
Copyright 2014. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 8, No. 1, March 2014, pp. 43-56

SS-DRM: Semi-Partitioned Scheduling Based on Delayed Rate
Monotonic on Multiprocessor Platforms

Saeed Senobary*

Imam Reza International University, Mashhad, Iran

s.senobary@imamreza.ac.ir

Mahmoud Naghibzadeh

Dept. of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

naghibzadeh@um.ac.ir

Abstract
Semi-partitioned scheduling is a new approach for allocating tasks on multiprocessor platforms. By splitting some tasks

between processors, semi-partitioned scheduling is used to improve processor utilization. In this paper, a new semi-parti-

tioned scheduling algorithm called SS-DRM is proposed for multiprocessor platforms. The scheduling policy used in SS-

DRM is based on the delayed rate monotonic algorithm, which is a modified version of the rate monotonic algorithm that

can achieve higher processor utilization. This algorithm can safely schedule any system composed of two tasks with total

utilization less than or equal to that on a single processor. First, it is formally proven that any task which is feasible under

the rate monotonic algorithm will be feasible under the delayed rate monotonic algorithm as well. Then, the existing allo-

cation method is extended to the delayed rate monotonic algorithm. After that, two improvements are proposed to

achieve more processor utilization with the SS-DRM algorithm than with the rate monotonic algorithm. According to the

simulation results, SS-DRM improves the scheduling performance compared with previous work in terms of processor

utilization, the number of required processors, and the number of created subtasks.

Category: Embedded computing

Keywords: Real-time systems; Scheduling algorithms; Delayed rate monotonic; Semi-partitioned technique

I. INTRODUCTION

One of the significant issues in multiprocessor sched-

uling is how to better utilize processors. The scheduling

algorithms are classified as global scheduling and parti-

tioned scheduling. In global scheduling, only one queue

exists for the entire system, and tasks can run on different

processors. This scheduling algorithm has high overhead.

On the other hand, in partitioned scheduling, each proces-

sor has a separate queue, and each task may only run on

one processor.

The problem of partitioned scheduling is very similar

to bin-packing, which is known to be NP-hard [1]. In

recent years, a new approach called semi-partitioned

scheduling has been proposed. In this approach, most

tasks are assigned to a single processor, while a few tasks

are allowed to be split into several subtasks and assigned

to different processors to improve utilization.

Received 15 January 2014; Revised 11 February 2014; Accepted 17 February

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2014.8.1.43 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 43-56

http://dx.doi.org/10.5626/JCSE.2014.8.1.43 44 Saeed Senobary and Mahmoud Naghibzadeh

The delayed rate monotonic algorithm is a modified

version of the rate monotonic algorithm, which can

achieve higher processor utilization than the rate mono-

tonic algorithm [2, 3]. In this algorithm, a new state

called the delayed state is added to the system. All tasks

except for the one with lowest priority enter this state as

they make a request. It is proven that the delayed rate

monotonic can safely schedule any system composed of

two tasks with total utilization less than or equal to that

on a single processor.

In this paper, the problem of scheduling tasks with

fixed priority on multiprocessor platforms is studied. The

proposed approach can increase the utilization of some

processors to 100% based on the delayed rate monotonic

policy. Our novel contributions are as follows:
● First, it is formally proven that any task which is fea-

sible under the rate monotonic algorithm will be fea-

sible under the delayed rate monotonic algorithm as

well. Then, we propose a new semi-partitioned sched-

uling algorithm based on the delayed rate monotonic

algorithm called SS-DRM, which adapts a previous

allocation method [4] with the delayed rate mono-

tonic algorithm. The scheduling policy [4] is based

on the rate monotonic algorithm. The use of the

delayed rate monotonic algorithm makes SS-DRM

perform better against possible overload compared to

the rate monotonic algorithm.
● After that, two improvements are proposed to change

the allocation method of SS-DRM in order to improve

the processor utilization by using a new pre-assign-

ment function and a new splitting function. Based on

these two improvements, SS-DRM can achieve full

processor utilization in some special cases. Another

advantage of the new pre-assignment function is the

number of created subtasks that can be safely sched-

uled. The simulation results demonstrate that SS-DRM

improves the scheduling performance compared with

previous work in terms of processor utilization, the

number of required processors, and the number of

created subtasks.

The rest of this paper is organized as follows. In Sec-

tion II, related works are discussed, while in Section III,

the system model is introduced. Sections IV and V are

related to the allocation method and SS-DRM. Finally, an

evaluation and conclusions are discussed in Sections VI

and VII.

II. RELATED WORKS

The first semi-partitioned technique was used with the

EDF algorithm for soft real-time systems [5]. Then, some

studies worked on periodic tasks [4, 6-8]. An approach

called PDMS_HPTS selects and splits the highest priority

task in each processor [8]. The scheduler of processors in

this paper is based on the deadline monotonic algorithm,

with which the utilization is 60%.

In some other research, the processor utilization is

raised up to the well-known L&L bound (L&L bound =

n*(21/n – 1)) [7, 9, 10]. The distinctive points of these

papers are the allocation method and definition of tasks.

For instance, a semi-partitioned scheduling algorithm

called SPA2 was proposed [7] for periodic tasks, with

which the processor utilization reaches the L&L bound

under a rate monotonic policy. The allocation method

used in this paper is a worst-fit method, which selects a

processor with the least total utilization of tasks assigned

to it so far.

Increasing the processor utilization beyond the L&L

bound has also been studied in some papers. An approach

called pCOMPATS was proposed [6] for multicore plat-

forms. As the number of cores increases, this approach

can achieve 100% utilization. When the utilization of

each task does not exceed 0.5, this processor utilization is

achieved. Therefore, tasks are divided into two groups:

light tasks with utilization of lower than 0.5 and heavy

tasks with utilization more than or equal to 0.5. Light

tasks are assigning by a first-fit method. First, tasks are

sorted in ascending order of their periods, and then allo-

cation is done from the front of the queue towards the

end. Heavy tasks are assigned like PDMS_HPTS. It

means that the highest priority task is selected and then

split. The least upper bound to the processor utilization

for heavy tasks is 72%.

The scheduler of processors is based on the rate mono-

tonic algorithm, and the schedule-ability test used in this

paper is R-bound [11]. This schedule-ability test was pro-

posed by Lauzac et al. [11] in 2003. Their approach is

sufficient for the schedule-ability test with good approxi-

mation.

The RM-TS approach increases the processor utiliza-

tion beyond the L&L bound [4]. As in another study [7],

the worst-fit method is used in the allocation of RM-TS,

but admission control in RM-TS is based on response

time analysis, so the processor utilization can be

improved. There are also some other works which stud-

ied semi-partitioned scheduling based on the earliest

deadline first algorithm [12, 13].

The approach of this paper can also increase the pro-

cessor utilization more than the L&L bound based on

delayed rate monotonic policy. The overhead of task

splitting is the same as in previous approaches [6, 8].

Based on these studies, the overhead of context switching

due to task splitting is negligible. There are also some

other approaches that are similar to delayed rate mono-

tonic approach which improves the schedule-ability of

the rate monotonic algorithm. This group of scheduling

algorithms studied the problem of fixed priority schedul-

ing with a limited-preemptive approach. For instance, an

approach was proposed that improves the feasibility of

SS-DRM: Semi-Partitioned Scheduling Based on Delayed Rate Monotonic on Multiprocessor Platforms

Saeed Senobary and Mahmoud Naghibzadeh 45 http://jcse.kiise.org

tasks, so the processor utilization could be enhanced [14].

III. SYSTEM MODEL

In the proposed system, tasks are periodic, and their

deadline parameters (i.e., relative deadline) are assumed

to be equal to their periods. A request of task τi (i = {1,

…, n}) is called a job. Every task τi is modeled by two

parameters:

Ci = the worst-case execution time required by task τi

on each job.

Ti = the time interval between two jobs of task τi.

Tasks are considered hard real-time (as opposed to soft

real-time [3]). Every job of task τi should be completed

before the next job of the same task arrives. The response

time of a job is the time span from the job arriving up to

its execution completion.

Liu and Layland [15] proved that the worst response

time of task τi occurs when it simultaneously requests

with all higher priority tasks. Task τi is feasible if its

worst response time is lower than or equal to its period.

The utilization of task τi is defined by Ui = . In this sys-

tem, we want to assign task set = {(C1, T1), (C2, T2), …,

(Cn, Tn)} to m processors, {M1, …, Mm}.

DEFINITION 1. The total utilization of task set is

defined by:

 (1)

DEFINITION 2. The processor utilization of Mi, i =

{1,…, m} is the total utilization of task set , which is

assigned to Mi.

DEFINITION 3. The average processor utilization of

task set with m processors is:

 (2)

A semi-partitioned scheduling includes two phases:

partitioning and scheduling. In the partitioning phase, all

tasks are assigned to the processors. If a task cannot be

entirely accommodated by a processor, it is split into two

subtasks. These tasks are called split-tasks. The other

tasks which are entirely assigned to a processor are called

non-split tasks. Non-split tasks always run on a single

processor.

The second phase of a semi-partitioned scheduling is

the policy to determine how to schedule assigned tasks on

each processor. The scheduler used within each processor

is based on the delayed rate monotonic algorithm, which

is an improved version of the rate monotonic algorithm

[15]. In the rate monotonic algorithm, every task with a

lower period has higher priority. Further, this algorithm is

preemptive. So, the lowest priority task has the highest

probability for overrun. In the delayed rate monotonic

algorithm, all tasks have a secure delay except for the

task with the lowest priority. Therefore, in this scheduler,

these two queues are defined for tasks:
● Ready: a task with the lowest priority directly enters

this queue, and other tasks enter when their delays

are over.
● Delay: all tasks except for the lowest priority one

enter this queue as they make a request.

A task in the ready queue has higher priority over all

tasks in the delay queue. If no tasks exist in the ready

queue, then a task is selected from the delay queue to run

next. Tasks in both ready and delay queues are scheduled

based on the rate monotonic algorithm. Suppose tasks are

sorted in ascending order of their periods. Now, Formula

(3) calculates the delay of each task.

For τ1, with the shortest period, the delay is equal to:

T1 – C1

For τi 2 ≤ i ≤ n – 1, the delay is equal to:

(3)

Parameter α is a constant used to adjust the amount of

delay imposed on tasks. It can be a value varying

between [0, 1]. The delay of tasks is the maximum if α is

equal to one.

It should be mentioned that the concept of delay used

by the delayed rate monotonic algorithm is different from

zero laxity [16]. If Ti,k is the period of the k-th job of task

τi and Ci,k(t) is the remaining worst-case execution time

of task τi in time t, then the laxity of task τi in time t is

defined as Ti,k – (t + Ci,k(t)). When this laxity is equal to

zero, it is called zero laxity. A task with zero delay (i.e., a

task whose state has to change from delay to ready) is not

necessarily a zero-laxity task.

IV. ALLOCATION METHOD

An approach called RM-TS was introduced in another

study [4] for allocating tasks on multiprocessor platforms

with a semi-partitioned technique and the rate monotonic

algorithm. In this paper, the schedule-ability test is based

on the response time analysis (RTA) [17]. The worst

response time of a task under the rate monotonic algo-

rithm can be calculated by Formula (4). Suppose tasks

are sorted in ascending order of their periods. Now, the

worst response time of task τi is:

(4)

Ci

Ti

Γ

Γ

U Γ() Σi=1

n Ci

Ti

-----=

Γ′

Γ

Um Γ() U Γ()
m

------------=

 ∀

Delayi α * Ti * Σj=i+1

n Cj

Tj

-----=

Ri

1

C1=

Ri
k+1

Ci Σj=1

i 1– Ri
k

Tj

----- * Cj+=

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 43-56

http://dx.doi.org/10.5626/JCSE.2014.8.1.43 46 Saeed Senobary and Mahmoud Naghibzadeh

This iteration is terminated when . If ≤ Ti,

then task τi (Ci, Ti) is feasible under the rate monotonic

algorithm. In the following, to check the feasibility of

tasks, we demonstrate an example.

EXAMPLE 1. Task set includes three tasks with the

parameters shown in Table 1. Now, we want to check

whether this task set is schedulable under the rate mono-

tonic algorithm or not.

● First, τ1 (30, 125).

;

● Second, τ2 (48, 130).

;

● Third, τ3 (92, 275).

;

;

The worst response time of all tasks is lower than their

periods. Therefore, task set is schedulable under the

rate monotonic algorithm.

Tasks in RM-TS are classified into two groups.

● Light: task τi is light when

● Heavy: task τi is heavy when

 is the L&L bound for task set τ.

A. Pre-assignment Function for Heavy Tasks

First, tasks are sorted in descending order of their peri-

ods, and then a pre-assignment function is done from the

end of the queue towards the front. In the pre-assignment

function, the heavy tasks which satisfy Condition (5)

should be separated and assigned to processors in the pre-

assignment phase. These processors are called pre-assign

processors. Suppose τi (Ci, Ti) is a heavy task.

(5)

 in Condition (5) determines the parametric utili-

zation bound (e.g., L&L is one of the parametric utiliza-

tion bounds for rate monotonic algorithm). Condition (5)

mentions that task τi (Ci, Ti) can be pre-assigned if all

lower priority tasks can be accommodated by all normal

processors. Normal processors are processors which do

not have a pre-assign task.

B. Assigning Normal Tasks

After the pre-assignment phase, it is time for the

remaining tasks. These tasks are called normal tasks.

Based on the sorting method, the lowest priority task is in

front of the queue. Now, a processor is chosen among

normal processors with the worst-fit method. It means the

processor with the lowest load factor is chosen for assign-

ing the current task. If all tasks (including the current

task) in this processor can be feasible and all can meet

their deadlines, we can add the entire task to this proces-

sor. As mentioned, such a task is called a non-split task. If

an infeasible task exists, then the current task should be

split. This task is called a split-task. The first part is

added to the processor, and the second part is put back in

front of the queue. After adding the first part to a proces-

sor, no other task or subtask is assigned to this processor.

If no normal processor exists, then a pre-assign proces-

sor is chosen. In this case, the pre-assign processor which

has a task with the largest period is chosen for assigning.

This process continues. If the queue of tasks is empty,

we can say that all tasks are successfully assigned to pro-

cessors. Algorithm 1 shows the pseudo-code of the allo-

cation method of RM-TS.

It is easy to derive the following property from Algo-

rithm 1.

LEMMA 1. Suppose task τi is split into several subtasks

({ , , … , }. Now, each subtask , j={1,…, q–1} is

the highest priority task in its own processor.

Proof. The proof follows from the method of splitting

Ri

k+1

Ri

k
= Ri

k

Γ

R1

1

30=

R1

2

30= R1

2

R1

1

=

R1 T1≤

R2

1

48=

R2

2

48 48
125
--------- * 30+ 78= =

R2

3

48 78
125
--------- * 30+ 78= = R2

3

R2

2

=

R2 T2≤

R3

1

92=

R3

2

92 92
125
--------- * 30 92

130
--------- * 48++ 170= =

R3

3

92 170
125
--------- * 30 170

130
--------- * 48++ 248= =

R3

4

92 248
125
--------- * 30 248

130
--------- * 48++ 248= =

R3

4

R3

3

=

R3 T3≤

Γ

Ui

Θ τ()
Θ τ() 1+
-------------------≤

Ui

Θ τ()
Θ τ() 1+
------------------->

Θ τ()

Σj i< Uj normal processors 1–() * Λ τ()≤

Λ τ()

τi
1

τi
2

τi
q

τi
 j

Table 1. Period and worst-case execution time of tasks

No. task C
i

T
i

τ1 30 125

τ2 48 130

τ
3

92 275

SS-DRM: Semi-Partitioned Scheduling Based on Delayed Rate Monotonic on Multiprocessor Platforms

Saeed Senobary and Mahmoud Naghibzadeh 47 http://jcse.kiise.org

tasks.□

Now, under the rate monotonic algorithm, the first sub-

task of a split-task will start its execution as soon as it

makes a request, and it will run to the end without any

interruption. Other subtasks of a split-task should wait

until the prior subtasks are completed before starting to

execute. For this concept, the term of release time is used

[4]. It means that the release time of each subtask of a

split-task is equal to the total worst response time of prior

subtasks. This release time is calculated as shown in For-

mula (6).

Suppose task τi (Ci, Ti) is split into several subtasks

{ , …, } and each subtask is assigned to

a different processor. Now, the release time of subtask

is:

Release time () = (6)

These subtasks need to be synchronized to execute cor-

rectly. For example, subtask cannot start its execution

until prior subtasks, , , …, , are finished. Accord-

ing to Lemma 1, the worst response time of a subtask is

equal to its worst-case execution time. However, for the

last subtask, this may not hold.

A binary search can be done for finding the maximum

value for the worst-case execution time of the first sub-

task of a split-task. With this allocation method, it was

proven that all tasks including non-split tasks and split-

tasks are feasible under the rate monotonic algorithm [4].

V. SS-DRM

In this section, we propose a new semi-partitioned

scheduling algorithm based on a delayed rate monotonic

algorithm called SS-DRM, which adapts the allocation

method of RM-TS to the delayed rate monotonic algo-

rithm. In the delayed rate monotonic algorithm, all tasks

except for the lowest priority one enter the delay queue

before moving to the ready queue. Each task stays for a

different time interval in the delay queue. To prove that

the feasibility of tasks is exactly the same as in the rate

monotonic algorithm, the delay of tasks has been

changed in this proposal.

As mentioned, tasks in RM-TS are divided into several

groups. In a general classification, we have non-split tasks

and split-tasks.
● Non-split tasks: these tasks are each entirely assigned

to a processor.
● Split-tasks: these tasks are split into several subtasks

and each assigned to a different processor. Consider-

ing Formula (6) and Lemma 1, the release time of a

subtask is equal to the total worst-case execution

time of prior subtasks.

Both heavy tasks and light tasks belong to the same

groups, i.e., non-split tasks. It means a non-split task can

be heavy or light.

Now, three types of delay are introduced in SS-DRM.
● For τn, with the largest period, delay is equal to zero.
● For τi 1 ≤ i ≤ n – 1

If τi is a non-split task, then delay is equal to:

Algorithm 1 Allocation method of RM-TS [4]

τi
1

Ci
1

, Ti() τi
q

Ci
q
, Ti()

τi
 j

τi
 j

Σv=1

j 1–

Ri
v

τi
 j

τi

1

τi

2

τi

 j 1–

 ∀

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 43-56

http://dx.doi.org/10.5626/JCSE.2014.8.1.43 48 Saeed Senobary and Mahmoud Naghibzadeh

 (7)

where Ri is the worst response time of task τi and is calcu-

lated by Formula (4). Suppose task set = {τ1, …, τn} is

safely scheduled by the rate monotonic algorithm. Now,

the delay of task τi, i = {2, …, n – 1} rarely becomes zero.

On the other hand, the worst response time of task τi is

rarely equal to its period. The delay of task τ1 with the

highest priority is not equal to zero unless U1 = 1.

Otherwise, τi is the j-th subtask of a split-task, and the

delay is equal to:

 (8)

Considering Algorithm 1, processors are occupied in

parallel, so we can express Lemma 2.

LEMMA 2. The lowest priority task in each processor

is a non-split task.

Proof. Considering Phase 1 of Algorithm 1, a heavy

task is entirely assigned to a processor if all lower priority

tasks can be accommodated by all normal processors.

Therefore, pre-assign tasks are the lowest priority tasks in

their own processors. Further, they are non-split tasks.

According to Phase 2 of Algorithm 1, normal proces-

sors are chosen by a worst-fit method and accommodated

in parallel, so one non-split task exists in each normal

processor. The non-split task is the lowest priority task in

each normal processor, because of the sorting method.

Therefore, a non-split task exists in each processor in

which it is the lowest priority task.□

Now, by Lemma 3, we show that non-split tasks which

are feasible under the rate monotonic algorithm will be

feasible under the SS-DRM algorithm as well.

LEMMA 3. Suppose task τi (Ci, Ti) is a non-split task

and it is feasible under the rate monotonic algorithm.

This task is feasible under the SS-DRM algorithm as well.

Proof. According to Lemma 2, the lowest priority task

in each processor is a non-split task. The lowest priority

task in SS-DRM has no delay and directly enters the

ready queue. We assumed in Lemma 3 that task τi is fea-

sible under the rate monotonic algorithm, and it means

that Ri ≤ Ti. In SS-DRM, scheduling in both the ready and

delay queues is done based on the rate monotonic algo-

rithm. Therefore, if τi is the lowest priority task, then it is

feasible under SS-DRM, because it directly enters the

ready queue.

For other non-split tasks, the delay is considered as in

Formula (7). As mentioned earlier, scheduling in the

ready queue is based on the rate monotonic algorithm, so

the worst response time of task τi in the ready queue is

equal to Ri. Therefore, the maximum response time of

task τi under SS-DRM, , is equal to Delayi + Ri.

The worst response time of task τi is at most equal to

its period. So, this task is feasible under the SS-DRM

algorithm.□

Therefore, it is proven that all non-split tasks, which

are feasible under the rate monotonic algorithm, are fea-

sible under SS-DRM as well. So, the response time anal-

ysis can be used for admission control of SS-DRM.

In SS-DRM, based on the delayed rate monotonic

algorithm, a non-split task which is in the delay queue

can run next if the ready queue is empty. According to

Formula (8), the delay of a split-task is equal to the total

worst-case execution time of prior subtasks. It means that

with the delay of subtasks, we express the concept of

release time used in another study [4]. Now, a split-task

in SS-DRM can run only if its delay is completely fin-

ished and it has entered the ready queue.

This is done to synchronize subtasks of a split-task. In

this work, the same behavior for a split-task as it is

regarded in RM-TS is considered. More details on the

feasibility of the split-tasks are presented in a previous

study [4]. In this work, to use the advantages of the

delayed rate monotonic algorithm, such as its resilience

against possible overload, the allocation method of RM-

TS is adapted to this algorithm.

A. Changing Assigning Method

To improve the processor utilization under the SS-DRM

algorithm, we express two improvements. First, Theorem 1

is stated.

THEOREM 1. Two tasks, τ1 and τ2, where τ1 has higher

priority and τ2 is not the first subtask of a split-task, are

feasible under SS-DRM if and only if U1 + U2 ≤ 1.

Proof. As mentioned earlier, the delayed rate mono-

tonic algorithm can safely schedule any system com-

posed of two tasks with total utilization less than or equal

to one on a single processor [2]. The proof is based on the

fact that task τ1 (C1, T1) is at most delayed for T1 – C1.

With SS-DRM, three types of systems composed of two

tasks exist.
● First, a system composed of two non-split tasks.

Suppose two non-split tasks τ1(C1, T1) and τ2(C2, T2)

are assigned to a processor, T2 > T1 and U1 + U2 ≤ 1.

According to Relation (7), the delay of task τ1 under SS-

DRM is equal to T1 – R1. Considering Formula (4), the

worst response time of the highest priority task is equal to

its worst-case execution time, so the delay of task τ1 is

equal to T1 – C1, and this system is scheduled safely

under SS-DRM.
● The second type of system is composed of two tasks

and includes a non-split task τ1 (C1, T1) and a split-task

Delayi Ti Ri–=

Γ

Delayi Σl=1

j 1–

Ci
l

=

Ri
SS DRM–

τi is feasible under rate monotonic Ri Ti≤→

Delayi Ti Ri–=

Ri
SS DRM–

Ti Ri Ri+–=

SS-DRM: Semi-Partitioned Scheduling Based on Delayed Rate Monotonic on Multiprocessor Platforms

Saeed Senobary and Mahmoud Naghibzadeh 49 http://jcse.kiise.org

, , in which is the last subtask of

split-task τ2.

To illustrate this system, suppose τ2 is split into two

subtasks and . The first subtask is

assigned to a processor. Now, we try to assign the second

subtask to processor Ma. The processor Ma consists of a

non-split task τ1(C1, T1), which is assigned earlier.

According to Relation (8), the delay of subtask in pro-

cessor Ma is equal to , which is less than .

We know that = C2, and in real-time systems

the worst-case execution time of a task is at most equal to

its period. Now, we have:

.

Therefore, the delay of subtask in processor Ma is

lower than , which is considered in a previous

study [2]. So, based on the delayed rate monotonic algo-

rithm, two tasks τ1 and are feasible under SS-DRM, if

and only if + ≤ 1.□

In Theorem 1, it is expressed that because of the third

type of system, the task τ2 should not be a first subtask of

a split-task.
● The third type of a system composed of two tasks is a

system which consists of a non-split task τ1(C1, T1) and

the first subtask of a split-task, .

The delay of this subtask is equal to zero and it directly

enters the ready queue. The fact that their total utilization

is less than one does not guarantee the feasibility of these

tasks under SS-DRM. Therefore, this state is separated in

Theorem 1.

Now, we use Theorem 1 to express two improvements

in allocation method of SS-DRM. These improvements

make SS-DRM achieve higher processor utilization than

RM-TS. The first improvement is a new pre-assignment

function, and the second improvement is a new splitting

function. In the new pre-assignment function of SS-

DRM, we try to fully utilize the existing processors by

assigning two tasks with total utilization in a specific

bounds to each processor.

For each task τi, i = {1, ..., n} with Ui ≥ 0.5, if another

task exists, i.e., τj, j = {1, ..., n} − i, which satisfies Con-

dition (9), then tasks τi and τj are entirely assigned to a

processor, and no other task or subtask is assigned to this

processor.

 (9)

Condition (9) determines the specific bounds of pro-

cessor utilization of pre-assign processors. The lower bound,

δ, is . The best value for

threshold δ in our evaluations is equal to 0.95. It should

be mentioned that if very many tasks τj exist in which

, then the best result which has the largest

total utilization is chosen. Algorithm 2 illustrates the

pseudo-code of the allocation method of SS-DRM which

uses the new pre-assignment function.

First, we try to find some groups of two tasks, each

with total utilization satisfying Condition (9). Then, each

group is assigned to a single processor. These processors

are removed from the queue of processors, and hence, no

other task or subtask is assigned to these processors.

After the pre-assignment function, it is time for remain-

ing tasks. These tasks are assigned to the remaining pro-

cessors, just like in the assignment method used in RM-

TS.

From Algorithm 2, it is easy to derive the following

property.

LEMMA 4. The composition of our new pre-assignment

τ2

i
C2

i
, T2() i 2, ..., q{ }∈ τ2

q

τ2

1

C2

1

, T2() τ2

2

C2

2

, T2()

τ2

2

C2

1

T2 C2

2

–

C2

1

C2

2

+

T2 C2≥

T2 C2

1

C2

2

+≥

T2 C2

2

C2

1≥–

τ2

2

T2 C2

2

–

τ2

2

C1

T1

C2

2

T2

τ2

1

C2

1

, T2()

δ Ui Uj + 1≤ ≤

Θ 2() 2 * 2
0.5

1–() 0.82≈=

Algorithm 2 Allocation method of SS-DRM

δ Ui Uj + 1≤ ≤

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 43-56

http://dx.doi.org/10.5626/JCSE.2014.8.1.43 50 Saeed Senobary and Mahmoud Naghibzadeh

function and the allocation method of RM-TS preserves

the feasibility of the system, similarly to a previous study

[4].

Therefore, Theorem 2 can be stated.

THEOREM 2. If all tasks in task set are successfully

partitioned by the allocation method of SS-DRM on m

processors and scheduled using the delayed rate mono-

tonic algorithm policy, then all tasks can meet their dead-

lines.

Proof. Theorem 2 can be proven by noting that the fea-

sibility of two tasks with total utilization less than or

equal to one are guaranteed based on Theorem 1 and

Type 1, since these tasks are entirely assigned to the pro-

cessors and considered as non-split tasks. The feasibility

of other tasks which are assigned using the allocation

method of RM-TS are guaranteed based on the exact tim-

ing analysis method [4].□

Therefore, using this pre-assignment function, some

processors exist in which the processor utilization is

raised up to 100%. Another advantage of the new pre-

assignment function is the number of created subtasks.

The number of created subtasks is at most m – 1 [4].

Based on the new pre-assignment function, after assign-

ing two tasks to one processor, no other task or subtask is

assigned to this processor. Therefore, the number of cre-

ated subtasks in SS-DRM is smaller than that of RM-TS,

and due to the number of created subtasks, the additional

overhead of the system is reduced.

The second improvement proposed for the allocation

method of SS-DRM in order to improve the processor

utilization is a new task splitting function. This function

uses the second type of system composed of two tasks,

which is expressed in Theorem 1. Two assumptions exist

in our splitting function.

Assumption 1. The current task in front of the queue

of un-assigned tasks is a subtask, i.e., ,

, is the last subtask of split-task τi, and

this subtask cannot be entirely accommodated by the host

processor.

Assumption 2. The host processor includes only one

non-split task τx, which is assigned earlier.

If these two assumptions hold, then tasks τx and are

not feasible under the rate monotonic algorithm. There-

fore, considering Algorithm 1 and line 25, the subtask

, should be split into two subtask

 and .

Now, in the new splitting function of SS-DRM, and

such a situation, if the total utilization of two tasks, τx and

, is larger than one, then the worst-case execution time

of subtask is obtained in which the processor utiliza-

tion of the host processor is equal to one, Ux + = 1.

Otherwise, when the total utilization of two tasks, τx and

, is lower than one, two tasks, τx and , are feasible

under SS-DRM based on Theorem 1, so is returned.

Algorithm 3 demonstrates the pseudo-code of the new

splitting function of SS-DRM. Three parameters are inputs

of this algorithm: first, the current task; second, a task set

 which illustrates all assigned tasks to the host proces-

sor; and third, the delay of the current task.

As mentioned earlier, the delay of non-split tasks is

calculated by Formula (7). This delay is calculated in the

scheduling phase when all tasks are clearly assigned to

the processors. Therefore, in the partitioning phase, the

delay of non-split tasks is assumed to be zero (line 2 of

Algorithm 1). On the other hand, for split-tasks, the delay

is calculated in the partitioning phase, so their delay is

not equal to zero (line 29 of Algorithm 1).

The longest value for the worst-case execution time of

the current task by which all tasks in are feasible is

the output of this algorithm. Based on this function, in

some processors, SS-DRM can raise the processor utili-

zation to 100%.

In line 6 of Algorithm 3, we check two assumptions.

First, only one task exists in the host processor; = 1.

Second, the current task is not the first subtask of a split

task; Delayi 0. If these two assumptions are correct and

U() + Ui > 1, then the worst-case execution time of

subtask is calculated, by which the processor utiliza-

tion of the host processor is equal to one.

In the following, we illustrate an example to show the

performance of our splitting function.

EXAMPLE 2. There are two processors, M1 and M2, and

three tasks, as shown in Table 2. All of these tasks are

Γ

τi

 j
Ci

j
, Ti() j ∈

2, ..., q 1–{ } Ci
q

τi

 j

τi

 j
Ci

j
, Ti() j 2, ..., q 1–{ }∈

τi
 j′

Ci
j′
, Ti() τi

 j 1+

Ci
j 1+

, Ti()

τi
 j

τi

 j′

Ci

 j′

Ti

τi

 j
τi

 j

Ci
j

Algorithm 3 Splitting function of SS-DRM

Γ′

Γ′

n′

≠
Γ′

τi

1

Table 2. Period and worst-case execution time of tasks

No. tasks C
i

T
i

τ1 60 100

τ2 36 64

τ3 40 48

SS-DRM: Semi-Partitioned Scheduling Based on Delayed Rate Monotonic on Multiprocessor Platforms

Saeed Senobary and Mahmoud Naghibzadeh 51 http://jcse.kiise.org

heavy, but only two tasks τ2 (36, 64) and τ1 (60, 100) are

pre-assigned to processors M1 and M2, respectively. Now,

task τ3 is in front of the queue of un-assigned tasks. No

normal processor exists, so a pre-assign processor is

selected to assign the current task. Therefore, a processor

which has a task with the largest period is chosen for

assigning task τ3, and hence, processor M2 is selected.

According to row two of Table 3, the current task, τ3,

cannot be entirely accommodated by processor M2, and

we should split task τ3 into two subtasks and

.

For finding a suitable value for , the splitting func-

tion is called. This subtask is the first subtask of split-task

τ3, and its delay is equal to zero. We express this state as

the third type of system in Theorem 1. As mentioned, this

state is separated from Theorem 1, and only a simple

binary search is done to find the worst-case execution

time of subtask . According to the binary search, this

value is equal to 18. Therefore, subtask (18, 48) is

assigned to the processor M2 and no other task or subtask

is assigned to this processor. After this step, subtask

(22, 48) is in front of the queue of un-assigned tasks. The

processor M1 is chosen for assigning this subtask. Task τ1

(36, 64) exists in this processor. Considering Table 3 and

row four, this subtask cannot entirely be accommodated

by M1.

Therefore, it should be split into two subtasks

 and , and the splitting function is

called again to find the suitable value for . This sub-

task is the second subtask of τ3, and its delay is equal to

18. So, the second type of system in Theorem 1 is

obtained here. It means that two tasks τ1 (36, 64) and

 are feasible under SS-DRM if and only if U1 +

 ≤ 1. Therefore:

The output of the splitting function of SS-DRM is

equal to 21. It means the value of the worst-case execu-

tion time of is obtained as 21, and the processor utili-

zation of M1 is equal to one.

If we use a simple binary search which has to be used

for RM-TS, the worst-case execution time of reduces

to 14. In this case, the processor utilization of M1

increases from 0.854 to 1 using the new splitting function

and SS-DRM algorithm.

VI. EVALUATION

In this section, we investigate the performance of SS-

DRM compared with three prior works. In our evalua-

tions, three different kinds of task sets are randomly gen-

erated. The distribution of our random function is uniform.

The details of each task set are shown in Table 4.

The total utilization of each task set, U(), is a ran-

dom value between

.

We assume that:

where Vi determines the maximum total utilization of

each task set and its value will be one of the following

τ3

1

C3

1

, T3()
τ3

2

C3

2

, T3()
C3

1

τ3

1

τ3

1

τ3

2

τ3

2′

C3

2′

, T3() τ3

3

C3

3

, T3()
C3

2′

τ3

2′

C3

2′

, T3()
C3

2′

T3

36
64
------ 22

48
------+ 1.02 1>=

Upper bound 1 36
64
------–⎝ ⎠

⎛ ⎞ * 48 21= =

τ3

2′

τ3

2′

Γ

L&L bound m()m ∞→ * Vi, Vi[]

L&L bound m()m ∞→ 0.7=

Table 3. Check feasibility of tasks using response time analysis

Processor M2 with two tasks τ1 (60, 100) and τ3 (40, 48)

 = 40

 = 40 → this task is feasible

 = 60

 = 60 + * 40 = 140 → this task is not feasible

Processor M1 with two tasks τ2 (36, 64) and (22, 48)

 = 22

 = 22 → this subtask is feasible

 = 36

 = 36 + * 22 = 58

 = 36 + * 22 = 80 → this task is not feasible

R1

1

R1

2

R2

1

R2

2 60

48

τ2

3

R1

1

R1

2

R2

1

R2

2 36

48

R2

3 58
48

Table 4. Features of each test

No. test No. task sets T
i

C
i

U()

1 5000 [5, 1000] [0.01*T
i
, T

i
] [0.7*V

i
, V

i
]

2 5000 [5, 1000] [0.01*T
i
, 0.49*T

i
] [0.7*V

i
, V

i
]

3 5000 [5, 1000] [0.5*T
i
, T

i
] [0.7*V

i
, V

i
]

Γ

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 43-56

http://dx.doi.org/10.5626/JCSE.2014.8.1.43 52 Saeed Senobary and Mahmoud Naghibzadeh

values of the following set:

For instance, when Vi is equal to 4, it means that a task

set = {(C1, T1), (C2, T2), …, (Cn, Tn)} is generated in

which ≤ 4. As shown in Table 4, for each

Vi, 5000 task sets with random utilization are generated.

The number of processors is assumed to be variable so

that these task sets can completely be assigned by all

scheduling algorithms. Indeed, by assigning these task

sets to lower processors, higher utilization can be

achieved.

We define another parameter called the average pro-

cessor utilization to evaluate each algorithm. This param-

eter is calculated by Formula (10).

Average processor utilization =

(10)

First, we compare SS-DRM with SPA [7] and RM-TS

[4]. In the first row of Table 4, the features of generated

task sets are illustrated. For instance, the utilization of

each task is randomly selected from 0.01 to 1 and con-

sists of both light tasks and heavy tasks.

The total number of required processors in the system

are demonstrated in Fig. 1(a) and Table 5 through the

three aforementioned algorithms. Fig. 1(b) and Table 6

show the total number of subtasks which are created by

these three algorithms. As shown in Fig. 1(a) and Table 5,

by increasing the value of Vi, the difference of the total

number of required processors in SS-DRM compared

with RM-TS or SPA is decreasing. On the other hand, the

difference of created subtasks is increasing as well. For

instance, when Vi is equal to 64, then the total number of

required processors in SS-DRM is 0.43% lower than that

of RM-TS. On the other hand, the total number of created

subtasks under SS-DRM, when Vi is equal to 64, is 94%

lower than RM-TS.

Considering Fig. 1(b) and Table 6, the difference of the

total number of created subtasks under SS-DRM com-

pared with RM-TS or SPA is remarkable. As mentioned

earlier, the overhead of task splitting is the same as previ-

ous works. Therefore, by creating a lower number of sub-

Vi 4, 8, 16, 32, 64, 128{ }∈

Γ
0.28 Σi=1

n≤ Ci

Ti

Σj=1

5000

U Γ()()j

total number of required processors

Fig. 1. Experimental result based on variable number of processors for investigating (a) the total number of required processors (b) the
total number of created subtasks.

Table 5. Total number of required processors

V
i

SS-DRM RM-TS SPA
% extra processors

RM-TS SPA

4 20680 20883 22996 0.97 10

8 40618 40907 44551 0.71 9

16 80601 80990 87861 0.5 8.2

32 160472 161230 173896 0.47 7.7

64 320484 321853 346150 0.43 7.4

128 640603 643263 691877 0.41 7.4

Table 6. Total number of created subtasks

V
i

SS-DRM RM-TS SPA
% extra processors

RM-TS SPA

4 1681 6171 6728 72 75

8 5335 16297 20240 68 73

16 7321 38084 54863 80 86

32 9843 80179 127455 87 92

64 9484 164229 274048 94 95

128 12756 337852 569645 96 97

SS-DRM: Semi-Partitioned Scheduling Based on Delayed Rate Monotonic on Multiprocessor Platforms

Saeed Senobary and Mahmoud Naghibzadeh 53 http://jcse.kiise.org

tasks, the overhead of task splitting is reduced in comparison

to RM-TS and SPA. This difference occurs because of the

pre-assignment function of SS-DRM. As Vi is increasing,

the usage of the pre-assignment function of SS-DRM is

increasing as well. For instance, when Vi is equal to 8 and

32, then 32% and 55% of existing processors are pre-

assigned, respectively. These processors include two non-

split tasks in which the processor utilization is between

[0.95, 1], and they are scheduled safely with the SS-DRM

algorithm. In these evaluations, the threshold δ is assumed

to be 0.95.

Table 7 illustrates the average processor utilization of

three algorithms. It can be observed that SS-DRM signif-

icantly achieves better average processor utilization in

comparison to SPA and RM-TS. The average processor

utilization of SS-DRM is about 0.58% and 10% more

than RM-TS and SPA, respectively.

The average number of callings of our new splitting

function in all simulations is about 1.1% of the total num-

ber of processors. It means that the processor utilization

of 1.1% of the processors is almost equal to one. These

processors have two tasks: a non-split task and a split-

task. The split-task is not the first part of the task which is

split. Their safety is assured by Theorem 1.

The second row in Table 4 shows tasks with random

utilization between 0.01 and 0.49 in order for SS-DRM to

be comparable with pCOMPATS [6]. As mentioned ear-

lier, tasks in pCOMPATS are divided into two groups:

light and heavy. For each group, a separate approach is

proposed. A first-fit method is used for allocating light

tasks (tasks with utilization lower than 0.5).

In this approach, the lowest priority task is split.

pCOMPATS uses R-Bound for the schedule-ability test to

cluster compatible tasks together. Table 8 shows the aver-

age processor utilization, and Fig. 2(a) shows the total

number of required processors. As shown in Fig. 2(a), the

performance of pCOMPATS is a little better than SS-

DRM. Since the utilization of each task is less than 0.5, it

is hard to find a system composed of two tasks in which

the total utilization of a system is near one. Therefore, the

pre-assignment function of SS-DRM is not used much.

But the largest number of required processors in pCOM-

Table 8. Average processor utilization

V
i

4 8 16 32 64 128

SS-DRM 0.79 0.82 0.83 0.833 0.83 0.834

pCOMPATS 0.8 0.83 0.837 0.836 0.83 0.83

Table 7. Average processor utilization

V
i

4 8 16 32 64 128

SS-DRM 0.82 0.84 0.85 0.85 0.85 0.85

RM-TS 0.812 0.83 0.84 0.84 0.84 0.845

SPA 0.74 0.76 0.78 0.78 0.78 0.786

Fig. 2. Evaluation of SS-DRM based on the number of required processors in comparison with (a) pCOMPATS (b) pCOMPATS-HT.

Table 9. The largest number of required processors

V
i

SS-DRM pCOMPATS

NTLargest PLargest NTLargest PLargest

4 1542 5 1276 5

8 4 10 20 10

16 2 19 1 20

32 1 37 12 38

64 2 73 4 76

128 2 145 1 151

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 43-56

http://dx.doi.org/10.5626/JCSE.2014.8.1.43 54 Saeed Senobary and Mahmoud Naghibzadeh

PATS is more than the largest number of required proces-

sors in SS-DRM. Details of the largest number of

required processors for each approach are shown in

Table 9. NTLargest is the number of task sets which are suc-

cessfully partitioned on PLargest processors. For instance,

the range of required processors when Vi is equal to 128

is illustrated in Fig. 3.

The total number of created subtasks by two approaches

is shown in Fig. 4(a). Considering Fig. 4(a), the total

number of created subtasks by SS-DRM is more than

pCOMPATS, since pCOMPATS uses the first-fit method

to allocate compatible tasks to one processor. The disabil-

ity of pCOMPATS to partition tasks with utilization larger

than 0.5 is the main challenge of this approach. The third

group of generated task sets is used to compare SS-DRM

with pCOMPATS-HT. In [6], pCOMPATS-HT is pro-

posed to assign heavy tasks (tasks with Ui ≥ 0.5).

In pCOMPATS-HT, tasks are sorted in descending

order of their periods. First, one task is assigned to each

empty processor. If no empty processor is found, and the

current processor is not full, then the current task is split

into two subtasks. According to the sorting method, the

highest priority task is split. Fig. 2(b) shows the total num-

ber of required processors under SS-DRM and pCOM-

PATS-HT.

As shown in Fig. 2(b), the difference of the total num-

ber of required processors between two approaches is

remarkable. The total number of created subtasks is more

proof which indicates the superiority of SS-DRM com-

pared to pCOMPATS-HT. The total number of created

subtasks by two approaches is demonstrated in Fig. 4(b).

According to the utilization of each task, most proces-

sors have two tasks. The total utilization of two tasks is at

least equal to one. Therefore, the pre-assignment function

of SS-DRM is not useful here. On the other hand, the

splitting function of SS-DRM can be used to split a task

in order to fully utilize processors. For instance, when Vi

is equal to 32, the processor utilization of almost 20% of

the processors is raised up to 100% using the splitting

function of SS-DRM. Table 10 illustrates the average pro-

cessor utilization. Considering Table 10, the average pro-

cessor utilization is increased by about 11% using SS-

DRM.

For evaluation of the delayed rate monotonic algorithm

against overload, we randomly generated 1000 task sets

for each test. These task sets are generated so that they

can be completely assigned to the processors. The alloca-

tion method of RM-TS is used for assigning tasks. For

producing overload, a task is randomly selected, and its

execution time is somewhat increased. Then, the execu-

tions of these task sets are simulated under both the rate

monotonic algorithm and the delayed rate monotonic

algorithm.

For the first evaluation, a task is randomly selected,

and its execution time is enlarged so that its overload fac-

tor is increased by 0.1, 0.2, and 0.3 for three different

Fig. 3. The range of required processors when Vi is equal to 128.

Fig. 4. Evaluation of SS-DRM based on the number of created subtasks in comparison with (a) pCOMPATS (b) pCOMPATS-HT.

Table 10. Average processor utilization

V
i

4 8 16 32 64 128

SS-DRM 0.82 0.84 0.84 0.85 0.85 0.85

pCOMPATS-HT 0.75 0.79 0.8 0.81 0.81 0.815

SS-DRM: Semi-Partitioned Scheduling Based on Delayed Rate Monotonic on Multiprocessor Platforms

Saeed Senobary and Mahmoud Naghibzadeh 55 http://jcse.kiise.org

tests. At the end, the success ratio average of these tests is

computed for the corresponding number of processors.

Fig. 5(a) shows the result of this evaluation. As shown in

Fig. 5(a), the success ratio of two algorithms when the

number of processors is high becomes closer. This hap-

pened because the number of processors which are not

overloaded is increased as well.

In the second evaluation, for each processor, a task is

randomly selected, and the overload factor is added to its

worst-case execution time. Fig. 5(b) shows the result of

this evaluation for 32 processors. The success ratio of

two algorithms converges together with increasing over-

load factor, because the number of processors with utili-

zation larger than one is increased as well.

VII. CONSLUSION

In this paper, a new scheduling algorithm called SS-

DRM was proposed by combining the delayed rate

monotonic algorithm with a semi-partitioned technique.

SS-DRM can safely schedule any task set which is feasi-

ble under the rate monotonic algorithm.

Our proposed approach can increase the processor uti-

lization beyond the well-known L&L bound. SS-DRM

can also be more resilient against possible overload com-

pared with the rate monotonic algorithm. Further, it

achieves the same utilization. Then, we expressed two

improvements to achieve higher processor utilization in

some special cases under the SS-DRM algorithm. In our

future works, further improvements will be sought to

change the allocation method of SS-DRM to improve the

processor utilization.

REFERENCES

1. M. R. Garey and D. S. Johnson, Computers and Intractabil-

ity: A Guide to the Theory of NP-Completeness, San Fran-

cisco, CA: W. H. Freeman, 1979.

2. M. Naghibzadeh and K. H. K. Kim, “The yielding-first rate-

monotonic scheduling approach and its efficiency assess-

ment,” Computer Systems Science & Engineering, vol. 18,

no 3, pp. 173-180, 2003.

3. M. Sabeghi, M. Naghibzadeh, and T. T. Razavizadeh, “A

fuzzy algorithm for scheduling soft periodic tasks in preemp-

tive real-time systems,” New Mathematics and Natural Com-

putation, vol. 3, no. 3, pp. 371-384, 2007.

4. N. Guan, M. Stigge, W. Yi, and G. Yu, “Parametric utiliza-

tion bounds for fixed-priority multiprocessor scheduling,” in

Proceedings of the IEEE 26th International Parallel and

Distributed Processing Symposium, Shanghai, China, 2012,

pp. 261-272.

5. J. J. Anderson, V. Bud, and U. C. Devi, “An EDF-based

scheduling algorithm for multiprocessor soft real-time sys-

tems,” in Proceedings of the 17th Euromicro Conference on

Real-Time Systems, Palma de Mallorca, Spain, 2005, pp.

199-208.

6. A. Kandhalu, K. Lakshmanan, J. Kim, and R. Rajkumar,

“pCOMPATS: period-compatible task allocation and split-

ting on multi-core processors,” in Proceedings of the IEEE

18th Real Time and Embedded Technology and Applications

Symposium, Beijing, China, 2012, pp. 307-316.

7. N. Guan, M. Stigge, W. Yi, and G. Yu, “Fixed-priority multi-

processor scheduling with Liu and Layland’s utilization

bound,” in Proceedings of the 16th IEEE Real-Time and

Embedded Technology and Applications Symposium, Stock-

holm, Sweden, 2010, pp. 165-174.

8. K. Lakshmanan, R. Rajkumar, and J. P. Lehoczky, “Parti-

tioned fixed-priority preemptive scheduling for multi-core

processors,” in Proceedings of the 21st Euromicro Confer-

ence on Real-Time Systems, Dublin, Ireland, 2009, pp. 239-

248.

9. M. Fan and G. Quan, “Harmonic semi-partitioned scheduling

for fixed-priority real-time tasks on multi-core platform,” in

Proceedings of the Conference on Design, Automation and

Test in Europe, Dresden, Germany, 2012, pp. 503-508.

10. M. Naghibzadeh, P. Neamatollahi, R. Ramezani, A. Rezae-

Fig. 5. Resistance of two algorithms against overload in which producing overload on (a) one task from the entire system (b) one task
from each processor.

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 43-56

http://dx.doi.org/10.5626/JCSE.2014.8.1.43 56 Saeed Senobary and Mahmoud Naghibzadeh

ian, and T. Dehghani, “Efficient semi-partitioning and rate-

monotonic scheduling hard real-time tasks on multi-core sys-

tems,” in Proceedings of the 8th IEEE International Sympo-

sium on Industrial Embedded Systems, Porto, Portugal, 2013,

pp. 85-88.

11. S. Lauzac, R. Melhem, and D. Mosse, “An improved rate-

monotonic admission control and its applications,” IEEE

Transactions on Computers, vol. 52, no. 3, pp. 337-350,

2003.

12. M. K. Bhatti, C. Belleudy, and M. Auguin, “A semi-parti-

tioned real-time scheduling approach for periodic task sys-

tems on multicore platforms,” in Proceedings of the 27th

Annual ACM Symposium on Applied Computing, Riva,

Trento, Italy, 2012, pp. 1594-1601.

13. L. George, P. Courbin, and Y. Sorel, “Job vs. portioned parti-

tioning for the earliest deadline first semi-partitioned sched-

uling,” Journal of Systems Architecture, vol. 57, no. 5, pp.

518-535, 2011.

14. R. J. Bril, M. M. van den Heuvel, and J. J. Lukkien,

“Improved feasibility of fixed-priority scheduling with

deferred preemption using preemption thresholds for pre-

emption points,” in Proceedings of the 21st International

Conference on Real-Time Networks and Systems, Sophia

Antipolis, France, 2013, pp. 255-264.

15. C. L. Liu and J. W. Layland, “Scheduling algorithms for

multiprogramming in a hard-real-time environment,” Jour-

nal of the ACM, vol. 20, no. 1, pp. 46-61, 1973.

16. J. Lee, A. Easwaran, I. Shin, and I. Lee, “Zero-laxity based

real-time multiprocessor scheduling,” Journal of Systems and

Software, vol. 84, no. 12, pp. 2324-2333, 2011.

17. J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic

scheduling algorithm: exact characterization and average

case behavior,” in Proceedings of the Real Time Systems

Symposium, Santa Monica, CA, 1989, pp. 166-171.

Saeed Senobary

Saeed Senobary received his B.S. degree as a first rank student in computer engineering from the Institute of
Darolfonun Bojnourd, Iran, in 2011, and an M.S. degree in computer software engineering from Imam Reza
International University, Mashhad, Iran, in 2013. His research interests include real-time systems, especially
real-time scheduling algorithms, parallel programing, and recommendation systems.

Mahmoud Naghibzadeh

Mahmoud Naghibzadeh received his M.S. and Ph.D. degrees in computer science and computer
engineering, respectively, both from the University of Southern California, USA. He is now a full professor at
the Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran, where he
teaches advanced database design and advanced operating systems to graduate students and supervises
graduate students. In addition, he is the director of the Knowledge Engineering Research Group (KERG)
laboratory. His research interests include the scheduling aspects of real-time systems, grid, cloud,
multiprocessors, and multicores. A new subject of his interest is bioinformatics computer algorithms. He has
published numerous papers in international journals and conference proceedings as well as eight books in
the field of computer science and engineering. Prof. Naghibzadeh was the general chair of an international
computer conference and technical chair of two others. He is the reviewer of many journals and a member of
many computer societies as well as a senior member of IEEE. He is the recipient of many awards including
M.S. and Ph.D. study awards and an outstanding professorship award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

