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Abstract
To address the problem of multi-target retrieval (MTR) of remote sensing images, this study proposes a new object-level

feature representation model. The model provides an enhanced application image representation that improves the effi-

ciency of MTR. Generating the model in our scheme includes processes, such as object-oriented image segmentation,

feature parameter calculation, and symbolic image database construction. The proposed model uses the spatial represen-

tation method of the extended nine-direction lower-triangular (9DLT) matrix to combine spatial relationships among

objects, and organizes the image features according to MPEG-7 standards. A similarity metric method is proposed that

improves the precision of similarity retrieval. Our method provides a trade-off strategy that supports flexible matching on

the target features, or the spatial relationship between the query target and the image database. We implement this

retrieval framework on a dataset of remote sensing images. Experimental results show that the proposed model achieves

competitive and high-retrieval precision.

Category: Smart and intelligent computing

Keywords: Remote sensing; Image processing; Spatial representation; 9DLT; Content-based remote sensing image

retrieval

I. INTRODUCTION

Along with the rapid progress of satellite sensor tech-

nology and their application to high-resolution remote

sensing images in Earth observation systems, a large

amount of remote sensing data have become readily avail-

able for acquisition. In terms of spatial information, ter-

rain geometry, and texture information, high-resolution

remote sensing images have more features than middle or

low-resolution images. To use the image database fully

and to retrieve interesting information automatically and

intelligently, a new efficient technology for multi-target

retrieval (MTR) in an image, particularly in a specified

region, is expected to be developed.

The number of image-processing applications for target

retrieval is increasing, such as query by image content

from IBM [1]. Most studies in this area have focused on

content-based image retrieval (CBIR) and content-based
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remote sensing image retrieval (CBRSIR), and have achieved

significant results. In these processes, the contents of an

image, which specify several low-level features, such as

color, texture, shape, longitude and latitude, and spatial

relationships among objects, are the bases of multi-

dimensional image feature vectors. Regarding the differ-

ences in imaging conditions of various forms of remote

sensing images, we cannot exactly express image con-

tents by using only a single feature. Therefore, construct-

ing the comprehensive features of an image is the key to

improving extraction performance [2]. However, if the

combined features cannot be purified to form a unified

model, then the accuracy of the similarity extraction and

efficiency improvement of the images will be affected.

For example, if we focus more on spatial relationship,

then the detail of each target will be minimal. Thus, the

efficiency of MTR will be higher than comparing the fea-

tures of a single object. To effectively reveal the information

retrieval process for remote sensing images, an object-

level model is proposed, which can represent the contents

of an image with overall accuracy. By using this model,

we can retrieve and operate the information pre-stored in

a symbolic image database (SID) with high efficiency,

and neglect intrinsic information, such as color, texture,

and shape. To date, research on feature representation

models of image data for MTR remains limited. To build

feature indices and to realize rapid retrieval, we propose

an object-level feature representation model, based on a

previous research on CBRSIR and the reference for

MPEG-7 standards, starting with representing the con-

tents of an image on an object-level feature, particularly

the spatial relationship among targets.

The rest of this paper is organized as follows. Section

II discusses related literature on representation techniques

of image contents for CBIR or CBRSIR. Section III

introduces calculation and representation feature values,

and mainly describes the spatial representations of the

extended nine-direction lower-triangular matrix (9DLT).

Section IV presents a model of image content feature rep-

resentation. Section V proposes an MTR model and

similarity calculation. The last section presents several

experiments to validate the accuracy of the content-based

feature representation model and the efficiency of image

target extraction. A conclusion to the study is also pre-

sented in this section.

II. RELATED STUDIES

In the past three decades, academia has achieved a

large number of results on CBIR and CBRSIR. At present,

CBIR has many successful applications in the fields of

facial recognition, medical diagnosis, and trade registra-

tion. Most of these systems have adopted single feature

or combined features as image indices [3-10]. CBRSIR is

similar to CBIR, because both contain visual and geo-

graphic information. Several systems have focused on the

issue of spectral retrieval, such as texture representation,

and different combinations with spectral bands [11]. A

special feedback approach has been employed to pre-

cisely describe the desired search characteristic in a

remote sensing image [12]. Some researchers even pre-

sented a code stream of images for remote sensing image

retrieval [13]. In addition, other scholars combined a

scheme with an automatic classifier, and proposed the use

of new feature ‘texton histograms’, to capture the weak-

textured characteristic of remote sensing images for

image retrieval [14]. Meanwhile, others applied a texture

analysis approach, called the local binary pattern opera-

tor, to implement image retrieval [15]. Some of these

studies even applied independent component analysis to

extract independent components of feature values via lin-

ear combinations to realize multi-spectral image retrieval

[16]; or adopted principal component analysis and a clus-

tering technique to index remote sensing images for

image retrieval [17]. Considering various features, such

as color, texture, and spectra, a prototype model for

CBRSIR based on color moment and gray level co-occur-

rence matrix feature was proposed [18]. A number of

researchers combined several properties (color, texture,

and points of interest) that were automatically extracted

and immediately indexed images [19]. In addition, some

researchers proposed a framework based on a domain-

dependent ontology to perform semantic retrieval in image

archives [20]. Other scholars also presented a universal

semantic data model for image retrieval [21]. Regardless

of how a feature vector is established, this vector still

depends upon the representation of contents in images.

To date, the contents of images can be represented in

numerous ways. Some approaches adopt a quad-tree struc-

ture or a quin-tree method that splits large-scale remote

sensing images into sub-images, to extract multiple fea-

tures, such as color and texture [22, 23]. Others use the

2D C-string to represent spatial knowledge of an image

database [24]; or the spanning representation of an object

to realize spatial inference and similarity retrieval in an

image database, through directional relation referenced

frames [25]. Others depict the relationships among spa-

tial objects by using the methods of the nine-direction

spanning area [26] or 9DLT [27]; and represent image

colors by using pyramid technology [28]; or express an

image by employing a symbol index, which is established

in image space stratification [29]. All the aforementioned

related representations include color, space, and sub-

images that belong to the feature representation method

on image contents. Implementing rapid and accurate

retrieval with a massive remote sensing image is difficult,

because its features include various data types, resolution

scales, and data sources. In our investigation, we analyze

the contents of an image based on the MPEG-7 standard
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to organize the features of the image, build an SID, and

index the SID to accelerate target retrieval.

III. CALCULATING FEATURE VALUE

The key to improving image retrieval efficiency is the

index technique, which involves obtaining objects after

image segmentation and building an SID for the image

database. In the present study, we adopt a mature algo-

rithm, called object-oriented multiscale image segmenta-

tion. The object-oriented image processing algorithm is a

synthetic algorithm that fuses spectrum characteristics,

geometric information, and structural information. This

algorithm regards an object as a minimal process unit by

retrieving its multiple characteristics to form a logical

relationship among images and objects. Then, we analyze

the image from the local to the entire level, and ulti-

mately, implement its understanding. In general, multi-

scale image segmentation begins with any pixel by using

a region merging method, from the bottom to the top, to

form objects. Small objects can be merged to form large

objects, and the size of each object must satisfy the

demand of which the heterogeneity of a merged object is

less than a given threshold. In this case, heterogeneity is

decided by differences in the spectra and shapes of

objects. However, various features correspond to differ-

ent scales of observation, in which each feature can be

extracted and accurately analyzed in an image layer on a

proper scale [30]. In particular, we use the threshold

value method on a multiple scale to segment an image.

After processing the calibration, segmentation, and ras-

ter vectorization of the image based on a specified region

of latitude and longitude, the basic unit of the image is no

longer a single pixel, but a polygon that is composed of

homogeneous pixels. Each polygon can be used to calcu-

late the spectral information of pixels, including shape,

texture, color information, and topological relationships

among the polygons. Next, we will introduce the method

for calculating the feature vectors to implement the repre-

sentation model.

A. Shape

Shape is a key feature used to differentiate two objects.

It is also the basis for characteristic retrieval, and the clas-

sified process mentioned in the latter part of this paper. In

general, in the field of object-level content retrieval, shape

remains as the most basic feature for distinguishing

objects. At present, two approaches are used to describe

shapes: parametric and geometric approaches. In the

present investigation, we adopt a geometric approach to

characterize the shapes of different objects, namely, the

model of centroid radii representation [31].

For an arbitrary polygon, such as the one shown in

Fig. 1(a), the results of resampling an image with the

angle θ interval around, and counterclockwise to the y

axis, are shown as Fig. 1(b). Let lk be the distance

between the centroid of the polygon, and the boundary

sampling point. The shape descriptor of the polygon can

be expressed by a centroid-radius model, as follows:

,

              , . (1)

The condition for measuring similarity between two

polygons based on shape is: if and only if the numerical

difference between the central radii in all directions is

less than a given minor threshold value ε. That is, when

two polygons are similar, the shape descriptor must satisfy

the following regulation:

. (2)

To ensure scale invariance of shape by using regulation

(2), we need to normalize the Euclidean distance between

the centroid and each vertex, within the range of [0, 1]. In

this study, we discuss most of the possible transforma-

tions between two feature vectors. One of these transfor-

mations involves the possible rotations between two

shapes, and the distances that are independent from rota-

tion, including the starting and ending points.

After transforming image shape into matrix space, we

store data, using the antipole tree structure [32].

B. Texture

Different features in high-resolution images typically

have similar spectral appearances to human vision. The

mean value floating of a spectral feature may also cause

similar spectra among different homogeneity samples to

converge as similar modes in a feature space, thus result-

ing in spectra with similar features. This phenomenon is

attributed to the human eyes being insensitive to some

portion of visible light. Therefore, we can improve the

reliability of retrieval results by using features, such as

Fshape l0, lθ, l2θ, ..., liθ, ..., l k 1–( )θ( )=

k 360° θ⁄= 0 i k 1–≤ ≤

l1iθ l2iθ– ε< , i∀ 0, k 1–[ ]∈

Fig. 1. Model of the centroid radii. (a) Resampled polygon with
θ interval around, and counterclockwise to, the y axis; and (b)
expression of the resampling result.
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shape, texture, and spatial relationships as references.

Texture is a significant geometric (spatial) feature that

can be used to distinguish among different objects and

regions to reflect the changing discipline in gray space. A

2D Gabor filter is suitable for narrow-band coding of tex-

ture, because of its adjustable filtering direction, band-

width, general band-center frequency, and optimal time-

domain and spatial-domain analysis abilities. After fin-

ishing gray-scaling and normalization processes on

image segmentation, we apply a Gabor filter to extract

the texture feature of the objects. The Gabor filter func-

tion g(x, y) is a 2D Gaussian function that is modulated

by the complex sine window function g(x, y). Its Fourier

transform function G(u, v) can be expressed by the fol-

lowing equations:

,

(3)

where, , , and  are the Gabor filter

spatial range and bandwidth of the frequency domain,

respectively. In this case,  is the central frequency in

the filter of the orthogonal coordinate in the frequency

domain. Let g(x, y) be a function of the mother that gen-

erates the Gabor filter family. The set of functions gm,n(x, y),

which is a complete non-orthogonal dataset, can be gen-

erated through rotation and scaling, according to Eq. (4).

gm,n(x,y) = a−2mg(x', y'), (4)

where x' = a−m(xcosθn + ysinθn), y' = a
−m(−xsinθn + ycosθn),

a > 1, θn = nπ/K, m = 0, 1, ..., S − 1, and n = 0, 1, ..., K − 1.

Parameter θn is the counterclockwise rotation angle along

the filter axis. S, K are the total scale and rotation, respec-

tively. After obtaining the energy value of each filter and

the convolution of the image, we calculate the mean

value and the mean square deviation of the filtering value

on the energy of each object. Finally, we mark the texture

feature vector of the object, as shown in Eq. (5).

              . (5)

where, K is the central frequency, and L is the directional

angle. k = 0, 1 ..., K − 1, l = 0, 1, ......, L − 1, and Ek,l(x, y)

is the filtering energy value of the filter (k, l). Nor-

malization is required to proceed toward Ek,l(x, y), to

ensure that the energy value of each element in the

energy information is not affected by the actual size. We

commonly use Ek,l(x, y) =  to calculate the

energy value, according to the gray value p(x, y) in loca-

tion (x, y). Finally, the mean value µ of the energy, and

the mean square deviation σ of the target object (n × n

pixels), can be obtained as Eqs. (6) and (7), respectively.

, (6)

. (7)

C. Spatial Representation of the Extended
9DLT

The spatial representation of an image describes the

spatial relationships among objects to easily distinguish

images with multiple targets. The spatial relationships in

an image can be classified into two categories: positional

and directional relationships. The former can be repre-

sented by a 2D string; whereas, the latter can be repre-

sented by 9DLT methods [25]. For a calibrated remote

sensing image within the region of a certain latitude and

longitude, the directional relationship relative to the four

corners among the objects is confirmed. In this section,

we introduce problem definitions and preliminary con-

cepts, through formal methods.

DEFINITION 1. Let α = (α1, α2, ..., αk) be a set of

objects in the same image. Hence, αi is a subset of α.

DEFINITION 2. The spatial relationship between two

objects can be defined as one of the codes in nine direc-

tions, which is called 9DLT.

DEFINITION 3 (The 9DLT matrix). Let V = {v1, v2, v3,

..., vm} be composed of m distinct sets of objects, and Z be

composed of z1, z2, z3, ..., zs in order, where = 1, 2, ...,

s, . Suppose C is a collection of 9D encodings, as

shown in Fig. 2(a). Each direction code can then be used

to specify the spatial relationship between two objects.
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Fig. 2. Representation of nine-direction lower-triangular. (a)
Nine-direction code and (b) symbolic figure of the object.
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Thus, a 9DLT matrix T is an s × s matrix that is com-

posed of tij, which belongs to the collection of 9D encod-

ing C. The item tij at row i column j represents the

direction code from zj to zi, only when i and j satisfy the

condition .

As shown in Fig. 2(a), let R be the referred object

expressed by 0, in which we define the direction code in a

45º interval from the northern counterclockwise, as 1…8.

Each object from the source image will be represented by

one centroid in a 9DLT expression. Fig. 2(b) shows a fea-

ture image that contains four objects. Fig. 3(a) exhibits

the direction map in the grid between the objects;

whereas, the direction code of the LT matrix in Fig. 3(b)

demonstrates the spatial relationships among objects. The

9DLT string is (A, B, C, D, 6, 6, 6, 7, 5, 4) in column

order. A relationship between two objects exists in the

matrix.

DEFINITION 4. A pattern consists of the sets of objects

and the spatial relationships among these objects. For

example, α = (α1, α2, ..., αk, αr1, αr2, ..., αrm) is a pattern,

α i is an object and αrj is the corresponding spatial rela-

tionship, where , , ,

and . That is, the spatial relationships between any

two objects in this pattern are recorded. The length of a

pattern is equal to the amount of objects. A pattern with a

length that is equal to k is called the k-pattern.

Constraints:

(1) An item or object in a pattern is stored in alphabeti-

cal order.

(2) No spatial relationship exists, if the length of a pat-

tern is equal to 1.

The 9DLT expression is in accordance with the defini-

tion of the pattern.

DEFINITION 5. Pattern α = (α1, α2, ..., αi, αr1, αr2, ...,

αrm) is a sub-pattern of pattern β = (β1, β2, ..., βj, βr1, βr2,

..., βrn), where  is a subset of ,

where . The spatial relationship between any two

items in α is the same as in β. Pattern β contains pattern

α, where . The amount of a sub-pattern is N =

. For example, pattern α = (A, B, C, 6,

6, 7) is a sub-pattern of pattern β = (A, B, C, D, 6, 6, 6, 7,

5, 4), because (A, B, C) is a subset of (A, B, C, D), and the

code values of the spatial relationship of objects A, B, and

C are the same as the code values underlined in pattern β.

DEFINITION 6. The minimum support is the amount of

objects that satisfy the spatial relationships, which is

equal to the required amount of search objects.

Inference 1. Two k-patterns can be joined, only if k–1

objects and the corresponding relationships between

them are the same, and k satisfies condition .

Inference 2. Suppose a pattern does not contain any

(k–1) pattern; then, this pattern cannot be contained in the

k-pattern.

Inference 3. The pattern of feature images and their

specific sub-pattern can be obtained from a 9DLT string.

By contrast, if (k–1)-pattern, k–1 objects, and the spatial

relationships in the object sets are given, then the relative

candidate sets of the k-pattern can be acquired.

Generating candidate sets can significantly help object

retrieval. To extract the image with the object (A, B, C) of

minimum support 3 and spatial relationship αr in the

image database, two 2-patterns are required, namely, (A,

B, 4) and (A, B, 5), in which the same object A belongs to

both patterns, and satisfies the joining condition. Then,

we can calculate the candidate 3-pattern (A, B, C, 4, 5, ∆).
As shown in Fig. 4, the possible results are (A, B, C, 4, 5,

7), (A, B, C, 4, 5, 8), and (A, B, C, 4, 5, 6). The direction

codes of the possible relationship between B and C are 7,

8, and 6; therefore, the spatial representation model is

ABC(4, 5, X : {7, 8, 6}).

Similarly, the 9DLT string of each image is known in

the image database. That is, the spatial relationship

between objects has been confirmed, and the problem of

finding all images that satisfy minimum support is the

process of matching patterns. In fact, the process can be

converted to search the LT matrix with a problem on

inclusion relationship. As shown in Fig. 5, according to

the difference of the given objects and the minimum sup-

port, the position of matching matrix P in the LT matrix

may only be a part of the relation direction codes. The

range of mapping to candidate matrix C is also in k × k.

j i 1, s( )∈<

1 i k≤ ≤ m C2

k
k k 1–( ) 2⁄= = 1 j m≤ ≤

k 2≥

α1, α2, ..., αi( ) β1, β2, ..., βj( )
j i 2≥ ≥

β α⊇
Ci

i 1–
Ci

i 2– ... Ci

2
+ + +

k 2≥

Fig. 3. Map of the matrix expression in nine-direction lower-
triangular (9DLT). (a) Direction map in grids between objects and
(b) matrix expression of four objects in 9DLT.

Fig. 4. Generation of candidate 3-pattern from 2-pattern.
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The description of the match algorithm is as follows.

IV. THE OBJECT-LEVEL FEATURE REPRESEN-
TATION MODEL

Typically, a data model is a framework that can be used

to provide representation for information, and an opera-

tion method in the database system. The object-level fea-

ture representation model belongs to a section of this data

model. For remote sensing images, the data model also

includes metadata, such as location, resolution, and light

intensity. However, the standard of measurement for a

content retrieval system determines the efficiency and

accuracy of extraction. Hence, each image needs a good

model with an efficient content-based representation.

Moreover, selecting a formula for similarity calculation is

also vital. Based on this concept, we present the object-

level feature representation model for the image data in

the next section.

According to MPEG-7 standards and the object-ori-

ented concept, the object-level feature representation

model for image data is described as a structural tree via

layers [33]. As Fig. 6 shows, the first layer is the object

name, while the second layer is the feature name of the

feature information that the object contains. Further

down are the layers for sub-features, feature attributes,

attribute values, etc. Constructing this structural tree is

convenient for indexing feature information.

The overall model of the feature image can be repre-

sented by a formal method, as follows:

Feature Im age = (Im ageID, MataData, Objs),

MetaData = (Location, Scal, Im ageID),

Objs = {obj1, obj2, ..., objn},

Obji = (objID, objName, ..., Fobj), 2 ≤ i ≤ n.

Fobj = (objID, V, EA, MA),

where, EA stands for the description of the object extrac-

tion algorithm, and MA stands for the description of the

object matching algorithm.

V = {Fshape, Fspace, Ftexture, ...}.

We adopt the centroid-radii model Fshape = (objID, Cen-

triod, Radii) = in Section III-A, the 9DLT extended

model Fspace = (objID, Flocal, Fdirec) in Section III-C, and

the calculation value of the different direction angle

energy Ftexture in Section III-B. We choose parameters that

refer to the methods in the literature [34]. The color fea-

ture of an object can be expressed as Fcolor = {µcolor, σcolor},

through the mean value and the mean square deviation of

its color.

Algorithm 1 Match algorithm

Fig. 5. Map of the candidate matrix to match the threshold.

Fig. 6. Model of representation of feature objects.
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Through this model, we can express the content of

multiple targets in an image by using multiple records to

represent a single object, such as color, shape, and texture

features. Then, a logical expression is implemented by

the spatial relationship among objects. Thus, we trans-

form the MTR problem into a record-querying problem

to enable the image indexing technology to further accel-

erate target retrieval in CBRSIR.

V. MTR AND THE SIMILARITY METRIC

MTR is a branch of CBRSIR, which is an application

based on multiple targets, and the representation of spa-

tial relationships. In general, users employ two forms for

CBIR, namely, sample and sketch retrievals. In terms of

searching image-by-image, or ranking by similarity value,

the key point is similarity calculation of the model of fea-

ture representation as a metric standard. In our investigation,

the image retrieval model uses a sketch retrieval interface

(Fig. 7). A feature-matching model with the prepared

conditions can be generated from the editing interface, as

well as from the specified shape, texture, and spatial rela-

tionships of the targets, within a certain resolution and

region in the sketch.

The system has stored the information of each sample

object that contains their shape, texture, and spectral fea-

tures in a specified resolution in SID; hence, the system

can label each selected target in alphabetical order (from

left to right, and row-by-row). The system can also use

low-level features and the location of the object centroid

to generate the feature representation model of the pre-

extracted image.

For a multiple-target case, the spatial similarity on shape

among the targets is between two feature images with a

specified resolution. We can line the centroid of the poly-

gon with its target to obtain the shape parameter accord-

ing to Eq. (8).

, (8)

where, C is the perimeter of the region and S is the area of

the region. The shape parameter F reflects the compact-

ness of the region to a certain extent, in which the region

is dimensionless and insensitive to the change in scale

and rotation. It also does not have a fixed range. In gen-

eral, the greater the value is, the less compact and more

regular the shape is. The difference between Eq. (9) and

Eq. (1) is that the polygon shape in the latter is more

complex than that in the former. When precision is con-

sidered, the shape, which is formed by multiple targets, is

more regular.

After normalizing the object of the target, the value of

each item in the texture feature vector, which is extracted

by Gabor filtering, is within the range of [0, 1]. When

calculating similarity distance, we endow each item with

the same weight coefficient. The total similarity of a

single object regarding texture feature can be calculated

by using Eq. (9) [35].

, (9)

where, k is the number of target objects, and ωn and an
stand for the weight coefficient and the similarity of the

number n feature vector in all directions, respectively.

We commonly used 9DLT string to represent the loca-

tion of the centroid of objects within an angle of 45º dur-

ing MTR, according to point group distribution similarity

calculation [36]. The correlative parameters include spa-

tial direction and distance range. Then, the spatial simi-

larity can be calculated by Eq. (10).

, (10)

where, , 

Sim_dist , and .

θi, (xi, yi), and  stand for the angle between

the query object, the object in the image library in eight

directional axes of the Cartesian coordinate system, and

the coordinate of the object, respectively. The importance

of the feature values on MTR varies during target match-

ing. The experiment empirically provides different weight

coefficients to calculate the total similarity of the image.

Thus, the similarity distance on the feature vector

between the querying sketch and the images from a

library is defined as Eq. (11).

, (11)

where, i is the feature dimension, ωi is the weight coeffi-

cient of feature , and V = {Fshape, Fspace, Ftexture, ...}.
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VI. EXPERIMENTS AND CONCLUSION

A. Testing and Experiments

We collect 3,650 pieces of high-resolution images

from different sensors as samples with the amount reach-

ing the terabyte level. Each image measures 0.60 m, and

has a resolution of 5,000 × 5,000. We use the segmenta-

tion algorithm of a multiscale threshold value based on

the minimum of heterogeneity with a scale parameter of

150 and a color parameter of 0.90 to conduct a quantita-

tive analysis on the object-level feature representation

model to validate its rationality and retrieval efficiency.

Our testing system adopts C++ language, ArcGIS, and

MATLAB to implement the image retrieval system based

on the content of the image, in which high-resolution

images processed by geometric calibration are covered.

After object-oriented segmentation obtains and vector-

izes the target objects, the system calculates the feature

values of shape and texture, and imports them into the

image library, along with the image metadata, thus

forming an SID from the feature model. Then, we calcu-

late the similarity, and match it with the query vector fea-

ture generated from the retrieval sketch by sample

querying in the SID to obtain the result sets. The specific

retrieval process is illustrated in Fig. 8.

Fig. 9(a) is a QuickBird 0.6 m high-resolution image

before segmentation, which contains extraction targets.

Fig. 9(b) is the result of the symbolic image after image

segmentation was performed with the given parameters

to achieve minimum heterogeneity.

For the symbolic image, raster vectorization is per-

formed after image segmentation. Then, to obtain the rel-

ative coordinate of the centroid of the object, a coordinate

in the left corner, within the given longitude and latitude,

is designated as a relative coordinate. Next, we progres-

sively scan the centroid coordinate of the polygon from

each object from left to right, and label them in alphabet-

ical order. For convenient calculation, we use the poly-

gons marked A to D, as shown in Fig. 9(b). The steps for

the entire process are described below.

First, for the representation model of the centroid-radii,

we use the antipole tree structure, which is described in

Section III-A to store the data. Then, we proceed to gray

scaling and normalization of the object resulting from the

segmentation by using the calculation model of texture in

Section III-B. Normalization, which calculates the energy

ratio between each element and the maximum ratio of

size and direction of the energy sets of the image target

pixel, can eliminate the influence of the actual size of

objects. Thus, we obtain the filtering energy values of the

Gabor filters under different frequencies and azimuth

angles by calculating the mean value and the mean square

deviation of the energy values of each object, and by con-

sidering them as the texture feature vector of the object.

This study applies the result from the Fourier transform

to the convolution translation between a group of differ-

ent frequencies and Gabor filters with different directions

Fig. 8. Retrieval process of the testing system.

Fig. 9. Images before and after object-level segmentation. (a) Original image of high-resolution remote sensing and (b) symbolic image
using object-level segmentation.
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and objects [37]. In this case, we only calculate the fea-

ture values by using a Gabor filter to construct a texture

feature vector.

Afterward, we obtain 9DLT string (A, B, C, D, 5, 4, 4,

4, 4, 4), according to Section III-C.

Finally, Section III explains that the system can orga-

nize all relevant calculation results as records in the

model library. According to the query generator of the

image retrieval on the sketch, our testing system can cal-

culate the similarity among objects, which is conve-

niently derived from an image library and sketched.

Fig. 10 displays the top 20 results of image retrieval by

query sketch. All images are ranked according to the

trade-off strategy on similarity, which includes features

and spatial relationships between objects.

B. Analyzing the Experimental Results

The values of the weight coefficient, which are based

on the error source from the correlation, and the similar-

ity of each feature vector in the image parsing process

and in the multi-experiment result, are shown in Table 1,

where the spatial feature specifies the shape among

objects. Meanwhile, Section V presents the combined

metric of spatial similarity on shape among targets by

using Eq. (9), in which a trade-off strategy to support

flexible matching policy and to calculate similarity distance

was applied by tuning the ratio between spatial similarity

and feature vector.

If the distance between different tolerance feature vec-

tors is short, then the similarity is great. For the query

results of the image, we take the top 200 images to ana-

lyze the retrieval accuracy of the system. The equations

for normalized precision and normalized recall are as fol-

lows [38]:

, 

              . (12)

where, N is the total number of images in the image

library, R is the number of images extracted, and i is the

position of the extracted images. ranki is the actual rank-

ing of the retrieved images.

Table 2 shows the typical 10 times testing result on the

recall/precision from the image library, when we extract a

different number of targets. Table 2 also indicates that

when the search targets increase, the target itself, and the

complexity of the spatial relationship among objects, also

increase, thus resulting in a decline in the values of recall

and precision. A reverse interdependence relationship

occurs between recall and precision. Thus, if we raise the

recall of the output, then the precision will be reduced;

and vice versa. In fact, the number of images that can be

extracted will increase, if the tolerance value of similarity

increases; while the distance of the feature vector D is

correspondingly reduced. In addition, both recall and pre-

cision ratios will exhibit a slight increase. Fig. 11(a)

shows that, with the increase of search target numbers,

the average normalized recall/precision presents a certain

decline. An inverse relationship exists between normal-

ized recall and precision. Fig. 11(b) is a comparison

graph of recall and precision ratios, which were obtained

Pnorm 1
log ranki log i–( )R

i=1∑
log N! N R–( )!R!⁄( )

-----------------------------------------------------–=

Rnorm 1
ranki i–( )R

i=1∑
N R–( )R

----------------------------------–=

Fig. 10. Results of image retrieval by query sketch.

Table 1. Weight coefficient at each dimensional feature vector

Weight 

coefficient

Object shape 

feature

Texture 

feature

Color 

feature

Spatial 

feature

ω 0.3 0.3 0.2 0.2

Table 2. Testing result of recall and precision for different targets

Recall Precision

Number of target Number of target

1 2 3 4 1 2 3 4

Test 1 0.62 0.59 0.57 0.52 0.48 0.36 0.30 0.26

Test 2 0.65 0.58 0.57 0.42 0.46 0.35 0.32 0.31

Test 3 0.56 0.55 0.52 0.37 0.42 0.37 0.35 0.32

Test 4 0.57 0.51 0.50 0.45 0.49 0.42 0.40 0.31

Test 5 0.68 0.64 0.52 0.48 0.41 0.36 0.32 0.29

Test 6 0.75 0.72 0.67 0.62 0.52 0.51 0.39 0.37

Test 7 0.74 0.67 0.63 0.57 0.43 0.31 0.27 0.26

Test 8 0.63 0.57 0.49 0.47 0.38 0.30 0.27 0.23

Test 9 0.72 0.68 0.65 0.58 0.38 0.32 0.30 0.24

Test 10 0.68 0.67 0.64 0.60 0.44 0.34 0.29 0.27

Avg. 0.66 0.62 0.58 0.51 0.44 0.36 0.32 0.28
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by using different methods to retrieve the number of tar-

gets. The graph shows that the method we proposed is

more effective than the two methods introduced in the lit-

erature [6]. The broken lines in Fig. 12 indicate the slight

increase in recall and precision, when the tolerance val-

ues of similarity increase from 1% to 10% by applying

the same method.

Next, we discuss the change in time-consuming retrieval

from the perspective of the retrieval efficiency of a sys-

tem, thus combining the number of targets that require

retrieval under the amount of different image data. Here,

we ignore the majority of the time on image calibration

and the generation of a vector feature library. The total

time of the image retrieval process is shown as follows:

Ttotal = Tgen_cond(Nobjects) + Tsearch(Nimgs, Area(lon, lat)) 

          + . (13)

where, Tgen_cond(Nobjects) stands for the time of generation

from the sketch, which is relative to the amount of search

targets (Nobjects). Tsearch(Nimgs, Area(lon, lat)) is relative to

the amount of images, and the region of a given longitude

and latitude, which represents the search time of the

model that matches that from SID.  is the

transportation and display time of n images that satisfy

the given threshold value, and is relative to the amount of

images . Fig. 13(a) shows a time-consuming situ-

ation under the same condition, which includes the num-

ber of SID for searching different targets to constrain the

display time of the top 20 miniature images that satisfy

the given threshold value of similarity. Based on the

chart, spatial complexity increases with the increase in

the number of search targets, in which the search time

also presents an upward trend. Fig. 13(b) shows the aver-

age time consumed by querying different targets in quan-

tity among the methods proposed in this paper, GIFT, and

imgSeek, under the same image library and query condi-

tions. Although the total consumed time in our method is

slightly more than that of the GIFT method, its recall and

precision are higher than those of the other two methods.

The results are consistent with the previous analysis

shown in Fig. 11(b). In summary, the experiments dem-

Ttrans Ndata i( )( )
i=1

n

∑

Ttrans Ndata i( )( )

Ndata i( )

Fig. 11. Case of average recall and precision with targets'
number. (a) Relationship of average recall and average precision
with different targets. (b) Comparison of average recall and
precision with targets for different algorithms.

Fig. 12. Case of normalized recall and precision with targets'
number. (a) Comparison of normalized recall with different
allowance values. (b) Comparison of normalized precision with
different allowance value.
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onstrate the effectiveness of our proposed framework,

which has better precision than the other methods, partic-

ularly in multiple targets. However, our method requires

more computing power.

C. Conclusion

This study, which was based on the inherent character-

istics of high-resolution images, such as shape, texture,

color, and spatial features, proposed an object-level fea-

ture representation model for image contents. Through

experiments, we verified the feasibility and the effective-

ness of the proposed model with two quantitative indica-

tors in recall and precision. Given the difference among

amount, classification, and spatial complexity of features

among images, the proportion of the overall shape of two

images also results in differences in recall and precision

in spatial relationships with a fixed resolution or scale.

Therefore, the time spent on searching for targets is dif-

ferent, and the performance is also affected. Further stud-

ies on evaluation standards of the similarity metric,

particularly for multiple targets, should be conducted to

improve the efficiency and precision of retrieving targets.
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