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Abstract
Aiming to solve the problems of high memory access and big storage space and long matching time in the regular expres-

sion matching of extended finite automaton (XFA), a new regular expression matching algorithm based on high-efficient

finite automaton is presented in this paper. The basic idea of the new algorithm is that some extra judging instruments are

added at the starting state in order to reduce any unnecessary transition paths as well as to eliminate any unnecessary

state transitions. Consequently, the problems of high memory access consumption and big storage space and long match-

ing time during the regular expression matching process of XFA can be efficiently improved. The simulation results con-

vey that our proposed scheme can lower approximately 40% memory access, save about 45% storage space

consumption, and reduce about 12% matching time during the same regular expression matching process compared with

XFA, but without degrading the matching quality.
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I. INTRODUCTION

Deep packet inspection is a detection technology regard-

ing packet content and plays an increasingly important

role in modern network intrusion detection systems

(NIDSes) [1]. Due to its better expressiveness and flexi-

bility, regular expression matching has been widely used

in NIDSes. However, regular expression matching engen-

ders much convenience to NIDSes, but also simulta-

neously brings significantly high computation and storage

complexity, thereby prohibiting its wide usage in NIDSes

applications. Thereby, how to design a regular expression

matching algorithm that can achieve both time and space

efficiency is of great challenge.

Deterministic finite automaton (DFA) and nondetermin-

istic finite automaton (NFA), as two main finite automata,

are typically used to implement regular expression match-

ing. Although DFA has fast matching speed and determin-

istic matching performance, it causes a memory explosion

problem. While NFA requires less memory, it suffers

from slow matching speed and nondeterministic match-

ing performance [2]. In a high-speed or resource-restricted

environment, because both DFA and NFA automata

require excessive memory, time or per-flow state, neither

of them is suitable to implement a regular expression

matching operation in a high-speed or resource-restricted

setting. Recently, many research works have focused on

either improving the matching speed or reducing the

memory access spent in a regular expression matching.

In accelerating the matching speed of a regular expres-
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sion aspect, Kumar et al. [3] proposed a D2FA regular

expression matching algorithm in order to accelerate the

matching speed. Becchi and Cadambi [4] suggested a

DFA regular expression matching algorithm based on

state fusion, making use of a migration edge marking

method in order to integrate a multiple non-equivalent

state for guaranteeing DFA performance. In Brodie

method, Brodie et al. [5] presented a new way that can

increase the throughput of regular expression matching

by expanding the alphabet set; however, this method

could result in an exponential growth of memory require-

ment in the worst case. Moreover, although sampling

techniques are introduced in order to accelerate regular

expression matching [6], it does not suit all kinds of regu-

lar expression. Kumar et al. [7] applied default transitions

in order to improve average performance. In eliminating

the storage space explosion of the DFA aspect, Yu et al.

[8] proposed state compression techniques based on

mDFA in order to deflate state explosion. Kumar et al. [9]

used heuristics in order to eliminate the insomnia prob-

lem existing in the regular expression matching algo-

rithm. In the method of Wang et al. [10], a chain-based

DFA deflation method for fast and scalable regular

expression matching by using ternary content addressable

memory (TCAM) is proposed to effectively deflate the

DFA size. In order to prevent state explosion, Smith et al.

[11] introduced a partial NFA to DFA conversion. In [12],

a new art work extended finite automaton (XFA) based

on auxiliary memory was introduced in order to reduce

the DFA state explosion as well as to achieve a great

reduction rate. However, XFA is not suitable for real-time

applications in networks due to its significant startup

overhead, high memory access and big storage space in

regular expression matching.

This paper aims to solve the problem of high memory

access and big storage space and long matching time dur-

ing the regular expression matching process of XFA by

proposing a new regular expression matching algorithm

based on high-efficient finite automaton (HFA). We use

some extra judging instruments at the starting state in

order to reduce any unnecessary transition paths and

eliminate any unnecessary state transitions. Consequently,

the high memory access consumption and big storage

space consumption and long matching time in the regular

matching process of XFA can be efficiently improved.

The simulation results convey that our proposed scheme

can lower 40% memory access, save 45% storage space

consumption, and reduce 12% matching time in the same

regular expression matching process compared with

XFA, but without degrading the matching quality.

The rest of this paper is organized as follows. In

Section II, the state space explosion of DFA is intro-

duced. Then the proposed HFA method is presented in

Section III. The simulation result and analysis of the pro-

posed scheme compared with XFA methods is presented

in Section IV. In Section V, we provide some conclusions.

II. STATE-SPACE EXPLOSION OF DFA

State-space explosion is a main problem existing in

combined DFA, which seriously influences its wide

application of DFA. In this section, we mainly illustrate

some related knowledge with regard to the DFA, includ-

ing DFA definition, the reasons for state-space explosion

of DFA, a general method to solve state-space explosion

problem—XFA, and some problems existing in XFA.

A. DFA Definition

DFA can be described as DFA = (Q, Σ, δ, q0, F), where

Q represents states; Σ stands for input symbols; δ repre-

sents transition function; q0 stands for start state, F repre-

sents accepting states and . For each state ,

we define paths(q) as the set of paths from q0 to q;

further, paths(q) may be infinite in the emergence of

cycles. Fig. 1 is the DFA for the regular expression of

(.*ab.*cd). Fig. 2 is the DFA for the regular expression of

(.*ef.*gh). In the regular expression of (.*ab.*cd), where

Q = {S, K, P, Q, R}, Σ = {a, b, c, d}, q0 = S, δ(S, a) = K

and δ(K, b) = P, and so on, F = {R}. In the regular expres-

sion of (.*ef.*gh), where Q = {N, M, J, V, C}, Σ = {e, f, j, h},

q0 = N, δ(N, e) = M and δ(M, f) = J, and so on, F = {C}.

B. Reasons for State-Space Explosion of DFA

In a DFA, a path is ambiguous when there is an ambig-

uous state in this path in which a state is ambiguous,

given any finite sequence and state. Although the set of

paths to this state exist in the same path suffix, not all can

be expressed solely by the finite sequence. That is to say,

an ambiguous state may usually be obtained by many

distinct sequences. During the combining process of

automata, the interaction between states in both ambigu-

ous and unambiguous paths above will lead to a state-

space explosion of DFA. The specific generating process

F Q⊆ q Q∈

Fig. 1. The deterministic finite automaton (DFA) for the regular
expression of (.*ab.*cd).

Fig. 2. The deterministic finite automaton (DFA) for the regular
expression of (.*ef.*gh).
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is that the unambiguous states existing in the prefix of a

path in one automaton can be replicated when it is com-

bined with ambiguous states in a path in another automa-

ton during the process of combination. The combined

automata need to track the progress in matching both the

unambiguous path and the ambiguous path independently

[13], which will result in a state-space explosion of DFA.

The amount of replication observed depends on the fol-

lowing two aspects: how extreme and pervasive the

ambiguity is in the two important automata and how

much interaction occurs between them. That is to say,

automaton with limited levels of ambiguity can introduce

comparatively small amounts of replication, whereas a

path of infinite length can cause an entire automaton to be

copied and therefore directly lead to exponential replica-

tion. Fig. 3 is the combined DFA for the regular expres-

sion of (.*ab.*cd) and (.*ef.*gh) [11].

C. XFA Method 

In order to solve the problem of state-space explosion

above, an XFA is proposed for this problem [12]. The

XFA uses some auxiliary variables to record some matched

paths, which can save lots of state-space as well as

improve the matching speed. Fig. 4 is the XFA for the

combined regular expression of (.*ab.*cd) and (.*ef.*gh).

From Fig. 4, we can clearly see that XFA uses an auxil-

iary variable (Bit 1) in order to record the matched path

(ab) in the regular expression of (.*ab.*cd); further, it

uses another auxiliary variable (Bit 2) in order to record

the matched results (ef) during the regular expression

process of (.*ef.*gh). Hence, XFA can use only 2 bits

auxiliary variables and 9 states in order to fully express

the combined regular expression of (.*ab.*cd) and

(.*ef.*gh), whereas DFA has 16 states in Fig. 3, realizing

the eliminating state space explosion of DFA.

D. Problems Existing in XFA 

Although XFA can eliminate a DFA state explosion by

adding auxiliary variables to record some completed

matching results, at the same time, it also adds a great

amount of redundancy migration side, which not only

increases the number of storage space, but also leads to

many unnecessary state transitions. Moreover, it adds

memory accesses and matching time in the regular

expression matching of XFA, therefore limiting its practi-

cal application. Fig. 5 is the XFA for the regular expres-

sion of (.*abc.*def). Fig. 6 is the XFA for the regular

expression of (.*abcde.*fghnm).

From Figs. 5 and 6, we can see clearly that XFA has

lots of redundancy migration sides, such as d(Q→S),

d(R→S), a(T→Q) in Fig. 5 and t(1→6), t(2→6),

t(7→1) in Fig. 6. These redundancy migration sides

above not only increase storage space requirements, but

also lead to many unnecessary state transitions, such as

Fig. 3. The combined deterministic finite automaton (DFA) for
the regular expression of (.*ab.*cd) and (.*ef.*gh).

Fig. 4. Combined extended finite automaton (XFA) for the regular
expression of (.*ab.*cd) and (.*ef.*gh).

Fig. 5. Extended finite automaton (XFA) for the regular expression
of (.*abc.*def ).



A Regular Expression Matching Algorithm Based on High-Efficient Finite Automaton

Jianhua Wang et al. 81 http://jcse.kiise.org

state transitions Q S, R S, T Q in Fig. 5 and

1 6, 2 6, 7 1 in Fig. 6. Consequently, it results in

additional high memory accesses, big storage space and

long matching time in the regular expression matching of

XFA, thereby limiting its application.

III. PROPOSED SCHEME 

A. Basic Idea of HFA Method 

In order to solve the problems existing in the regular

expression matching of XFA above, we propose a new

regular expression matching algorithm in this paper,

which is based on HFA. The basic idea of HFA is that, we

add some extra judging instruments at the starting state in

order to reduce the storage space of the redundancy

migration side as well as to eliminate many unnecessary

state transitions. The specific realizing process for HFA is

that it makes full use of the current state, judging instru-

ments, auxiliary variable value and the input character for

determining which next state to shift and which auxiliary

variable to update during the regular expression matching

process of HFA. As a result, the problems of high mem-

ory access and big storage space and long matching time

existing in the regular expression matching process of

XFA can be efficiently improved, which greatly improves

the overall matching performance of XFA.

B. Realization Process of HFA Algorithm 

The working process of our proposed HFA method is

comprised of some parts. Fig. 7 is the working flow com-

position of the HFA algorithm. 

From Fig. 7, we can see that our proposed HFA algo-

rithm is primarily made up of four parts: initialization,

HFA_building, HFA_matching, and read result. The func-

tion of initialization mainly makes some necessary prepa-

rations before the program begins to run. HFA_building

primarily builds up a HFA from an XFA. It mainly

includes the addition of some extra judging instruments

at the starting state and also reduces redundancy migra-

tion side operations. Fig. 8 is the part pseudocode of pro-

cedure HFA_building( ).

Read result operation mainly reads the matching result

from the HFA. The function of HFA_matching mainly

takes the matching operations according to the regular

expression and input data stream. The main realization

process of HFA_matching includes the following two

operations.

Operation 1: Select which branching path to execute

according to the current staring state, judging instru-

ments with auxiliary variable value and input char-

acter. If some paths are met, jump Operation 1 to go

on; otherwise, jump Operation 2 to go on.

Operation 2: Determine the matching path according

d

→
d

→
a

→
t

→
t

→
t

→

Fig. 6. Extended finite automaton (XFA) for the regular expression
of (.*abcde.*fghnm).

Fig. 7. Working flow composition of high-efficient finite automaton
(HFA) algorithm.

Fig. 8. Part pseudocode of procedure HFA_building. HFA: high-
efficient finite automaton, XFA: extended finite automaton.

Fig. 9. The part pseudocode of procedure HFA _matching. HFA:
high-efficient finite automaton, XFA: extended finite automaton.



Journal of Computing Science and Engineering, Vol. 8, No. 2, June 2014, pp. 78-86

http://dx.doi.org/10.5626/JCSE.2014.8.2.78 82 Jianhua Wang et al.

to the current state and the input character. When the

matching process reaches our predetermined path,

the algorithm will set an auxiliary variable value as

1 to record it and take the corresponding process

operate; then, jump Operation 2 to go on; otherwise,

jump Operation 1 to go on.

Fig. 9 is the part pseudocode of procedure HFA_ma-

tching( ).

C. Case Study for HFA Algorithm 

Take the regular expression (.*abc.*def), for example,

to illustrate the whole realization process for our pro-

posed HFA method above.

Step 1: Build HFA from XFA according to the regular

expression of (.*abc.*def), which is shown in

Fig. 10; 

Step 2: Set the initial value of auxiliary variable (Bit1)

as 0 at the starting state;

Step 3: Judge whether to execute the P Q path

according to the current staring state (P), judg-

ing instruments for auxiliary variable value

(if(!Bit 1)) and input character (a); 

Step 4: Decide which next state to transit through the

current state (Q) and the input character (a or

b). If the input character is b, transit to R state;

if a, transit to Q state; if neither a or b, transit to

P state. When the matching process reaches the

R N path, the algorithm will set the auxiliary

variable (Bit = 1) in order to record it. When

the matching process finishes given the regular

expression, our algorithm executes the corre-

sponding matching operation and updates the

corresponding auxiliary variables.

Step 5: Go on to the matching operation above until the

end of the matching work;

Step 6: Read the matching results from the matching

process of HFA.

Fig. 10 is the HFA matching process for the regular

expression of (.*abc.*def). Fig. 11 is the HFA matching

process for the regular expression of (.*abcde.*fghnm).

From Figs. 10 and 11, we can clearly observe that our

proposed HFA method includes 7 states and only 19

migration edges in the regular expression of (.*abc.*def);

moreover, it includes 11 states and only 31 migration

edges in the regular expression of (.*abcde.*fghnm),

respectively. Compared with the XFA method in Figs. 5

and 6, our proposed HFA method not only can save 7

migration edges in the regular expression of (.*abc.*def)

and 11 migration edges in the regular expression of

(.*abcde.*fghnm), respectively, but can also reduce many

unnecessary state transitions in both regular expressions

above. The main reason for this effect is that some extra

judging instruments are added at the starting state in our

HFA method in order to reduce any unnecessary transi-

tion size as well as eliminate any unnecessary state transi-

tions, which can lower memory access, save storage

space and reduce matching time. As a result, the prob-

lems of high memory access and big storage space and

long matching speed in the regular expression matching

of XFA can be efficiently improved. 

IV. SIMULATION RESULTS AND ANALYSIS 
 

In order to verify the effectiveness of our proposed

method above, we conduct some experiments. Our designed

experiments mainly include four parts: simulation envi-

ronment, lower memory access, save storage space, and

reduce matching time.

A. Simulation Environment

The simulation environment is conducted on Microsoft

a

→

c

→

Fig. 10. High-efficient finite automaton (HFA) for the regular
expression of (.*abc.*def ).

Fig. 11. High-efficient finite automaton (HFA) for the regular
expression of (.*abcde.*fghnm).



A Regular Expression Matching Algorithm Based on High-Efficient Finite Automaton

Jianhua Wang et al. 83 http://jcse.kiise.org

Windows 7 operating systems, AMD-A63420M 4-core

CPU processor, 2 G memory, 500 G hard disk, and VC++

6.0 software tool. The testing regular rule set used in our

experiment comes from Snort, whose snapshot was

released on January 1, 2009. We extract all FTP rule sets

and part HTTP rule sets from Snort as our testing object

and grab the FTP data packet and HTTP data packet to

match the data. Snort2Bro tool is used to change the

Snort rule format into a Bro rule format as well as pro-

duce 82 FTP rules and 443 HTTP rules.

In our experiment, we compare our proposed HFA

algorithm with the DFA algorithm and XFA algorithm,

and evaluate three general important indicators: memory

access, storage space, and matching time. As to the DFA

algorithm, we produce a single DFA by making use of

each regular expression. The combined DFA is obtained

by merging the DFA algorithm. For the XFA algorithm,

we generate a single XFA by adding some configuration

information in the rules, such as notes, variable mapping,

etc., and then use the merging XFA algorithm to produce

a combined XFA. Our proposed HFA algorithm is pro-

duced based on XFA, but with the addition of some extra

judging instruments at the starting state in order to reduce

any unnecessary transition paths and eliminate any

unnecessary state transitions. The detailed realization on

the proposed scheme is shown in the proposed scheme

part of this paper above. Table 1 is the main tool and

parameters of our experiment, including the rule set

name, the testing number of the rule set, compared indi-

cator, compared methods and so on. 

In order to reduce data randomness, we obtain our

experimental data based on the average value of 5 testings.

B. Lower Memory Access 

In our HFA method, reducing the number of unneces-

sary state transitions by adding some extra judging instru-

ments at the starting state can save a great amount of

memory access in the same matching process compared

with XFA. Fig. 12 is the memory access consumption

comparison result for three different matching methods.

From Fig. 12, we can observe that our proposed algo-

rithm has a good memory access saving performance in

three different matching algorithms above, reaching

approximately 65% in memory access saving compared

with that of DFA and reducing about 40% in memory

access saving compared with that of XFA. The main

reason for it is that our proposed method uses some judg-

ing instruments at the starting state in order to narrow and

determine the next execution area. Hence, many unneces-

sary state transitions can be eliminated, which can save a

great amount of memory access.

C. Save Storage Space

In this subsection, we evaluate the storage space

performance of our proposed HFA scheme compared with

the DFA and XFA methods from four indicators: state

number, migration edge number, instruction number, and

the total storage space. Table 2 is the storage space

consumptions conditions for three methods in two different

rule sets. 

From Table 2, we can observe that our proposed HFA

algorithm has superior results in three matching algo-

rithms above in two different rule sets. DFA takes up the

biggest storage space consumption, reaching about 4052

kB and 526324 kB in two different rule sets, respectively.

XFA then followed, getting to approximately 402 kB and

6794 kB. However, our proposed scheme only takes up

223 kB and 3685 kB, which saves 93% in storage space

compared with that of DFA and 45% in storage space

compared with that of XFA. The main reason for this

effect lies in the use of judging instruments at the starting

state in our proposed method, which can reduce a great

Table 1. Experimental tools and parameters

Parameter Value

Testing data source Snort

Rule set in Snort FTP, HTTP

Compared indicator Memory access, Storage space, 

Matching time

Compared methods DFA, XFA, HFA

Conversion tool Snort2Bro

FTP rules number 82

HTTP rules number 443

DFA: deterministic finite automaton, XFA: extended finite automaton,

HFA: high-efficient finite automaton.

Fig. 12. Memory access consumption comparison for three
methods. DFA: deterministic finite automaton, XFA: extended
finite automaton, HFA: high-efficient finite automaton.
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amount of storage spaces of unnecessary state transitions

and migration edges. Note that the Null in Table 2 implies

no instruction number. 

D. Reduce Matching Time

In this subsection, we evaluate the average matching

time for three matching algorithms above in the FTP and

HTTP rule sets. The specific experimental results are

shown in Fig. 13.

From Fig. 13, we can see clearly that, compared to the

XFA method, our proposed HFA algorithm shows a big

improvement in matching time and portrays about 12%

matching time saving. The main reason for this effect lies

in the fact that our proposed method reduces redundancy

migration edges and eliminates unnecessary state transi-

tions by adding the judging instruments at the starting

state, which can reduce many unnecessary matching pro-

cesses. From Fig. 13, we can also observe that our pro-

posed HFA is still lower in matching time compared to

that of DFA. This result is due to the deterministic match-

ing state in each regular expression matching process of

DFA. 

V. CONCLUSION

In this paper, a high-efficient regular expression match-

ing algorithm based on HFA is proposed to improve the

performance in the regular expression matching of XFA.

In our scheme, we exactly narrow down the execute area

size for the next step as well as eliminate any unnecessary

state transitions by adding some judging instruments at

the starting state, which can reduce a great amount of

unnecessary memory access, storage space, and matching

time in the regular expression matching of XFA. The

simulation results convey that our proposed HFA scheme

can slower 40% memory access, save about 45% storage

space, and reduce about 12% matching time in the regu-

lar expression matching process compared with XFA, but

without degrading the matching quality.
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