
Copyright 2014. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 8, No. 4, December 2014, pp. 181-186

A New Approach to Web Data Mining Based on Cloud Computing

Wenzheng Zhu* and Changhoon Lee

School of Computer Science, Konkuk University, Seoul, Korea

wenzheng@live.co.kr, chlee@konkuk.ac.kr

Abstract
Web data mining aims at discovering useful knowledge from various Web resources. There is a growing trend among

companies, organizations, and individuals alike of gathering information through Web data mining to utilize that infor-

mation in their best interest. In science, cloud computing is a synonym for distributed computing over a network; cloud

computing relies on the sharing of resources to achieve coherence and economies of scale, similar to a utility over a net-

work, and means the ability to run a program or application on many connected computers at the same time. In this paper,

we propose a new system framework based on the Hadoop platform to realize the collection of useful information of

Web resources. The system framework is based on the Map/Reduce programming model of cloud computing. We pro-

pose a new data mining algorithm to be used in this system framework. Finally, we prove the feasibility of this approach

by simulation experiment.

Category: Smart and intelligent computing

Keywords: Web data mining; Cloud computing; Hadoop; Map/Reduce programming model

I. INTRODUCTION

We live and operate in the world of computing and

computers. The Internet has drastically changed the com-

puting world from the concept of parallel computing to

distributed computing, to grid computing, and now to

cloud computing [1]. With the rapid development of

Internet technology, the data in the Internet is growing

exponentially, so how to find and mine valuable informa-

tion has become a hot area of research.

Web data mining [2] aims to discover useful informa-

tion or knowledge from Web hyperlinks, page contents,

and usage logs. Based on the primary kinds of data used

in the mining process, Web data mining tasks can be cate-

gorized into three main types: Web structure mining, Web

content mining, and Web usage mining. Web structure

mining discovers knowledge from hyperlinks, which rep-

resent the structure of the Web. Web content mining

extracts useful information or knowledge from Web page

content. Web usage mining mines user access patterns

from usage logs, which record the clicks made by every

user.

Basically, data mining technique is used in Web min-

ing. But there are some differences. In traditional data

mining, the data is often already collected and stored in a

data warehouse. For Web data mining, data collection can

be a substantial task especially for Web structure and

content mining, and involves crawling a large number of

target Web pages. Web data mining is an extended ver-

sion of data mining.

As we observed, the Internet has now changed com-

puting to cloud computing. Map/Reduce is a great pro-

gramming model in cloud computing [3] that was

introduced by Google. It is well suited to the execution of

Received 12 May 2014; Revised 17 August 2014; Accepted 18 August 2014

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2014.8.4.181 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 181-186

http://dx.doi.org/10.5626/JCSE.2014.8.4.181 182 Wenzheng Zhu and Changhoon Lee

large distributed jobs in a cloud infrastructure. In brief, a

Map/Reduce [4] computation executes as follows: some

map tasks are given one or more chunks from a distrib-

uted file system. Each of these map tasks turns the chunk

into a sequence of key-value pairs, and these pairs are

written to local disk as intermediate files partitioned into

R (the number of reduce tasks) regions by the partitioning

function. The locations of these regions are passed back

to the master, who is responsible for forwarding these

locations to the reduce tasks. Each of the R reduce tasks

is responsible for one of these regions applying reduc-

tion. So, all key-value pairs with the same key wind up at

the same reduce task. The reduce tasks work on one key

at a time, and combine all the values associated with that

key in a user-defined way. In this paper, we propose a

Map/Reduce approach to realize Web data mining.

II. WEB DATA MINING

Web data mining techniques are the result of a long

process of research and product development. Web data

mining is based on knowledge from the Web; it aims to

discover useful information or knowledge from Web

hyperlinks structure, page contents, and usage data [5].

Although Web data mining uses many data mining tech-

niques, it is not purely an application of traditional data

mining, due to the heterogeneity and semi-structured or

unstructured nature of the Web data. Many new mining

tasks and algorithms have been invented in the past

decade. Based on the primary kinds of data used in the

mining process, Web data mining tasks can be catego-

rized into three types as shown in Fig. 1.

We can graphically define Web structure mining. The

Web pages are represented as nodes, and hyperlinks are

represented as edges. Basically, the graph shows the rela-

tionship between user and Web. The motive of Web

structure mining is generating structured summaries

about information on Web pages. The summaries show

the links of one Web page to another Web page. Tradi-

tional data mining does not perform such tasks, because

there is usually no link structure in a relational table.

Web data mining is basically extracting the informa-

tion on the Web. The process that accesses the informa-

tion on the Web is Web content mining. Many pages are

open to information access on the Web. These pages are

the content of the Web. Searching the information and

open search pages is also the content of the Web. Finally,

accurate results are defined as the result pages of content

mining. These tasks are similar to those in traditional data

mining. However, we can also discover patterns in Web

pages to extract useful data for many purposes, such as

descriptions of products, or postings of forums. Further-

more, we can mine customer reviews and forum postings

to discover consumer sentiments. These are not tradi-

tional data mining tasks.

Web usage mining is the discovery of meaningful pat-

tern from data generated by client server transactions on

one or more Web localities. A Web is a collection of

inter-related files on one or more Web servers. It is auto-

matically generated data stored in server access logs, ref-

erence logs, agent logs, client side cookies, user profiles,

metadata, page attributes, page content, and site structure.

One of the key issues in Web usage mining is the prepro-

cessing of click stream data in usage logs in order to pro-

duce the right data for mining.

III. CLOUD COMPUTING AND MAP/REDUCE
MODEL

Hadoop is an open source distributed computing

framework [6], which is used for distributed processing

of large data sets and designed to satisfy clusters scaled

from a single server to thousands of servers. Hadoop is

the most widely used cloud computing platform in recent

years and has been adopted by major Internet companies

and research institutions [7]. A Hadoop cluster is

composed of two parts: the Hadoop distributed file

system and Map/Reduce. Hadoop is the optimal choice to

realize our approach. The Hadoop and Map/Reduce

communities have developed a powerful framework for

performing predictive analytics against complex distributed

information sources [8]. So in this paper, our simulation

experiment is designed based on it.

A. Cloud Computing

Cloud computing is a new term for a long-held dream

of computing as a utility [9], which has recently emerged

as a commercial reality. Cloud computing refers to both

the application delivered as services over the Internet,

and the hardware and system software in the data centers

that provide these services.Fig. 1. Classification of Web data mining.

A New Approach to Web Data Mining Based on Cloud Computing

Wenzheng Zhu and Changhoon Lee 183 http://jcse.kiise.org

The main objective of cloud computing is to make bet-

ter use of distributed resources and to solve large-scale

computation problems [10]. For example, cloud comput-

ing can focus the power of thousands of computers on

one problem, enabling researchers to do their work faster

than ever. For Web data mining, we use this function of

cloud computing to aim at mass data.

B. Map/Reduce Architecture

Map/Reduce is a programming model for processing

large data sets [11], which was originally proposed by

Google [12]. The framework is designed to orchestrate

the work on distributed nodes, and run various computa-

tional tasks in parallel providing at the same time for

redundancy and fault tolerance. Distributed and parallel-

ized computations are the key mechanisms that make the

Map/Reduce framework very attractive to use in a wide

range of application areas that include data mining, bioin-

formatics, and business intelligence. Nowadays, it is

becoming increasingly popular in cloud computing.

The Map/Reduce programming model is used for par-

allel and distributed processing of large data sets on clus-

ters [13]. There are two basic procedures in Map/Reduce:

Map and Reduce. Fig. 2 shows an execution overview.

Typically, the input and output are both in the form of

key-value pairs. After the input data is partitioned into

splits of appropriate size, the map procedure takes a

series of key-value pairs and generates processed key-

value pairs, which are passed to a particular reducer by a

certain partition function; later, after data sorting and

shuffling, the reduce procedure iterates through the val-

ues that are associated with a specific key and produces

zero or more outputs.

IV. SYSTEM FRAMEWORK

In this paper, we built a new system framework to

implement Web data mining. First, after the data is col-

lected from the Web, the mass data on the Web must be

filtered [14], cleaned, transformed, and combined into

XML files; and then the files are saved on the distributed

data nodes. Each file must be divided into small fixed-

size blocks, copied and stored on different cluster node

disks for backup. In this work, we define that each file

can be copied two times and the two copies are stored

onto two different cluster nodes. This system framework

can solve the general problems of data missing in storage

capacity expansion, and server failure caused by Web

data mining [15]. Second, the master is responsible for

controlling the entire works, creating the attached task to

idle data nodes on the Web. The data node reports the sta-

tus and result to the master. Then, the master is responsi-

ble for combining all the results to the client.

A. System Structure Overview

In our system framework, there are five types of nodes:

client, master, name node, algorithm node, and data note

as shown in Fig. 3.

The Client as a user submits a task and receives a

result. The Master controls the whole workflow, creates

the attached task, invokes the Map/Reduce scheduler to

assign tasks to the data nodes, and regulates client

accesses to the data. The name node divides the XML file

into 64 M fixed-size blocks to idle data nodes, sends the

IP address of the data nodes to the master, copies and

stores the blocks into the other data notes, and maintains

a mapping table (the information of data blocks mapped

onto the data node) in order to process write and read

requests from the client, just like the name node stores

the metadata of each XML file. But the real metadata is

not stored on the name node, as it is just the IP addresses

of XML files and the information of XML file copies,

etc. The algorithm node stores the algorithms for support-

ing the requests from the master and sends the appointed

algorithm to the data nodes. The data node stores the data

blocks of XML files in its local disk and executes instruc-

tions.

Fig. 2. Execution overview of Map/Reduce. Fig. 3. System structure.

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 181-186

http://dx.doi.org/10.5626/JCSE.2014.8.4.181 184 Wenzheng Zhu and Changhoon Lee

A data node periodically reports its status (idle, in

progress, or completed) through a heartbeat message, and

asks the name node for instructions. The heartbeat can

also help the name node to detect connectivity with its

data node. If the name node does not receive a heartbeat

from a data node in the configured period of time, it

marks the node down. The data blocks stored on this

node will be considered lost, and the name node will

automatically replicate those blocks of this lost node onto

some other data nodes.

In this system framework, the data processing is exe-

cuted and the data is stored on data nodes rather than

transferring the executed data to the master. The master

just receives the results, after the Reduce scheduler. So

this means that mass data flow is not transferred in the

network; and as a result, a lot of time can be saved.

B. A New Presented Algorithm

In an ordinary data mining algorithm, there are two

steps: generate all frequent item sets and generate all con-

fident association rules from the frequent item sets. The

most important part is the frequent item sets in data

mining. As for computing the frequent item sets, there is

a method presented as: first generating frequent item set

1-item set L1, then generating frequent item set 2-item set

L2, the algorithm will be continued until some value of K

can be supported for Lk to be null set. When it needs to

strive for Lk, candidate items Ck can be computed by Lk-1.

Then by checking every item of Ck, we can get the item

that belongs to Lk which can satisfy the minimum support

threshold by the client defined. But since the web data is

mass data, it will take a lot of time and space to determine

Ck. So in this section, we present a new algorithm to con-

firm that all frequent item sets achieve high efficiency.

We use the processing method presented in [7] to get

the processed document di. The document will be the

content input, and the set of blocks is <client, doc_id1>.

By discovering the frequency of the feature in document,

the output can be indicated to be <t, <n, f>>. After the

first time of Map/Reduce scheduler, the key/value becomes

(key1, value1), key1=term1, value1=<n1, f1> <n2, f2>….

This set would be executed by Map/Reduce as the data

input, where key is critical value, and value is the local

frequent item sets. In the second processing, by using the

local frequent item set computed by the first step, we can

compute the second result (key2, value2), key2=term2,

value2=<n'1, f '1> <n'2, f '2>…, where we get an improved

local frequent item sets again. Then, after the third time,

we can compute the global frequent item set. This algo-

rithm can improve the efficiency of data mining.

In this algorithm, we use the following formula:

Tij = Fij * elog (n/t).

Tij is the threshold of the present data mining, Fij is the

threshold of the past data mining, n is the number of feature

extraction in this document, t is the frequency of feature

extraction, and elog (n/t) is the ratio of last frequent item set.

C. Algorithm Implementation

The implementation of the algorithm we presented can

be described as:

The first time: Map

for all term1∈client.doc do;

Frequency(t)=Frequency(t)+1;

Output (term1, record<client, doc_id1, Frequency(t)>);

The first time: Reduce

Input term1, record (<n1, f1><n2, f2>……)

Build list R

for all record <n, f> ∈record (<n1, f1><n2, f2>……)

Append (R, <n, f>)

Find (R)

Output (term1, recordR)

The second time: Map

for all term2∈term1 do

for <clientn, Frequency(t)>∈record R do h=h+1

T(t,n)=frequency(t)*elog(n/t)

Append (term2, T(<n1, t1><n2, t2>……))

The second time: Reduce

for <client.doc1,T(t)>∈T(W)

if T(W)>Y

Append (T_new<n, T(t,n)>)

Find (T_new)

The third time: Map

for all term3∈term2 do

for <client, Frequency(t)>∈record R do h=h+1

T(t,n)=frequency(t)*elog(n/t)*elog(n/t)

Append(term3,T(<n1, t1><n2, t2>……))

The third time: Reduce

for <client.doc1,T(t)>∈T(W)

if T(W)=Y

Find(0)

Through the three time applications of Map/Reduce,

we achieve the minimum support threshold.

Finally, the association rule can be generated using the

threshold. The result will be delivered to the client.

V. SIMULATION EXPERIMENT

In this section, we design a simulation experiment to

prove the possibility of the Web data mining we presented.

This simulation experiment testing environment is in a

local area network; the platform is Hadoop [9], and con-

sists of seven computers. The computer configuration is:

Intel core duo 2.7 G CPU, 2 G DDR3 memory, and Linux

operating system. One of the computers is assigned to be

the master, one to the name node, one to the algorithm

node, and the others to data nodes.

The name node divides the data into 10 sub-files and

A New Approach to Web Data Mining Based on Cloud Computing

Wenzheng Zhu and Changhoon Lee 185 http://jcse.kiise.org

copies and stores the files to idle data nodes. The algo-

rithm node stores the algorithms and sends the appointed

algorithm to data nodes. The master controls the whole

workflow. We presented the function of each node in Sec-

tion IV above.

First test: We define that the experiment must implement

traditional data mining, and record the execution time.

Second test: We define that the experiment must

implement the data mining using the three time applica-

tions of Map/Reduce that we have presented. Then we

record the execution time.

Finally, when we get the experimental result, we com-

pare the executed consideration and execution time of the

two tests. We can get the experimental result as shown in

Fig. 4.

VI. CONCLUSION

Through comparing the two tests, the experimental

result shows that this new approach can improve the exe-

cution efficiency and reduce the execution time. The new

algorithm can work well and there is no association rule

lost. It can be well used in business.

In this work, we noticed that we can aim to find a more

accurate and faster approach for Web data mining, also

based on cloud computing. We will keep on improving

the algorithm we presented.

AKNOWLEDGMENTS

This research would not have been possible, if we had

not been provided with the opportunity to use the com-

puter lab at Konkuk University, Seoul. Therefore, we

would like to sincerely thank all the staff and lecturers

who helped conduct this research and who made this

paper possible.

REFERENCES

1. M. Armbrust, A. Fox, G. Rean, A. Joseph, R. Katz, A. Kon-

winski, L. Gunho, P. David, A. Rabkin, I. Stoica and M.

Zaharia, “Above the clouds: a Berkeley view of cloud com-

puting,” Department of Electrical Engineering and Comput-

ing Sciences, University of California at Berkeley, Tech. Rep.

UCB/EECS-2009-28, 2009.

2. C. H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan,

“A survey of Web information extraction systems,” IEEE

Transactions on Knowledge and Data Engineering, vol. 18,

no. 10, pp. 1411-1428, 2006.

3. Wikipedia, “Cloud computing,” http://en.wikipedia.org/wiki/

Cloud_computing.

4. J. Dean and S. Ghemawat, “MapReduce simplified data pro-

cessing on large clusters,” in Proceedings of the 6th Sympo-

sium on Operating System Design and Implementation, San

Francisco, CA, 2004, pp. 137-150.

5. R. Cooley, B. Mobasher, and J. Srivastava, “Web mining:

information and pattern discovery on the World Wide Web,”

in Proceedings of the 9th IEEE International Conference on

Tools with Artificial Intelligence, Newport Beach, CA, 1997,

pp. 558-567.

6. Hadoop, http://hadoop.apache.org.

7. Y. Tao, W. Lin, and X. Xiao, “Minimal MapReduce algo-

rithms,” in Proceedings of the ACM SIGMOD International

Conference on Management of Data, New York, NY, 2013,

pp. 529-540.

8. M. J. Fischer, X. Su, and Y. Yin, “Assigning tasks for effi-

ciency in Hadoop: extended abstract,” in Proceedings of the

22nd ACM Symposium on Parallelism in Algorithms and

Architectures, Santorini, Greece, 2010, pp. 30-39.

9. W. W. Lin, “An improved data placement strategy for

Hadoop,” Journal of South China University of Technology:

Natural Science, vol. 40, no. 1, pp. 152-158, 2012.

10. C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, “The

characteristics of cloud computing,” in Proceedings of the

39th International Conference on Parallel Processing, San

Diego, CA, 2010, pp. 275-279.

11. D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of

MapReduce: an in-depth study,” Proceedings of the VLDB,

vol. 3, no. 1-2, pp. 472-483, 2010.

12. X. L. Lu and J. M. He, “Study on cloud storage model of

Map/Reduce-based index data,” Journal of Ningbo Univer-

sity, vol. 24, no. 3, pp. 29-33, 2011.

13. R. Lammel, “Google’s MapReduce programming model -

revisited,” Science of Computer Programming, vol. 70, no.

1, pp. 1-30, 2008.

14. M. S. Chen, J. Han, and P. S. Yu, “Data mining: an over-

view from a database perspective,” IEEE Transaction on

Knowledge and Data Engineering, vol. 8, no. 6, pp. 866-

883, 1996.

15. Z. Bar-Yossef and S. Rajagopalan, “Template detection via

data mining and its applications,” in Proceedings of the 11th

International Conference on World Wide Web, Honolulu, HI,

2002, pp. 580-591.

Fig. 4. Experimental result.

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 181-186

http://dx.doi.org/10.5626/JCSE.2014.8.4.181 186 Wenzheng Zhu and Changhoon Lee

Wenzheng Zhu

Wenzheng Zhu received his B.S. degree from the Department of Computer Science of Wonkwang University,
Korea, and his M.S. degree from the Department of Computer Science of Konkuk University, Korea, where he
is currently working towards his Ph.D. degree. His research interests include cloud computing, OS, and
information security.

Changhoon Lee

Changhoon Lee is a professor in the Department of Computer Science at Konkuk University. He received his
B.S. degree from the Department of Mathematics of Yonsei University, Korea, and his M.S. and Ph.D degrees
from the Department of Computer Science of KAIST, Korea. His research interests are in the areas of AI, OS,
and information security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

