.4561 (2.6632) 10.4170 (3.7260)

30 1 × 105 2.6447 (1.6559) 17.5248 (9.8962) 34.8370 (10.1280)

f5 15 5 × 104 0.0010 (0) 0.2812 (0.0216) 0.1153 (0.0208)

30 1 × 105 0.1927 (0.0252) 0.3729 (0.0346) 0.2035 (0.0953)

FE: function evaluation, BFO: bacteria foraging optimization, IBFO: improved BFO, PSO: particle swarm optimization.

Table 3. Particle swarm optimization algorithm relevant parameter

Number of bacteria in the population 50

C1 2

C2 2

ω 1.05

Analysis and Improvement of the Bacterial Foraging Optimization Algorithm

Jun Li et al. 9 http://jcse.kiise.org

rial foraging optimization algorithm: theoretical foundations,

analysis, and applications,” in Foundations of Computa-

tional Intelligence Volume 3, Heidelberg, Germany: Springer-

Verlag, pp. 23-55, 2007.

5. C. Ying, M. Hua, J. Zhen, and W. Qinghua, “Fast bacterial

swarming algorithm based on particle swarm optimization,”

Journal of Data Acquisition and Processing, no. 4, pp. 442-

448, 2010.

6. M. Li and C. W. Yang, “Bacterial colony optimization algo-

rithm,” Control Theory & Applications, vol. 28, no. 2, pp.

223-228, 2011.

7. M. Tripathy, S. Mishra, L. L. Lai, and Q. P. Zhang, “Trans-

mission loss reduction based on FACTS and bacteria forag-

ing algorithm,” in Parallel Problem Solving from Nature-

PPSN IX, Heidelberg, Germany: Springer-Verlag, pp. 222-

231, 2006.

8. P. Yang, Y. M. Sun, X. L. Xiao, and L. X. Che, “Particle

swarm optimization based on chemotaxis operation of bacte-

rial foraging algorithm,” Application Research of Comput-

ers, no. 10, pp. 3640-3642, 2011.

9. W. L. Wang, “Research of hybrid optimization algorithms

based on swarm intelligence,” dissertation, Harbin Institute

of Technology, Harbin, China, 2010.

10. X. L. Liu and K. L. Zhao, “Bacteria foraging optimization

algorithm based on immune algorithm,” Journal of Com-

puter Applications, vol. 32, no. 3, pp. 634-637, 2012.

11. X. S. Wang, Y. H. Cheng, and M. L. Hao, “Estimation of

distribution algorithm based on bacterial foraging and its

application in predictive control,” Acta Electronica Sinica,

vol. 38, no. 2, pp. 333-339, 2010.

12. F. Feng, B. K. Wang, and S. Y. Yang, “Research on image

cluster based on bacterial foraging optimization algorithm,”

Journal of Tianjin Normal University, no. 2, pp. 56-58, 2012.

13. S. J. Yang, S. W. Wang, J. Tao, and X. Liu, “Multi-objec-

tive optimization method based on hybrid swarm intelli-

gence algorithm,” Computer Simulation, vol. 29, no. 6, pp.

218-222, 2012.

14. D. Yang, X. Li, and L. Jiang, “Improved algorithm of bacte-

rium foraging and its application,” Computer Engineering

and Applications, vol. 48, no. 13, pp. 31-34, 2012.

15. S. Mishra, “A hybrid least square-fuzzy bacterial foraging

strategy for harmonic estimation,” IEEE Transactions on

Evolutionary Computation, vol. 9, no. 1, pp. 61-73, 2005.

16. R. Majhi, G. Panda, B. Majhi, and G. Sahoo, “Efficient pre-

diction of stock market indices using adaptive bacterial for-

aging optimization (ABFO) and BFO based techniques,”

Expert Systems with Applications, vol. 36, no. 6, pp. 10097-

10104, 2009.

17. T. Datta, I. S. Misra, B. B. Mangaraj, and S. Imtiaj,

“Improved adaptive bacteria foraging algorithm in optimiza-

tion of antenna array for faster convergence,” Progress in

Electromagnetics Research C, vol. 1, pp. 143-157, 2008.

18. Y. Shen, B. Guo, and T. X. Gu, “Particle swarm optimiza-

tion algorithm and comparison with genetic algorithm,”

Journal of University of Electronic Science and Technology

of China, vol. 34, no. 5, pp. 696-699, 2005.

19. Yang Shang-jun, Wang She-wei, Tao Jun, and Liu Xue.

“Multi-objective optimization method based on hybird

swarm intelligence algorithm,” Computer Simulation, vol.

29, no. 6, pp. 218-222, 2012.

20. Shen Yan, Guo Bing, and Gu Tian-xiang. “Particle swarm

optimization algorithm andcomparison with genetic algo-

rithm [J],” Journal of UEST of China, vol. 34, no.5, pp. 696-

699, 2005.

Li Jun

Li Jun is an associate professor and doctoral candidate. She received her B.Sc. and M.Sc. degrees in Computer
Science from Lanzhou Jiaotong University, Lanzhou, China, in 1996 and 2004, respectively. After graduation,
she worked in Lanzhou Jiaotong University. She has been studying for a doctor’s degree in the department
of electronics and information of Lanzhou Jiaotong University, since 2009. Her main research direction is
computational intelligence and intelligent information processing. In recent years, she has participated in a
number of scientific research projects, winning the Science and Technology Progress Award of Gansu
Province five times, and publishing many articles.

Jianwu Dang

Jianwu Dang received his M.Sc. degree in 1992, and Ph.D. degree in 1996, in Southwest Jiaotong University.
He is currently a professor and Ph.D. supervisor in the School of Electronic & Information Engineering,
Lanzhou Jiaotong University. His main research interests include intelligent information processing and
neural networks. He has published more than 70 research articles in peer-reviewed journals and
international conferences.

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 1-10

http://dx.doi.org/10.5626/JCSE.2014.8.1.1 10 Jun Li et al.

Feng Bu

Feng Bu received his B.Sc. degree in Computer Engineering from Lanzhou Jiaotong University, Lanzhou,
China, in 2008. He is studying for his master’s degree at Lanzhou Jiaotong University. His research interests
include artificial intelligence, optimization, and computer vision.

Jiansheng Wang

Jiansheng Wang received his B.Sc. degree in Computer Science from Jilin University, Changchun, China in
1986. He joined the faculty of the Department of Computer Science at LZJTU, Lanzhou, China in 1996, where
currently he is an associate professor. His research interests include Web services, information security, and
distributed processing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

