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Abstract
The appearance of retinal blood vessels is an important diagnostic indicator of serious disease, such as hypertension, dia-

betes, cardiovascular disease, and stroke. Automatic segmentation of the retinal vasculature is a primary step towards

automatic assessment of the retinal blood vessel features. This paper presents an automated method for the enhancement

and segmentation of blood vessels in fundus images. To decrease the influence of the optic disk, and emphasize the ves-

sels for each retinal image, a multidirectional morphological top-hat transform with rotating structuring elements is first

applied to the background homogenized retinal image. Then, an improved multiscale line detector is presented to pro-

duce a vessel response image, and yield the retinal blood vessel tree for each retinal image. Since different line detectors

at varying scales have different line responses in the multiscale detector, the line detectors with longer length produce

more vessel responses than the ones with shorter length; the improved multiscale detector combines all the responses at

different scales by setting different weights for each scale. The methodology is evaluated on two publicly available data-

bases, DRIVE and STARE. Experimental results demonstrate an excellent performance that approximates the average

accuracy of a human observer. Moreover, the method is simple, fast, and robust to noise, so it is suitable for being inte-

grated into a computer-assisted diagnostic system for ophthalmic disorders.

Category: Smart and intelligent computing
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I. INTRODUCTION

Inspection of the retinal blood vessels can reveal early

stages of hypertension, diabetes, arteriosclerosis, cardio-

vascular disease, and stroke [1]. It allows the patients to

take action while the disease is still in its early stages.

One nontrivial task in the diagnosis of retinopathy is the

segmentation of retinal blood vessels [2]. However, since

the vascular network is complex and the number of

images is large, the manual segmentation of retinal blood

vessels can become a time-consuming process that entails

training and skill. An automated segmentation method

provides consistency and accuracy, and reduces the time

taken by a physician or a skilled technician for hand map-

ping. Therefore, an automated reliable method for vessel

segmentation would provide valuable computer-assisted

diagnosis for ophthalmic disorders.

Feature characterization and extraction in retinal images

is, in general, a complex task [3]. Accurate blood vessel

segmentation is a difficult task for several reasons. The

challenges include low contrast; the presence of noise

influence, mainly due to its complex acquisition; and ana-

tomic variability, depending on the particular patient. The

variability of vessel width, brightness, and tree-like shape
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make the task more difficult. For example, two close ves-

sels are often considered as one wide vessel. In contrast, a

vessel with central light reflex may be misunderstood as

two vessels [4]. Further challenges faced in automated

vessel segmentation include the presence of low-contrast

small vessels, and the appearance of a variety of struc-

tures in the image, including the optic disk, retinal bound-

ary, lesions, and other pathologies [5].

Many methodologies for retinal vessel segmentation

have been reported. Reviews and surveys of these meth-

ods can be found in [6, 7]. All these approaches for detect-

ing retinal blood vessels can be classified into techniques

based on match filtering, morphological processing, ves-

sel tracking, pattern recognition, multiscale analysis, and

model-based algorithms [8]. Matched filters for retinal

vessel segmentation exploit the piecewise linear approxi-

mation, and the Gaussian-like intensity profile of retinal

blood vessels [9]. Vessel segments are searched in all pos-

sible directions, using a two-dimensional matched filter.

Mathematical morphology exploits the fact that the vessels

are linear, connected, and their curvature varies smoothly

along the crest line to highlight the vessels in the mono-

chromatic retinal image [10]. Vessel tracking methods track

the vessels, starting from a set of reliable seed points,

using local information of the vessel network [11]. The

multiscale approaches for vessel extraction are based on

scale-space analysis, separating out information related

to the blood vessels having varying width [12]. Model-

based methods utilize the vessel profile models and active

contour models, and have been introduced for accurate

estimation of vessel width. An example is the tramline

filter proposed by Hunter et al. [13], where two parallel

edges at variable distance from each other are expected to

detect a vessel locally. The tramline filter consists of

three parallel lines, where the inner line is aligned within

a blood vessel, and the outer two lines are just on either

side of the vessel; the filter gives a strong response. Thus,

the tramline is more suited to the detection of vessel cen-

terlines than to segmentation of the vessels. Similar to the

tramline filter, a line detector is proposed by Ricci and

Perfetti [14]. The line detector evaluates the average

pixel intensity along basic lines passing through the tar-

get pixel at different orientations, and selects the line

with the highest average pixel intensity, so as to detect

vessels from the retinal images. The basic line detector

with long lines is effective in dealing with the vessels

with central reflex. But its length is fixed; when two ves-

sels are very close, it will merge them.

This drawback can be avoided by using the generalized

multi-scale line detector proposed by Nguyen et al. [4].

They use variable lengths of aligned lines, instead of a

fixed one, to achieve a multi-scale line detector. The

longer length line detectors are effective in dealing with

central reflex, but tend to merge close vessels, and pro-

duce false responses at vessel crossovers. The shorter

length line detectors can improve these situations, but

introduce background noise to results. In order to pre-

serve the strength and overcome the drawback of each

individual line detector, Nguyen et al. [4] assign the same

weight for each line detector with different length, and

linearly combine all line responses at different scales to

get the vessel responses. Clearly, the contributions of line

responses at different scales to final segmentation are not

equal. The longer length line detectors can get more ves-

sel responses than the shorter ones. Simple assignment of

the same weight for each scale to combine all the line

responses will introduce much background noise to final

segmentation. Nguyen et al.’s multiscale line detector gives

false responses around the optic disk and pathological

regions, such as dark and bright lesions. An example is

illustrated in Fig. 1.

To overcome the drawbacks mentioned above, this

paper proposes an effective retinal blood vessel segmen-

tation methodology. Exploiting the properties of piece-

wise linearity and connectedness of the retinal vessel, we

have introduced multi-director morphological filters with

rotating structuring elements to enhance the vessels in the

ocular fundus image. Later, an improved multiscale line

detector is proposed to produce the vessels response. Our

method is quantitatively and qualitatively evaluated using

two publicly available data sets, DRIVE [15] and STARE

[16]. In comparison with Nguyen’s multiscale line detec-

tion method and the basic line detection, the algorithm

attains excellent performance. Receiver operating charac-

teristic (ROC) analysis is also used on the three detectors.

From the area under the ROC curve and the accuracy, we

can see that our approach works extremely well, while

approximating the average accuracy of a human observer

without a significant degradation in sensitivity and speci-

ficity. 

The rest of the paper is organized as follows. Section II

is the preliminary knowledge about line detection; two

line detectors for retinal vessel segmentation are briefly

mentioned. In Section III, we illustrate our proposed meth-

odology in detail. Experimental results on the images of

the DRIVE and STARE databases are presented in Sec-

Fig. 1. False vessel detection around the optic disk in Nguyen
et al. [4]’s multiscale line detector: (a) original image and (b)
segmented image. Adapted from Nguyen et al. [4] with permission.
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tion IV. Finally, Section V presents the conclusion of this

paper.

II. MULTISCALE LINE DETECTION

Multiscale line detection proposed by [4] is built upon

the basic line detector, which is first used as a means for

vessel-background classification by [14]. In this section,

we first review the basic line detector, and then introduce

multiscale line detection, which linearly combines all line

responses at varying scales to produce the final segmen-

tation for a retinal image.

A. Basic Line Detector

The retinal vasculature appears as piecewise linear fea-

tures with variation in width and their tributaries visible

within the retinal image. The basic line detector employs

the morphological attributes of retinal blood vessels to

produce vessel responses. It works on the inverted green

channel of original RGB images, where the vessels

appear brighter than the background. First, a square sub

window of size W ×W pixels is centered at each pixel

position in the retinal image. Then, the average of pixel

intensities, termed , is computed. That is, twelve lines

of length W pixels oriented at 12 different directions

(angular resolution of 15°) passing through the centered

pixels are identified, and the average of gray levels of

pixels along each line is computed. The line with the

highest average is called the ‘winning line’, and its value

is defined as . The line response at the centered pixel

is then computed as [14]:

(1)

where, the window size W should be chosen to ensure

that the window of the pixel at the center of the vessels

consists of an approximately equal number of vessels and

background pixels.

The basic line detector principle is that if the target

pixel belongs to the vessel, then the line response will be

large due to alignment of the candidate line along the

direction of the vessel. In contrast, the line response is

low for a background pixel, because the difference

between the pixel intensity of the candidate line and

square sub-window is small. In this basic line detector,

the window size is chosen in such a way that if the square

sub-window is placed on the image, and the center of this

window corresponds to the center of the vessel, then this

window contains approximately the same number of ves-

sel and background pixels. Therefore, it is often set as

twice the typical vessel width in retinal images. For

example, it has been shown that W = 15 is a good choice

for the DRIVE database, where the typical vessel width is

7–8 pixels [15].

The basic line detector has been shown to be effective

when dealing with vessels with central light reflex. How-

ever, there are three drawbacks of using it in vessel detec-

tion: 1) it tends to merge close vessels; 2) it produces an

extension at crossover points; and 3) it produces false

vessel responses at background pixels near strong vessels

(vessels with high intensity values in images where ves-

sels appear brighter than the background).

B. Multiscale Line Detection

To overcome the three drawbacks of the basic line

detector mentioned above, Nguyen et al. [4] proposed a

generalized multiscale line detector, which uses a vari-

able length of aligned lines in spatial scale. The general-

ized multiscale line detector is defined as [4]:

(2)

where, 1 ≤ L ≤ W,  and  are defined as in Eq. (1).

By changing the values of L, the multiscale line detector

can be obtained. Fig. 2 depicts a line detector with

W = 15 and L = 9, where 12 lines of 9 pixel length are

placed on top of a window of 15 × 15 pixels. The main

idea behind this is that the shorter length line detector

will avoid the inclusion of surrounding vessel pixels, and

hence give correct false responses to closely located ves-

sels, and at vessel crossovers.

In multiscale line detectors, the line responses at differ-

ent scales are different. The longer length line detector

can detect large diameter blood vessels, and be able to

deal with central reflex, because the candidate line

includes only a small number of central reflex pixels,

which would not have been much affected, so the central

reflex pixels have a high vessel response. The shorter

length line detector detects close vessels more effectively.

 In order to maintain the strength and eliminate the
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Fig. 2. A generalized line detector with W = 15 and L = 9.
Adapted from Nguyen et al. [4] with permission.
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drawback of each individual line detector, the final vessel

responses are obtained by the linear combination of line

responses computed by using line detectors at different

scales. The response at each image pixel is defined as:

(3)

where  is the number of scales used,  is the response

of the line detector with line length L and square sub-win-

dow W, and  is the inverted green channel image at the

corresponding pixel. The original green channel is

included in the combination, since it provides additional

information to discriminate the proximity between the

blood vessels and other structures, such as pathologies

and the optic disk.

III. PROPOSED METHODOLOGY 

Our proposed methodology for retinal blood vessel

segmentation comprises of 4 consecutive stages: 1) image

preprocessing for background homogenization and the

removal of noise; 2) vessel enhancement using multi-

director morphological filters with linear structuring ele-

ments; 3) improved multiscale line detection for getting

vessel response; and 4) post-processing for removing

artifacts. Note that when the RGB components of the col-

ored retinal images are visualized separately, the green

channel shows the best vessel/background contrast;

whereas the red and blue channels show low contrast and

are very noisy [15]. Therefore, the green channel is used

for processing by our method.

A. Preprocessing

Independently from the component derived from the

original color retinal images, our proposed segmentation

method works on the inverted green channel (Ig) of a reti-

nal image, so that the vessels appear brighter than the

background. An example of an inverted green channel

image is shown in Fig. 3(a). 

Our multiscale line detection responds strongly to high

contrast edges. It may lead to false detection around the

borders of the camera’s aperture. In order to reduce this

effect, an iterative algorithm developed by [17] is used to

remove the strong contrast between the retinal fundus and

the region outside the camera’s field of view (FOV). The

result of the iterative process is illustrated in Fig. 3(b).

Retinal images often contain background intensity vari-

ation, since the illumination is reduced, while the distance

to the optic disk is increased. Consequently, background

pixels may have different intensity for the same image.

We can see this in Fig. 3(a), where the intensity values of

some background pixels are comparable to that of brighter

vessel pixels. This makes it difficult to segment retinal

vessels. With the purpose of removing these background

lighting variations, a background homogenization method

proposed by [18] is described, as follows.

First, a 3 × 3 mean filter is applied to smooth occa-

sional salt-and-pepper noise. Then, the resultant image is

convolved with a Gaussian kernel of dimensions m × m =

9 × 9, mean µ = 0, and variance σ2 = 1.82, which can fur-

ther smoothen noise effectively. Second, a background

image IB is produced by applying a 59 × 59 mean filter.

Then, the difference between Ig and IB is calculated for

every pixel, and the result of background homogenization

is shown in Fig. 3(c), where the influence of the back-

ground of retinal images is decreased.

B. Vessel Enhancement

The purposes of vessel enhancement are to eliminate

the influence of the optic disk and to increase vascular

contrast from the background of the retinal image. In our

segmentation method, morphological operators with direc-

tional structuring elements are applied to enhance the

vessel contrast in the homogenized image ID.

The retinal vessels appear as linear bright shapes in the

monochromatic image ID, and can easily be identified

using mathematical morphology. The basic morphologi-

cal operations of erosion, dilation, and opening and clos-

ing with a structuring element are defined in [19].

Morphological opening using a linear structuring element

oriented at a particular angle will eradicate a vessel or
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Fig. 3. Illustration of the preprocessing process: (a) inverted
green channel image, (b) preprocessed image with extended
border, (c) homogenized image, and (d) enhanced vessels image
from sum of top-hat transformation.
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part of it, when the structuring element cannot be con-

tained within the vessel. This happens when the vessel

and the structuring element have orthogonal directions,

and the structuring element is longer than the vessel

width. Conversely, when the orientation of the structuring

element is parallel to the vessel, the vessel will stay

nearly unchanged. The morphological top-hat transfor-

mation is shown as:

(4)

where  is the top-hat transformed image, I is the image

to be processed, S represents structuring elements for

morphological opening, and θ is the angular rotation of

the structuring element. If the opening along a class of

linear structuring elements is considered, a sum of top-

hats along each direction will brighten the vessels, regard-

less of their direction, provided that the length of the

structuring elements is large enough to extract the vessel

with the largest diameter. Therefore, a set of line structur-

ing elements, where each one is a matrix representing a

line of 21 pixels in length, and each rotated at 22.5°, is

used for the morphological top-hat transformation. Its

size is approximately the range of the diameter of the big-

gest vessels for retinal images. The sum of the top-hats is

depicted as:

(5)

where Ith is the sum of top-hat transformation performed

with the structuring element oriented at θ degrees. The

set A is denoted as . In

the image, every isolated round and bright zone whose

diameter is less than the length of the linear structuring

element pixels has been removed. The sum of top-hats on

the image will enhance all vessels, whatever their direc-

tion is, including small or tortuous vessels. The normal-

ized image Ive after top-hat transformation is shown in

Fig. 3(d). Here, we can see that the influence of the optic

disk is removed, because the optic disk is not a linear

structure, so that it is not enhanced.

C. Improved Multiscale Line Detection

In this section, we propose an improved multiscale line

detection, to obtain the final vessel measure from the

enhanced retinal vessels. In Nguyen et al.’s multiscale

line detectors, different line detectors have different line

responses. The line detector with longer lines can suc-

cessfully recognize central reflex pixels as vessel pixels,

because the candidate line includes only a small number

of central reflex pixels; hence the average intensity of

pixels in the candidate line is not much affected, and the

central reflex pixels have a high vessel-ness measure.

The shorter length line detectors detect close vessels more

effectively, but introduce background noise into the image.

Fig. 4 illustrates the vessel responses using line detec-

tors at different scales. Here we can see that the longer

length line detectors produce more vessel responses.

Although the shorter length line detectors can provide

more vessel details, they are sensitive to noise. The vari-

ances of line responses at different scales to image noise

are depicted in Fig. 5, which demonstrates that the

smaller scale filters produce higher noise responses. In

order to maintain the strength and eliminate the drawback

of each individual line detector, line responses at differ-

ent scales are linearly combined to produce the segmenta-

tion for each retinal image. We assign different weights

for each scale, and the response at each image pixel is

defined as:

Ith
θ

I IoS
θ( )–=

Ith
θ

Ith I
θ

θ A∈

th∑=

x 0 x 180, x mod 22.5( )≤ ≤ 0={ }

Fig. 4. Vessel responses using line detectors at different scales.
(a) L = 3, (b) L = 5, (c) L = 9, and (d) L = 15. Fig. 5. Variances of responses to noise along scale space.
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(6)

where nL is the number of scales used,  is the response

of the line detector at scale L, and Ive is the enhanced

image. Since Ive includes more blood vessels information,

we use it to replace the inverted green channel image [4].

D. Post-processing

The combined line response image is a soft classifica-

tion, where each value represents the probability of each

pixel of belonging to the vessel class. A single threshold

is enough to segment the soft classification, and produce

a binary segmentation (Fig. 6(a)). There are many small

isolated regions misclassified by threshold segmentation

as blood vessel pixels. To improve segmentation perfor-

mance, the removal of falsely detected isolated vessel

pixels is processed. In order to remove these artifacts, the

pixel area in each connected region is measured. In arti-

fact removal, each region connected to an area below 25

is reclassified as non-vessels. An example of the final

vessel segmented image after this further processing

stage is shown in Fig. 6(b).

IV. EXPERIMENTAL EVALUATION 

A. Materials

We evaluated our retinal vessel segmentation methods

on two publicly available data sets. Both the DRIVE

database and the STARE database have been widely used

by researchers to test their vessel segmentation methodol-

ogies, since they provide manual segmentations for per-

formance evaluation.

The DRIVE database [15] contains 40 color fundus

images, which have been divided into a test set and a

training set, both containing 20 images. Each of the

twenty training images has been carefully labeled by an

expert, by hand, to produce ground truth vessel segmen-

tation. For the test cases, two manual segmentations are

available; one is used as a gold standard, and the other

can be used to compare computer generated segmenta-

tions with those of an independent human observer. The

images were acquired using a Canon CR5 non-mydriatic

3CCD camera with a 45° FOV. Each image was captured

using 8 bits per color plane at 768 by 584 pixels. The

FOV of each image is circular with a diameter of approx-

imately 540 pixels. For this database, the images have

been cropped around the FOV. For each image, a mask

image is provided that delineates the FOV.

The STARE database [16] contains 20 colored retinal

images, with 700 × 605 pixels and 8 bits per RGB chan-

nel, captured by a TopCon TRV-50 camera at a 35° FOV.

Two manual segmentations by Hoover and Kouznetsova

[16] are available. The first observer marked 10.4% of

the pixels as vessel, the second one 14.9%. The perfor-

mance is computed with the segmentations of the first

observer as a ground truth. The comparison of the second

human observer with the ground truth images gives a

detection performance measure, which is regarded as a

target performance level.

B. Performance Measures

In order to quantify the algorithmic performance of the

proposed method on a fundus image, the resulting seg-

mentation is compared to its corresponding ground truth

image. Any pixel that is identified as a vessel in both the

ground truth and the segmented image is marked as a true

positive (TP). Any pixel that is marked as a vessel in the

segmented image, but not in the ground truth image, is

counted as a false positive (FP), as illustrated in Table 1.

In this paper, our algorithm is evaluated in terms of

sensitivity, specificity, and accuracy. Sensitivity is the

ability of an algorithm to detect the vessel pixels. Speci-

ficity reflects the ability to detect non-vessel pixels. The

accuracy is measured by the ratio of the total number of

correctly classified pixels (sum of TPs and TNs) by the

number of pixels in the image FOV. Taking Table 1 into

account, these metrics are defined as: 

(7)

(8)

(9)

Rcombined
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-------------------=

Specificity TN
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-------------------=

Accuracy TP TN+
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--------------------------------------------=

Fig. 6. Results of segmentation: (a) threshold segmentation
and (b) post-processing image.

Table 1. Vessel classification

Vessel present Vessel absent

Vessel detected True positive False positive

Vessel not detected False negative True negative
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Since more than 80% of pixels in a retinal image FOV

are background, the accuracy is always high, and there is

only a small discrimination in the accuracy values of dif-

ferent methods. In this paper, a Local Accuracy is intro-

duced as an additional measure, according to [4]. Here,

only vessels and background pixels around the true ves-

sels are evaluated for accuracy measurement. To achieve

this, the ground truth segmentation image is dilated using

a morphological dilation operator with a structure ele-

ment of size S, and this dilated image is used as the mask

for accuracy measurement. The Local Accuracy of differ-

ent methods is reported with S = 3, since at this value, an

equal number of vessels and background pixels is consid-

ered for accuracy computation.

In addition, algorithm performance is also measured

with ROC curves. An ROC curve plots the fraction of

vessel pixels correctly classified as vessels, namely the

true positive rate (TPR), versus the fraction of non-vessel

pixels wrongly classified as vessels, namely the false

positive rate (FPR). TPR represents the fraction of pixels

correctly detected as vessel pixels. FPR is the fraction of

pixels erroneously detected as vessel pixels. The area

under the ROC curve (AUC) measures the ability of the

classifier to correctly distinguish between vessel and non-

vessel pixels. The closer the curve approaches the top-left

corner, the better is the performance of the system. For

both databases, TPR and FPR are computed, considering

only pixels inside the FOV.

C. Vessel Segmentation Results

In this section we first report qualitative results that are

aimed at giving a visual feeling of the quality of the reti-

nal blood vessel tree generated by our method. We then

report comparative, quantitative results, using several

performance parameters and the standard ROC method.

We compare our improved multiscale line detection with

the other two line detectors: basic line detector of Ricci

and Perfetti [14] and multiscale line detector of Nguyen

et al. [4].

The parameter setting of our method on these experi-

mental databases is simple. Since the vessel width in

these images is around 7–8 pixels, W is set to 15 pixels,

and the scale range of the line detectors is set to 8 from 1

to 15 with a step of 2. The vessel responses obtained by

improved multiscale line detection are a soft classifica-

tion, where each value represents the probability of each

pixel belonging to the vessel class. A single threshold can

segment the soft classification, and produce binary seg-

mentation for each retinal image. In order to choose the

threshold value, 20 images in the DRIVE training set are

used to tune the threshold parameter. The threshold value

that produces the highest average accuracy on the train-

ing set is at t = 0.56. Hence, the same threshold value of

t = 0.56 is used to segment all images in the DRIVE and

STARE databases.

Figs. 7(a) and (b) show the segmentation results of one

image in the DRIVE data set obtained by Nguyen et al.’s

method and our method, respectively. Here we can see that

both methods have the ability to recognize the vessels

with the center of central reflex, and can segment these

close vessels. Compared to Fig. 7(a), our results (Fig. 7(b))

show two improvements: 1) most of the FP results around

the optic disk are detected, as shown by the green circle

area; and 2) the vessel blood tree gained from our meth-

ods includes more small vessels. An explanation for these

improvements is the multidirectional morphological top-

hat transform incorporated in our method, which enhanced

the vessel, and removed the influence of the optic disk.

Vessel segmentation results of one image each from

the DRIVE and the STARE databases are illustrated in

Fig. 8. The figures illustrate the green channel of the fun-

dus image, the manually segmented images from the first

human observer, the segmented results of Nguyen et al.’s

method, and the vessel tree yield from our method. Com-

pared to the results of Nguyen et al.’s method, our vessel

tree not only removes the optic disk, but also includes

more small vessels. The improved multiscale line detec-

tor proposed in our method sets different weights to each

line response, according to the lengths of the line detec-

tors. The weight of the shorter line detectors is lower, so

the vessel responses include less background noise,

which could yield segmentation results with more vessel

details, after simple post-processing.

Fig. 9 illustrates another two segmentation results of

one pathological retinal image each from the DRIVE and

the STARE databases. Compared to Nguyen et al.’s

method, our proposed method can obtain more details of

retinal vessels, even in the area of the optic disk and

pathological lesions. Since the multidirectional filters can

remove every isolated round and bright zone whose

diameters are less than the length of the linear structuring

element pixels, the influence of the optic disk and patho-

logical lesions for vessel detection is decreased. 

The ROC curves of the three line detection methods

for the two databases are depicted in Figs. 10 and 11,

where the AUC values of our proposed method are

Fig. 7. Results of segmentation: (a) Nguyen et al.’s method and
(b) our method.
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Fig. 8. Comparative results of two different methods: (a) original image, (b) ground truth image, (c) Nguyen et al.’s method, and (d) our
method.

Fig. 9. Segmentation results of pathological retinal image: (a) original image, (b) ground truth image, (c) Nguyen et al.’s method, and (d)
our method.

Fig. 10. Receiver operating characteristic curves for the DRIVE
database. TPR: true positive rate, FPR: false positive rate.

Fig. 11. Receiver operating characteristic curves for the STARE
database. TPR: true positive rate, FPR: false positive rate.
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0.9618 and 0.9576 for the DRIVE and STARE databases,

respectively. The ROC curves of the basic line detector

are obtained from the line detector with line length

L = 15, which achieves the maximum average accuracy,

compared to other length line detectors [14]. 

Tables 2 and 3 present the average performance of the

three line detectors on both DRIVE and STARE data sets.

Since the segmentation results of the basic line detector

are not available for comparison, we implemented the

unsupervised method, denoted as individual line detec-

tion with line length L = 15. The results show that the

accuracy of improved multiscale line detection is higher

than that of individual line detection, since they com-

bined all line responses, and eliminated the drawback of

each individual line detector. However, Nguyen et al.’s

method produced false negatives at regions around the

optic disk and pathological lesions. Our proposed meth-

ods employ the multidirectional morphological top-hat

transformation to enhance the vessels in the retinal

image, the optic disk has been removed, and the response

to thin vessels is more sensitive. Moreover, in the STARE

database, the pathological images are 10 out of 20, and

our proposed method has achieved high performance.

The average Local Accuracy for the STARE dataset is

0.7642, which approximates the measures of a second

human observer. That is because the directional linear

structuring elements used in top-hat on the filtered image

enhances all vessels, whatever their direction, including

small or tortuous vessels, and the large homogeneous

pathological areas become normalized.

Our proposed method belongs to an unsupervised seg-

mentation method, which doesn’t require ground truth

segmentations for training models. Statistics of the run-

ning time of the proposed method to segment a DRIVE

or STARE image are implemented on a PC Intel Core i5

3.2 GHz CPU and 8 GB RAM. The method is imple-

mented in MATLAB, and no optimization is performed.

The image preprocessing phase, including vessel enhance-

ment phase, spends 1.26 seconds on average, and the time

to detect vessels by improved multiscale line detection is

2.72 seconds, so it takes 3.98 seconds on average to seg-

ment a DRIVE or STARE image, using our proposed

method. Being an unsupervised method, it is effective

enough, and the execution time could be reduced further

by some optimization of our proposed method.

V. CONCLUSIONS 

In this paper, an effective retinal blood vessel segmen-

tation method has been proposed. A multidirectional top-

hat transform with rotating structuring elements was used

to emphasize the vessels. The multidirectional filters have

enhanced all vessels, whatever their direction, including

small or tortuous vessels. Every isolated round and bright

zone whose diameters were less than the length of the lin-

ear structuring element pixels have been removed, so the

influence of the optic disk and pathological lesions for

vessel detection have been decreased. Then, an improved

multiscale line detector was proposed to yield vessel

responses. Setting different weights to different scale line

detectors, our improved multiscale line detector included

less background noise into the line responses, which

could yield segmentation results with more small vessels.

Experimental results have shown that our method can

segment these close vessels, and has the ability to deal

with these centers of central reflex vessels. Being an

unsupervised method, our method has produced compa-

rable accuracy. The demonstrated effectiveness and

robustness, together with its simplicity, make the pro-

posed blood vessel segmentation method a suitable tool

for being integrated into a computer-assisted diagnostic

Table 2. DFE performance comparison of different line detector methods (DRIVE databases)

Method Sensitivity Specificity Accuracy Local Accuracy AUC

Second observer 0.7796 0.9717 0.9473 0.7921 -

Basic line detect 0.7124 0.9563 0.9329 0.7413 0.9496

Nguyen et al.’s method 0.7322 0.9659 0.9407 0.7883 0.9613

Proposed method 0.7354 0.9691 0.9415 0.7896 0.9618

AUC: area under ROC curve, ROC: receiver operating characteristic.

Table 3. Performance comparison of different line detectors methods (STARE databases)

Method Sensitivity Specificity Accuracy Local Accuracy AUC

Second observer 0.8951 0.9584 0.9350 0.7706 -

Basic line detect 0.7116 0.9538 0.9356 0.7285 0.9427

Nguyen et al.’s method 0.7317 0.9613 0.9324 0.7630 0.9568

Proposed method 0.7348 0.9652 0.9336 0.7657 0.9576

AUC: area under ROC curve, ROC: receiver operating characteristic.
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system for ophthalmic disorders. The majority of the ves-

sels that have not been segmented effectively are those

around pathological lesions. To segment those vessels is

the subject of ongoing work.

AKNOWLEDGMENTS

This research is supported by the Fundamental

Research Foundation of Henan Province, under Grant

No.132300410396.

REFERENCES

1. R. Bernardes, P. Serranho, and C. Lobo, “Digital ocular fun-

dus imaging: a review,” Ophthalmologica, vol. 226, no. 4,

pp. 161-181, 2011.

2. M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A.

R. Rudnicka, C. G. Owen, and S. A. Barman, “An ensemble

classification-based approach applied to retinal blood vessel

segmentation,” IEEE Transactions on Biomedical Engineering,

vol. 59, no. 9, pp. 2538-2548, 2012.

3. M. M. Fraz, P. Remagnino, A. Hoppe, and S. A. Barman,

“Retinal image analysis aimed at extraction of vascular

structure using linear discriminant classifier,” in Proceed-

ings of the International Conference on Computer Medical

Applications, Sousse, Tunisia, 2013, pp. 1-6.

4. U. T. Nguyen, A. Bhuiyan, L. A. Park, and K. Ramamohanarao,

“An effective retinal blood vessel segmentation method

using multi-scale line detection,” Pattern Recognition, vol.

46, no. 3, pp. 703-715, 2013.

5. Y. Wang, G. Ji, P. Lin, and E. Trucco, “Retinal vessel

segmentation using multiwavelet kernels and multiscale

hierarchical decomposition,” Pattern Recognition, vol. 46,

no. 8, pp. 2117-2133, 2013.

6. M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A.

R. Rudnicka, C. G. Owen, and S. A. Barman, “Blood vessel

segmentation methodologies in retinal images: a survey,”

Computer Methods and Programs in Biomedicine, vol. 108,

no. 1, pp. 407-433, 2012.

7. O. Faust, R. Acharya, E. Y. K. Ng, K. H. Ng, and J. S. Suri,

“Algorithms for the automated detection of diabetic retinopathy

using digital fundus images: a review,” Journal of Medical

Systems, vol. 36, no. 1, pp. 145-157, 2012.

8. M. M. Fraz, A. Basit, and S. A. Barman, “Application of

morphological bit planes in retinal blood vessel extraction,”

Journal of Digital Imaging, vol. 26, no. 2, pp. 274-286, 2013.

9. Q. Li, J. You, and D. Zhang, “Vessel segmentation and width

estimation in retinal images using multiscale production of

matched filter responses,” Expert Systems with Applications,

vol. 39, no. 9, pp. 7600-7610, 2012.

10. F. Zana and J. C. Klein. “Segmentation of vessel-like patterns

using mathematical morphology and curvature evaluation,”

IEEE Transactions on Image Processing, vol. 10, no. 7, pp.

1010-1019, 2001.

11. Y. Yin, M. Adel, and S. Bourennane, “Retinal vessel

segmentation using a probabilistic tracking method,” Pattern

Recognition, vol. 45, no. 4, pp. 1235-1244, 2012.

12. F. Nie and P. Zhang, “Fuzzy partition and correlation for

image segmentation with differential evolution,” IAENG

International Journal of Computer Science, vol. 40, no. 3,

pp. 164-172, 2013.

13. A. Hunter, J. Lowell, R. Ryder, A. Basu, and D. Steel, “Tram-

line filtering for retinal vessel segmentation,” in Proceedings

of the 3rd European Medical and Biological Engineering

Conference, Prague, Czech Republic, 2005, pp. 1-4.

14. E. Ricci and R. Perfetti, “Retinal blood vessel segmentation

using line operators and support vector classification,” IEEE

Transactions on Medical Imaging, vol. 26, no. 10, pp. 1357-

1365, 2007.

15. M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, and M.

D. Abramoff, “Comparative study of retinal vessel segmen-

tation methods on a new publicly available database,” in

Proceedings of SPIE: Medical Imaging 2004, Bellingham,

WA: SPIE, pp. 648-656, 2004.

16. A. D. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating

blood vessels in retinal images by piecewise threshold

probing of a matched filter response,” IEEE Transactions on

Medical Imaging, vol. 19, no. 3, pp. 203-210, 2000.

17. J. V. Soares, J. J. Leandro, R. M. Cesar, H. F. Jelinek, and

M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor

wavelet and supervised classification,” IEEE Transactions on

Medical Imaging, vol. 25, no. 9, pp. 1214-1222, 2006.

18. D. Marin, A. Aquino, M. E. Gegundez-Arias, and J. M. Bravo,

“A new supervised method for blood vessel segmentation in

retinal images by using gray-level and moment invariants-

based features,” IEEE Transactions on Medical Imaging,

vol. 30, no. 1, pp. 146-158, 2011.

19. J. Serra, Image Analysis and Mathematical Morphology,

London: Academic Press, 1983.

Yanli Hou 

Yanli Hou received her B.S. degree in computer applications and M.S. degree in applied mathematics from
Henan University in 2002 and 2005, respectively. Her current research interests include image processing
technology, pattern recognition, and multi-sensor data fusion technology.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 900
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


