
Copyright 2014. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 8, No. 3, September 2014, pp. 149-156

Stroke Width Based Skeletonization for Text Images

Minh Hieu Nguyen, Soo-Hyung Kim, Hyung Jeong Yang, and Guee Sang Lee*

Dept. of Electronics and Computer Eng., Chonnam National University, Gwangju, South Korea

hieunp131@gmail.com, shkim@jnu.ac.kr, hjyang@jnu.ac.kr, gslee@jnu.ac.kr

Abstract
Skeletonization is a morphological operation that transforms an original object into a subset, which is called a ‘skeleton’.

Skeletonization has been intensively studied for decades and is a challenging issue especially for special target objects.

This paper proposes a novel approach to the skeletonization of text images based on stroke width detection. First, the pre-

liminary skeleton is detected by using a Canny edge detector with a Tensor Voting framework. Second, the preliminary

skeleton is smoothed, and junction points are connected by interpolation compensation. Experimental results show the

validity of the proposed approach.

Category: Human computing

Keywords: Skeletonization; Stroke width; Tensor voting; Text image

I. INTRODUCTION

Image skeletonization is a morphological image pro-

cessing operation that transforms a component of a digi-

tal image into a subset, called a ‘skeleton’, of the original

component. The skeleton usually emphasizes geometrical

and topological properties of the shape. It has been used

in several applications, such as computer vision, image

analysis, and digital image processing.

Consider the binary digital character ‘H’ in Fig. 1.

Basically, it consists of three connected strokes (two

vertical and one horizontal). The topology, which is the

important information for object recognition, represents

how the three parts are connected. In such a situation, it

will be convenient if the thickness is reduced as much as

possible (to a skeleton), so that the topological analysis

becomes as simple as possible. For example, it would be

nice to represent the pattern above as a one-pixel thick

white pattern as illustrated in Fig. 2.

The processes or methods to accomplish this task are

called skeletonization or thinning techniques, and the

resulting patterns are usually referred to as skeletons.

Nowadays, many graphic and vision applications, which

include character recognition, signature verification, and

fingerprint recognition, are required to represent and

understand the shape of a target object. The skeleton is

one kind of shape descriptor [1]. It is a compact, medial

structure that lies within a solid object [2]. A skeleton of

a 2D object consists of 1D elements (e.g., curve, straight

line); whereas the skeleton of a 3D object may consist of

both 1D and 2D elements (e.g., surface). A skeleton is a

lower dimensional object that essentially represents the

shape of its target object. Because a skeleton is simpler

than the original object, many operations can be performed

more efficiently on the skeleton than on the full object.

Skeletonization is divided into two main approaches:

iterative and non-iterative. In the iterative techniques, the

peeling contour process is iteratively conducted in a par-

allel or sequential manner; in the parallel way, the whole

unwanted pixels are erased after identifying the whole

Received 12 June 2014; Revised 22 July 2014; Accepted 29 July 2014

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2014.8.3.149 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 149-156

http://dx.doi.org/10.5626/JCSE.2014.8.3.149 150 Minh Hieu Nguyen et al.

wanted pixels. Whereas in sequential techniques, the

unwanted pixels are removed in identifying the desired

pixels in each iteration as in [3]. Examples of pixel-based

techniques are thinning and distance transformation. These

techniques need to process every pixel in the image; this

can incur a long processing time, and leads to reduced

efficiency. In the non-iterative approach, the skeleton is

directly extracted without individually examining each

pixel, but these techniques are difficult to implement and

slow [4].

Some thinning methods suffer from common traditional

problems, such as the one pixel width of the skeleton and

skeleton connectivity. Besides, distortion in the topology

of the shape skeleton is a serious problem in thinning

applications [5]. Several techniques failed in preserving

the topologic shape [6, 7]. Spurious tails and rotating the

text shape are other serious problems that most thinning

methods failed to solve [6-8].

This paper presents a novel approach based on the

stroke width of a target object to extract its skeleton. To

the best of our knowledge, this is the first time tensor vot-

ing and stroke width have been used in skeletonization.

II. PROPOSED METHOD

First, contour from the object is detected by using a

Canny edge detector [9] and then tensor voting [10] is

applied to estimate the normal vectors of edge pixels in

the previous step. Starting from each edge pixel and fol-

lowing its normal vector, its counterpart can be found at

the opposite edge. The starting edge pixels and their

counterparts form a set of strokes. From these strokes, we

have a set of their center points that make up preliminary

parts of the skeleton.

Second, we smooth the primary skeletons, and connect

them through the junction area, by finding the junction

points. The junction points are obtained by an interpola-

tion compensation technique.

A. Contour

The contour of the target object is extracted using a

Canny edge detector [9] (Fig. 3).

B. Stroke Width

We define a stroke to be a contiguous part of an image

that forms a band of nearly constant width as depicted in

Fig. 4. We do not assume to know the actual width of the

stroke but rather recover it. In Fig. 4, p is a component

contour pixel (cp) that lies on the edge. Searching in the

direction of the gradient at p leads to finding q, the corre-

sponding pixel on the other side of the stroke. Pixels

along the ray form a stroke [11]. These pixels are called

stroke width pixels (sp). Candidate component pixels (ccp)

lie between the two edges but do not belong to strokes.

C. Normal Vectors of Edge Pixels

1) Using Gradient

In the gradient method, the normal vector of an edge

Fig. 1. A pattern consisting of three strokes.

Fig. 2. The skeleton is the thinnest representation of the
original pattern that preserves the topology.

Fig. 3. Contour from Canny.

Fig. 4. Stroke width computation.

Stroke Width Based Skeletonization for Text Images

Minh Hieu Nguyen et al. 151 http://jcse.kiise.org

pixel can be approximated by considering only eight sur-

rounding pixels as in Eq. (1). Therefore, when the edge is

not smooth enough, i.e., it has staircase elements, normal

vectors would be computed incorrectly. Fig. 5(b) illus-

trates this situation. In this case, the gradient method is no

longer suitable for finding normal vectors. This paper

proposes to use a Tensor Voting based method to solve

this problem.

(1)

where, I is the grayscale image, is the gradient in the

x-direction, and is the gradient in the y-direction.

 2) Using Tensor Voting

The Tensor Voting based method estimates the normal

vector based on the pixels in a voting field. Pixels in

high-density areas of the voting field contribute more sig-

nificantly than others.

First, edge pixels are extracted. Coordinates of these

edge pixels are input into the Tensor Voting framework

[10]. After the voting process, tangent vectors are obtained

from the stick tensor. The normal vector is roughly per-

pendicular to the tangent vector. Fig. 5(c) shows normal

vectors that are results from the tensor voting method. In

this situation, it is better than the gradient method. Com-

pared to Fig. 5(b), the normal vectors around curves are

well computed.

D. Preliminary Skeleton Extraction

Contour from the object is detected by using Canny

edge detector, and then tensor voting is applied to esti-

mate the normal vectors of edge pixels in the previous

step. Starting from each edge pixel and following its nor-

mal vector, its counterpart can be found at the opposite

∆I ∂I
∂x
-----, ∂I

∂y
-----=

∂I

∂x

∂I

∂y

Fig. 5. Normal vectors of edge pixels. (a) Text with rough edges,
(b) normal vectors by gradient methods, and (c) normal vectors
by tensor voting.

Fig. 6. (a) Stroke width distribution, (b) preliminary skeleton
extraction.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 149-156

http://dx.doi.org/10.5626/JCSE.2014.8.3.149 152 Minh Hieu Nguyen et al.

edge. The starting edge pixels and their counterparts form

a set of strokes. Then we have the stroke width distribu-

tion. The weighted prevalent stroke width (WPSW) is

computed by Eq. (2).

(2)

where, uSWi represents one stroke width value in the dis-

tribution and pSW is the corresponding percent of that

value over the total.

For example, in Fig. 6(a), from the stroke width distri-

bution, we have uSW = {12.64, 13, 13.03, 13.15, 13.34,

14.14, 14.31, 15, 38.27, 39.39, 57, 57, 57.14, 57.21,

57.42, 57.55, 57.70, 75, 76, 76, 76.16, 76.23} and pSW =

{0.0043, 0.3013, 0.0087, 0.0043, 0.0043, 0.0043, 0.0043,

0.5065, 0.0043, 0.0043, 0.0131, 0.0043, 0.0262, 0.0087,

0.0043, 0.0043, 0.0043, 0.0043, 0.0698, 0.0043, 0.0043,

0.0043}. By applying Eq. (2), we have WPSW = 22.64; this

is the prevalent stroke width throughout the input image.

After that, only strokes that have width roughly equiv-

alent to the weighed prevalent stroke width are kept.

From these valid strokes, we have a set of their center

points that make up preliminary parts of the skeleton.

Since the proposed method starts from a contour of the

object, the existence of edge pixels is crucial for extract-

ing the target skeleton. In the cases of junctions or cross-

ing areas, some edges are missing so that the skeleton

cannot be extracted by examining the stroke width alone.

The reason is that as the distance between the starting

pixel in one edge and its counterpart in another edge

(they form a stroke) increase, stroke widths in these areas

are considerably larger than the stroke width that is prev-

alent over the entire image. Strokes in junction areas are

discarded because they exceed by far the weighed preva-

lent stroke width. In this paper, an interpolation compen-

sation technique is used to deal with this problem.

E. Interpolation Compensation

To find junction points that are missing from the pre-

liminary skeleton, we develop an interpolation technique

[12]. The key of this technique is to position the junction

skeleton points in the crossing area based on three detect-

able types of characteristic points: terminal point, divider

point, and corner point. The junction skeleton point can

be estimated in two ways: 1) it is the centroid of the poly-

gon, which is composed of the above three types of char-

acteristic points and 2) the position of the junction

skeleton point can be calculated by the least square

method with the characteristic points.

The corner points are detected by using Harris corner

detection [13] as above. The terminal point is the start or

end point of the preliminary skeleton. The divider point is

the intersection point between the stable and the unstable

contour segments. Along the gradient direction of the ter-

minal point (for example, points 11 and 13 in Fig. 7), the

divider points (points 10 and 12 in Fig. 7) can be easily

detected. They are illustrated in Fig. 7.

Algorithm 1. Preliminary Skeleton Extraction

Step 1. Find edge pixels in a grayscale image using the

Canny method.

Step 2. Estimate normal vectors of edge pixels using gra-

dient and tensor voting methods.

Step 3. Compute the weighted prevalent stroke width

using the stroke width calculation in Eq. (2).

Step 4. Get valid strokes, which have their ends as edge

pixels and width roughly equivalent to the weighted

prevalent stroke width.

Step 5. Extract center points of valid strokes using the

Euclidean distance.

WPSW uSWi*pSWi

n

i=1∑=

Algorithm 2. Interpolation Compensation

Step 1. Detect terminal points from the preliminary skel-

eton.

Step 2. Find divider points by following the gradient

(positive and negative) direction of each terminal

point. Along its corresponding unstable contour seg-

ment, another divider (or corner) point can be met.

Step 3. Group all characteristic points related to the ter-

minal point into a subgroup.

Step 4. Merge two subgroups that share some character-

istic points into a bigger group. Repeat this process

until all groups are stable.

Step 5. Estimate the centroid of each polygon that is

formed by each isolated group above.

Fig. 7. Interpolating a missing junction point.

Stroke Width Based Skeletonization for Text Images

Minh Hieu Nguyen et al. 153 http://jcse.kiise.org

III. EXPERIMENT AND COMPARISON

In this section, highlight results of the proposed

method are presented and discussed. The algorithm is

tested on a variety of inputs—isolated letters, handwrit-

ten words, and finally, graphics and symbols, regarding

skeleton continuity, shape preservation, and a one-pixel-

wide skeleton. The goal is to verify if the performance

complies with the expectations. There are 106 images in

the dataset.

A. Experimental Results

As seen in Fig. 8, the proposed method preserves the

letter shapes. It does a good job of maintaining the origi-

nal connectivity in the output skeletons, which is essen-

tial for many applications.

B. Comparison

Table 1 shows sample results of the proposed approach

in comparison with methods mentioned in the Introduc-

tion section.

Table 2 presents a comparison between the proposed

approach and other methods by quantitative evaluation.

The image reconstructed from the skeleton is compared

with the original image in terms of duplicated area, miss-

ing area, and error area (Fig. 9).
● Duplicated area: overlapped parts of reconstructed

image (from skeleton) and original image.
● Missing area: parts that exist in the original image,

but are missing in the reconstructed image.
● Error area: parts that exist in the reconstructed image,

but are missing in the original image.

In our work, β2 is set to 1. This is also known as the

F1-measure with recall and precision being evenly weighted.

Step 6. Connect terminal points in each group with the

newly found centroid of that group.

Precision
Duplicated area

Duplicated area Mis g areasin+
---=

Recall
Duplicated area

Duplicated area Error area+
--=

F measure–
1 β

2

+() Precision Recall×()

β
2

Precision Recall+()
---=

Fig. 8. Some experimental results.

Table 1. Results from the methods discussed

Method

Image

Distance

transform

-based

Voronoi

diagram

-based

Blum

(Matlab

function)

Proposed

method

Table 2. Comparison with benchmarks

Method Precision Recall F-measure

Blum [14] 97.82 75.31 85.10

Distance transform-based [15] 98.73 72.81 83.81

Voronoi diagram-based [16] 90.03 82.97 86.35

Proposed method 85.34 86.25 85.79

Fig. 9. Evaluation method. (a) Original image, (b) skeleton, (c)
reconstructed image, (d) duplicated area, (e) missing area, and
(f) error area.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 149-156

http://dx.doi.org/10.5626/JCSE.2014.8.3.149 154 Minh Hieu Nguyen et al.

C. Strengths and Weakness

The proposed method has the following strengths:
● It extracts skeletons without spurs or undesirable

branches (Fig. 10).
● It is non-iterative and works even when the edge is

not smooth enough, i.e., it has staircase elements.
● It is tailored for printed characters, where the stroke

width is consistent.
● It is a grayscale skeletonization algorithm that can

solve the problem of shape distortion by binarization

(as seen in Fig. 11).

It also has the existing weaknesses (Fig. 12):
● It is a 2D skeletonization method.
● It is sensitive to the stroke width of the target object.
● It fails to produce desirable results in cases of com-

plex shapes.

IV. CONCLUSION

This paper proposed a novel approach based on the

stroke width of a target object to extract its skeleton.

First, we detect the contour from the object and use nor-

mal vectors, which are estimated by a Tensor Voting

based technique to extract strokes between edge pixels.

From these strokes, we have a set of their center points

that make up preliminary parts of the skeleton. Second,

we smooth the primary skeletons and connect them

through junction areas by finding the junction points. The

junction points are obtained by an interpolation compen-

sation technique. The experimental result proves that ten-

sor voting and stroke width can be used to extract the

skeletons of 2D objects. For the purpose of extracting

skeletons to reconstruct the original image, the perfor-

mance of the proposed method can be matched with popular

skeletionization methods. In future research, the accuracy

for complex shape objects needs to be improved.

AKNOWLEDGMENTS

This work was supported by a National Research

Foundation of Korea grant (No. 2013-056480 and 2013-

006535) funded by the Korea government (MEST). This

research was also supported by a Ministry of Science,

ICT & Future Planning of Korea grant (No. NIPA-2014-

H0301-14-1014) under the Information Technology Research

Center support program supervised by the National IT

Industry Promotion Agency.

REFERENCES

1. P. Morrison and J. J. Zou, “An effective skeletonization

method based on adaptive selection of contour points,” in

Proceedings of the 3rd International Conference on Informa-

tion Technology and Application, Sydney, Australia, 2005,

pp. 644-649.

2. T. Ju, M. L. Baker, and W. Chiu, “Computing a family of

skeletons of volumetric models for shape description,” Com-

Fig. 10. From the input to the output.

Fig. 11. Shape distortion by binarization.

Fig. 12. Current failed cases.

Stroke Width Based Skeletonization for Text Images

Minh Hieu Nguyen et al. 155 http://jcse.kiise.org

puter-Aided Design, vol. 39, no. 5, pp. 352-360, 2007.

3. G. Nemeth and K. Palagyi, “Topology preserving parallel

thinning algorithms,” International Journal of Imaging Sys-

tems and Technology, vol. 21, no. 1, pp. 37-44, 2011.

4. K. Saeed, M. Tabedzki, M. Rybnik, and M. Adamski,

“K3M: a universal algorithm for image skeletonization and a

review of thinning techniques,” International Journal of

Applied Mathematics and Computer Science, vol. 20, no. 2,

pp. 317-335, 2010.

5. W. R. Quadros, K. Shimada, and S. J. Owen, “Skeleton-

based computational method for the generation of a 3D

finite element mesh sizing function,” Engineering with Com-

puters, vol. 20, no. 3, pp. 249-264, 2004.

6. Z. Guo and R. W. Hall, “Fast fully parallel thinning algo-

rithms,” CVGIP: image understanding, vol. 55, no. 3, pp.

317-328, 1992.

7. M. Ahmed and R. Ward, “A rotation invariant rule-based

thinning algorithm for character recognition,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 24,

no. 12, pp. 1672-1678, 2002.

8. Y. Y. Zhang and P. S. P. Wang, “A parallel thinning algo-

rithm with two-subiteration that generates one-pixel-wide

skeletons,” in Proceedings of the 13th International Confer-

ence on Pattern Recognition, Vienna, Austria, 1996, pp. 457-

461.

9. J. Canny, “A computational approach to edge detection,”

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 8, no. 6, pp. 679-698, 1986.

10. G. Medioni, M. S. Lee, and C. K. Tang, A Computational

Framework for Segmentation and Grouping, Amsterdam:

Elsevier, 2000.

11. B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text in natu-

ral scenes with stroke width transform,” in Proceedings of

the 23rd IEEE Conference on Computer Vision and Pattern

Recognition, San Francisco, CA, 2010, pp. 2963-2970.

12. X. You and Y. Y. Tang, “Wavelet-based approach to charac-

ter skeleton,” IEEE Transactions on Image Processing, vol.

16, no. 5, pp. 1220-1231, 2007.

13. C. Harris and M. Stephens, “A combined corner and edge

detector,” in Proceedings of the 4th Alvey Vision Confer-

ence, 1988, pp 147-151.

14. H. Blum, “A transformation for extracting new descriptors

of shape,” in Proceedings of a Symposium on Models for the

Perception of Speech and Visual Form, 1967, pp. 362-380.

15. R. M. Haralick and L. G. Shapiro, Computer and Robot

Vision (Volume 1), Reading: Addison-Wesley, 1991.

16. R. Ogniewicz and M. Ilg, “Voronoi skeletons: theory and

applications,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Champaign, IL,

1992, pp. 63-69.

Minh Hieu Nguyen

Minh Hieu Nguyen received his B.S. degree in Software Engineering from FPT University, Vietnam in 2011. He
is currently a M.S. student in the Department of Electronics and Computer Engineering in Chonnam National
University, South Korea. His research interests are in image processing, computer vision, and text extraction.

Soo-Hyung Kim

Soo-Hyung Kim received his B.S. degree in Computer Engineering from Seoul National University in 1986,
and his M.S. and Ph.D. degrees in Computer Science from the Korea Advanced Institute of Science and
Technology in 1988 and 1993, respectively. From 1990 to 1996, he was a senior member of the research staff
in the Multimedia Research Center of Samsung Electronics Co., Korea. Since 1997, he has been a professor in
the Department of Computer Science, Chonnam National University, Korea. His research interests are in
pattern recognition, document image processing, medical image processing, and ubiquitous computing.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 149-156

http://dx.doi.org/10.5626/JCSE.2014.8.3.149 156 Minh Hieu Nguyen et al.

Hyung Jeong Yang

Hyung Jeong Yang received her B.S., M.S. and Ph.D. from Chonbuk National University, Korea. She is currently
an associate professor at the Department of Electronics and Computer Engineering, Chonnam National
University, Gwangju, Korea. Her main research interests include multimedia datamining, pattern recognition,
artificial intelligence, e-Learning, and e-Design.

Guee Sang Lee

Guee Sang Lee received his B.S. degree in Electrical Engineering and M.S. degree in Computer Engineering
from Seoul National University, Korea in 1980 and 1982, respectively. He received his Ph.D. degree in
Computer Science from Pennsylvania State University in 1991. He is currently a professor of the Department
of Electronics and Computer Engineering in Chonnam National University, Korea. His research interests are
mainly in the field of image processing, computer vision, and video technology.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

