
Copyright 2014. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 8, No. 4, December 2014, pp. 187-198

A New Approach for Image Encryption Based on Cyclic Rotations
and Multiple Blockwise Diffusions Using Pomeau-Manneville
and Sin Maps

Gururaj Hanchinamani* and Linganagouda Kulakarni

Department of Computer Science and Engineering, BVB College of Engineering & Technology, Hubli, Karnataka, India

gs_hanchinamani@bvb.edu, linganagouda@yahoo.co.uk

Abstract
In this paper an efficient image encryption scheme based on cyclic rotations and multiple blockwise diffusions with two

chaotic maps is proposed. A Sin map is used to generate round keys for the encryption/decryption process. A Pomeau-

Manneville map is used to generate chaotic values for permutation, pixel value rotation and diffusion operations. The

encryption scheme is composed of three stages: permutation, pixel value rotation and diffusion. The permutation stage

performs four operations on the image: row shuffling, column shuffling, cyclic rotation of all the rows and cyclic rotation

of all the columns. This stage reduces the correlation significantly among neighboring pixels. The second stage performs

circular rotation of pixel values twice by scanning the image horizontally and vertically. The amount of rotation is based

on M × N chaotic values. The last stage performs the diffusion four times by scanning the image in four different ways:

block of 8 × 8 pixels, block of 16 × 16 pixels, principal diagonally, and secondary diagonally. Each of the above four dif-

fusions performs the diffusion in two directions (forwards and backwards) with two previously diffused pixels and two

chaotic values. This stage makes the scheme resistant to differential attacks. The security and performance of the pro-

posed method is analyzed systematically by using the key space, entropy, statistical, differential and performance analy-

sis. The experimental results confirm that the proposed method is computationally efficient with high security.

Category: Ubiquitous computing

Keywords: Image encryption/decryption; Chaotic theory; Cryptanalytic attacks; Pomeau-Manneville map; Sin map

I. INTRODUCTION

Protecting the digital images from unauthorized view-

ing covers a wide range of applications. With advance-

ments in internet and communication technologies, the

utilization of multimedia information has become more

prevalent. Hence a great deal of concerns has been raised

over the security of multimedia information transmitted

or stored over open networks. It is vital to ensure the

security of multimedia information. Encryption is one

way to protect the information, which transforms the

information in a way that makes it unreadable to anybody

except those with meticulous knowledge, which usually

takes the form of a key. A wide range of traditional cryp-

tosystems, such as AES, DES, IDEA, and GOST, have

been proposed in literature. However, they are computa-

tionally exhaustive and are not suitable for image encryp-

tion [1-10]. Moreover, the inherent features of images

such as strong correlations among adjacent pixels, high

redundancy and bulk volume of data prevent the usage of

Received 4 August 2014; Accepted 5 November 2014

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2014.8.4.187 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 187-198

http://dx.doi.org/10.5626/JCSE.2014.8.4.187 188 Gururaj Hanchinamani and Linganagouda Kulakarni

traditional text schemes for images.

In recent years, chaotic based encryption schemes have

received increasing interest from cryptographers. The

chaotic systems have many important properties, such as

ergodicity, no periodicity, pseudorandom properties and

sensitive dependence on initial conditions and system

parameters [1-5, 11-13]. These properties meet crypto-

graphic requirements, such as sensitivity to keys, diffu-

sion and mixing. Hence chaotic based cryptosystems are

expected to provide an easy and fast way for developing

efficient cryptosystems.

In the past decade, several chaotic based image

encryption schemes have been proposed; however, some

of them hinder system performance, and suffer against

bruteforce, statistical, entropy and differential attacks [5].

This paper proposes an efficient image encryption

scheme based on cyclic rotations and multiple blockwise

diffusions with two chaotic maps. The proposed method

is resistant to statistical, bruteforce, entropy and differen-

tial attacks and has high computational speed.

The rest of the paper is organized as follows. In

Section II, a literature survey is presented. Sin and

Pomeau-Manneville maps are discussed in Section III. In

Section IV, the proposed encryption scheme is discussed

in detail. Experimental results and security analysis are

presented in Section V to show the effectiveness and validity

of the algorithm. The last section concludes the paper.

II. LITERATURE SURVEY

The typical architecture of chaotic based image crypto-

systems includes iteration of two phases: permutation and

diffusion. The permutation stage is employed to decorre-

late the adjacent pixels. The diffusion stage is used to

ensure plain image sensitivity. However, numerous

rounds of permutation and diffusion or iterations should

be taken, which makes the overall encryption speed slow

[1-5, 14-18].

A short summary of recently proposed chaotic based

encryption schemes is given hereafter. In [1, 4, 8, 17], the

key-space is increased by using multiple chaotic maps to

resist bruteforce attacks. The authors of [2] proposed an

image encryption scheme with a generalized Arnold map

and total circular function. In [3], the avalanche effect is

introduced with a pseudo-Hadamard transform. In [5], an

image encryption scheme based on cyclic elliptic curves

and chaotic systems is proposed. The scheme encrypts a

256-bit plain image to a 256-bit cipher image within 32-

bit registers. Huang et al. [6] proposed an image encryp-

tion scheme with pixel shuffling and gray level encryp-

tion by a single chaotic system. The authors of [7]

proposed an encryption framework of combinational

domain encryption that encrypts significant data in the

spatial domain and insignificant data in the wavelet

domain to reduce the computational time. In [9], a key

stream is generated by using nonlinear Chebyshev func-

tion. The authors of [11] proposed an image encryption

scheme using a large pseudorandom permutation, which

is combinatorially generated from small permutation

matrices based on chaotic maps. In [12], a symmetric

image encryption scheme is proposed using circle maps.

The authors of [13] introduced a hierarchy of 2D piece-

wise nonlinear chaotic maps with an invariant measure.

Hu and Han [19] proposed a pixel-based scrambling

scheme to protect medical images. In [20], a scrambling

scheme is proposed, which can implement position

encryption and gray value encryption simultaneously.

The authors of [15] proposed an encryption scheme based

on piecewise nonlinear chaotic maps. In [16], a common

framework of guidelines for image cryptosystems is pro-

vided, and addresses three issues: implementation, key

management, and security analysis. In [18], an image

encryption scheme with an external 80-bit secret key and

two chaotic logistic maps is proposed.

However, most of the encryption schemes in the above

literature have their own strengths and constraints more

or less in terms of security level and computational

speed. Some of the cryptosystems have been cryptana-

lyzed [10, 14]. This paper proposes a new chaotic image

encryption scheme based on cyclic rotations and multiple

blockwise diffusions with two chaotic maps. The pro-

posed scheme is resistant to various cryptanalytic attacks

such as bruteforce attacks, statistical attacks, entropy based

attacks and differential attacks. The proposed approach

achieves the required level of security with only two

rounds of encryption, hence computationally efficient.

III. CHAOTIC MAPS

Chaotic maps are characterized by sensitive depen-

dence on initial conditions, similarity to random behav-

ior, no periodicity and ergodicity. The possibility for self-

synchronization of chaotic oscillations has initiated an

avalanche of works on applications of chaos in cryptogra-

phy. The proposed image encryption scheme uses two

chaotic maps: the Sin map and Pomeau-Manneville map,

which are discussed hereafter.

The 1D Sin map is a discrete-time dynamical system,

and is defined as

(1)

where Zi is the current chaotic value, Zi+1 is the next cha-

otic value, and r is the control parameter. The key set for

the Sin map is {Z0, r}. In the proposed scheme the Sin

map is used to generate round keys for the Pomeau-Man-

neville map.

The 1D Pomeau-Manneville map is a discrete-time

dynamical system, and is defined as

Zi 1+ r sin π Zi×()×=

A New Approach for Image Encryption Based on Cyclic Rotations and Multiple Blockwise Diffusions Using Pomeau-Manneville and Sin Maps

Gururaj Hanchinamani and Linganagouda Kulakarni 189 http://jcse.kiise.org

(2)

The 2D Pomeau-Manneville map used in the proposed

scheme is defined as

(3)

(4)

where Xi, Yi are current chaotic values, Xi+1, Yi+1 are the

next chaotic values, a1, a2, ε1, ε2 are control parameters.

The key set for the Pomeau-Manneville map is {X0, Y0,

a1, a2, ε1, ε2}. In the proposed scheme, the Pomeau-Man-

neville chaotic values are used during permutation, pixel

value rotation and diffusion stages of the encrypt and

decrypt schemes.

The propositions of chaotic maps [3, 20] are defined in

Eqs. (5)–(7). The chaotic output sequence of Sin and

Pomeau-Manneville maps is assessed by computing

mean and self-correlations according to the propositions

(5)–(7). It can be observed that the average values of the

chaotic sequence are close to 0.5 and that the self-correla-

tions within the sequence and across the two sequences

are very close to 0.

PROPOSITION 1. The mean value of the chaotic sequence

is given by

(5)

PROPOSITION 2. Self-correlation of a chaotic sequence

is computed as

(6)

PROPOSITION 3. The self-correlation function between

two chaotic sequences is calculated as

(7)

IV. PROPOSED ENCRYPTION SCHEME

The proposed encryption scheme is composed of three

stages: permutation, pixel value circular rotations, and

diffusion. Also a round key generation function is used.

A. Round Key Generation and Scheming

The key set of the Pomeau-Manneville map is {X0, Y0,

a1, a2, ε1, ε2}. In the proposed scheme, the X0, Y0 parame-

ters of the Pomeau-Manneville map are generated by

using a Sin map and the a1, a2, ε1, ε2 parameters are kept

the same for all the rounds.

The round keys of the Pomeau-Manneville map can be

generated as

and so on, where Z0, Z1, Z2, Z3, ... are the chaotic values of

the Sin map.

The key set of the Sin map is {Z0, r}, which is used to

generate the {X0, Y0} values of the Pomeau-Manneville

map at each round. Hence the key set used in the pro-

posed encryption/decryption scheme is

(8)

where {Z0, r} are parameters of the Sin map, and {a1, a2,

ε1, ε2} are parameters of the Pomeau-Manneville map.

The Sin map is used only to generate {X0, Y0} values, and

{a1, a2, ε1, ε2} are kept constant to increase the key space.

B. Permutation

The decorrelation of adjacent pixels in an image can be

achieved by employing the permutation function. Let I be

a gray original image of size M × N, which is a digital

matrix with M rows and N columns, and whose gray val-

ues lie in the range from 0 to 255. In the process of per-

mutation, initially M + N Pomeau-Manneville chaotic

values {(X1, ..., XM), (Y1, ..., YN)} are generated by using

Eqs. (3) and (4), after doing iterations on the chaos maps.

Let SM = {X1, ..., XM} and SN = {Y1, ..., YN}. Then SM and

SN are sorted, and the positions of the sorted chaotic val-

ues in the original chaotic sequence are found and are

stored in and , respectively. The permutation

stage is composed of the following four steps.

Step 1. Shuffle the row position of all values from first

column to last column according to , ..., .

Step 2. Shuffle the column position of all values from

first row to last row according to , ..., .

Step 3. Cyclically rotate the pixel positions row-wise

from first row to last row, where the amount of rotation is

based on , ..., . The first row is rotated by ,

the second row is rotated by , and so on.

Step 4. Cyclically rotate the pixel positions column-

wise from first column to last column, where the amount

of rotation is based on , ..., .

This stage shuffles all pixels and decorrelates the adja-

cent pixels.

C. Pixel Value Circular Rotations

This stage consists of two steps.

Step 1. Scan the image horizontally (left to right and

then top to bottom) then apply left Circular rotation on a

pixel by pixel basis.

Step 2. Scan the image vertically (top to bottom and

Xi 1+ a Xi

2
Xi ε+ +×=

Xi 1+ a1 Xi

2
Xi Yi ε1+ + +×=

Yi 1+ a2 Yi

2
Yi Xi ε2+ + +×=

xmean lim
N ∞→

= 1
N
---- xk 0.5=

k=0

N 1–

∑

S1 β() lim
N ∞→

= 1
N
---- xk xmean–() xk β+ xmean–() 0=

k=0

N 1–

∑

S2 β() lim
N ∞→

= 1
N
---- xk xmean–() yk β+ ymean–() 0=

k=0

N 1–

∑

Round 1: Keys X0 Z0= , Y0 Z1= , a1, a2, ε1, ε2{ }=

Round 2: Keys X0 Z2= , Y0 Z3= , a1, a2, ε1, ε2{ }=

Round 3: Keys X0 Z4= , Y0 Z5= , a1, a2, ε1, ε2{ }=

Key set Z0, r, a1, a2, ε1, ε2{ }=

SM
′

SN
′

SM1

′

SMM

′

SN1

′

SNN
′

SM1

′

SMM
′

SM1

′

SM2

′

SN1

′

SNN

′

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 187-198

http://dx.doi.org/10.5626/JCSE.2014.8.4.187 190 Gururaj Hanchinamani and Linganagouda Kulakarni

then left to right) then apply left Circular rotation on a

pixel by pixel basis.

In each of these two steps, the amount of rotation of

the pixel values is based on M × N chaotic values, and is

calculated with following steps.

Step 1. Generate M × N chaotic values using Eqs. (3)

and (4).

Step 2. Transform the real chaotic sequence to an inte-

ger form with the following transform:

(9)

where Ti is real chaotic value, is the transformed inte-

ger value and m is 256 for the gray level image.

Step 3. Apply mod 8, and replace 0 by a number

between 1 and 7. This step is necessary because the rota-

tion of a pixel value by 0 does not change the value.

The above steps generate M × N chaotic values in the

range of 1 to 7, and are used as the rotation amount for

the M × N pixels of the image.

D. Diffusion

The diffusion stage is employed to ensure the plain

image sensitivity, i.e., a 1-bit change of the plain image

should produce a radical change in the encrypted image

using the same key. The proposed scheme applies the dif-

fusion process four times by scanning the image in four

different ways as given below and shown in Fig. 1.

Step 1. Scan the image in blocks of 8 × 8 pixels, and

then apply forward and backward diffusions.

Step 2. Scan the image in blocks of 16 × 16 pixels, and

then apply forward and backward diffusions.

Step 3. Scan the image in the principal diagonal direc-

tion and then apply forward and backward diffusions.

Step 4. Scan the image in the secondary diagonal direc-

tion and then apply forward and backward diffusions.

The forward and backward diffusions in each of the

above four steps are performed as discussed below.

The 2D image is transformed to a 1D array P1×MN by

scanning the image in the directions as shown in Steps 1–

4. The diffusion process is performed in two directions

(forwards and backwards) with two chaotic values of the

Pomeau-Manneville map {X, Y} and two previously dif-

fused pixels. As the calculated encrypted pixel values

depend on previously encrypted pixels and chaotic

sequences, the algorithm shows resistance against differ-

ential attacks.

Initially M × N chaotic values {(X1, ..., XM×N), (Y1, ...,

YM×N)} are generated by using Eqs. (3) and (4) after doing

iterations in chaos maps. Then the real chaotic sequences

are transformed to integer form by using Eq. (9).

The forward diffusion is performed by using the fol-

lowing equation:

 mod 256, i = 1, 2, ..., MN (10)

where + is modulo addition, is bitwise XOR, Ei is the

current pixel to be encrypted, Ei−1 and Ei−2 are previously

encrypted pixels, Pi is permuted and rotated pixel, Xi and

Yi are the 2D Pomeau-Manneville chaotic values. E-1 and

E0 are considered as constants.

The backward diffusion is performed with the follow-

ing equation to make the influence of every pixel equal:

 mod 256, i = MN, ..., 1 (11)

where Fi is the current pixel to be encrypted, Fi+1 and Fi+2

are previously encrypted pixels, Ei is the forward diffused

image pixel, Xi and Yi are the 2D Pomeau-Manneville

chaotic values and EMN+1 and EMN+2 are considered as con-

stants. Finally, the encrypted image is obtained after these

four diffusion steps.

E. Decryption

Decryption involves the inverse steps of the encryption

process to reconstruct the original image from the

encrypted image. It is a simple reverse process of the pro-

posed encryption scheme. Initially the diffusion process

is carried out in a reverse sequence: secondary diago-

nally, principal diagonally, block of 16 × 16 pixels, and

block of 8 × 8 pixels. Then circular pixel rotation is

applied in the inverse rotation direction. Lastly the per-

mutation is performed in reverse sequence: cyclic rota-

tion column-wise, cyclic rotation row-wise, column

shuffling, and row shuffling.

F. Encryption Algorithm

The encryption algorithm is composed of a mainline

routine for round key generation and an encrypt function.

Ti
′

Ti*10
8()mod m=

Ti
′

Ei Pi Ei 2–+()mod 256() Ei 1–+()mod 256 Xi⊕() Yi+()=

⊕

Fi Ei Fi 2++()mod 256() Fi 1++()mod 256 Xi⊕() Yi+()=

Fig. 1. scanning directions (a) block of 8 × 8 pixels, (b) block of
16 × 16 pixels, (c) principal diagonal, and (d) secondary diagonal.

A New Approach for Image Encryption Based on Cyclic Rotations and Multiple Blockwise Diffusions Using Pomeau-Manneville and Sin Maps

Gururaj Hanchinamani and Linganagouda Kulakarni 191 http://jcse.kiise.org

1) Mainline Routine for Round Key Generation

Step 1. Read the original image and store the pixel val-

ues in the matrix IM×N.

Step 2. Initialize the Sin map {Z0, r} and generate cha-

otic values using Eq. (1). The number of chaotic values to

be generated depends on the number of rounds. Two

rounds of the encryption function give sufficient security.

Step 3. Initialize the Pomeau-Manneville map {X0, Y0, a1,

a2, ε1, ε2}. The {X0, Y0} parameters are initialized with cha-

otic values of the Sin map. The other four parameters {a1, a2,

ε1, ε2} are initialized with the same values in all rounds.

Step 4. Invoke the Encrypt function for the original

image.

Step 5. Initialize the Pomeau-Manneville map.

Step 6. Invoke the Encrypt function for the modified

image.

2) Encrypt Function

The encrypt function is composed of nineteen steps.

Step 1. Get the image.

Step 2. Generate M chaotic values of Xi sequence (X1,

..., XM) and N chaotic values of Yi sequence (Y1, ..., YN)

using Eqs. (3) and (4).

Step 3. Copy Xi chaotic values to SM and Yi chaotic

values to SN.

Step 4. Sort SM and SN, find the position of sorted

chaotic values in the original chaotic sequence and store

in and , respectively.

Step 5. Shuffle the row position of all values from first

column to last column according to , ..., .

Step 6. Shuffle the column position of all values from

first row to last row according to , ..., .

Step 7. Cyclically rotate the pixel positions row-wise

from first row to last row, where the amount of rotation is

based on , ..., . The first row is rotated by ,

the second row is rotated by and so on.

Step 8. Cyclically rotate the pixel positions column-

wise from first column to last column, where the amount

of rotation is based on , ..., .

Step 9. Generate M × N chaotic values using Eqs. (3)

and (4) for pixel value circular rotations.

Step 10. Transform the real chaotic sequence to an

integer form with the transform given in Eq. (9).

Step 11. For the above integer chaotic sequence, apply

mod 8, and replace 0 by a number between 1 and 7, and

use these M × N values as rotation amounts for M × N

pixel values.

Step 12. Scan the image horizontally (left to right and

then top to bottom), then apply left circular rotation on a

pixel by pixel basis.

Step 13. Scan the image vertically (top to bottom and

then left to right), then apply left circular rotation on a

pixel by pixel basis.

Step 14. Generate M × N chaotic values {(X1, ..., XM×N),

(Y1, ..., YM×N)} using Eqs. (3) and (4) for the diffusion

process.

Step 15. Transform real chaotic sequence to an integer

sequence using Eq. (9).

Step 16. Scan the image in blocks of 8 × 8 pixels, and

then apply forward and backward diffusions using Eqs.

(10) and (11).

Step 17. Scan the image in blocks of 16 × 16 pixels,

and then apply forward and backward diffusions using

Eqs. (10) and (11).

Step 18. Scan the image in principal diagonal direction

and then apply forward and backward diffusions using

Eqs. (10) and (11).

Step 19. Scan the image in secondary diagonal direc-

tion and then apply forward and backward diffusions

using Eqs. (10) and (11).

G. Decryption Algorithm

The decryption algorithm is composed of a mainline

routine for round key generation and a decrypt function.

1) Mainline Routine for Round Key Generation

Step 1. Read the encrypted image and store the pixel

values in the matrix ENM×N.

Step 2. Initialize the Sin map {Z0, r} and generate chaotic

values using Eq. (1). The number of chaotic values to be

generated depends on the number of rounds.

Step 3. Initialize the Pomeau-Manneville map {X0, Y0,

a1, a2, ε1, ε2}. The {X0, Y0} parameters are initialized with

chaotic values of the Sin map in the reverse way of their

invocations. The other four parameters {a1, a2, ε1, ε2} are

initialized with the same values in all rounds.

Step 4. Invoke the Decrypt function for encrypted image.

Step 5. Initialize the Pomeau-Manneville map.

Step 6. Invoke the Decrypt function for modified image.

2) Decrypt Function

The decrypt function is composed of nineteen steps.

Step 1. Get the image.

Step 2. Generate M × N chaotic values {(X1, ..., XM×N),

(Y1, ..., YM×N)} using Eqs. (3) and (4) for reverse diffusions.

Step 3. Transform real chaotic values to integers using

Eq. (9).

Step 4. Scan the image in secondary diagonal direction,

and then apply reverse forward and backward diffusions.

Step 5. Scan the image in principal diagonal direction,

and then apply reverse forward and backward diffusions.

Step 6. Scan the image in blocks of 16 × 16 pixels, and

then apply reverse forward and backward diffusions.

Step 7. Scan the image in blocks of 8 × 8 pixels, and

then apply reverse forward and backward diffusions.

Step 8. Generate M × N chaotic values using Eqs. (3)

and (4) for reverse pixel value circular rotations.

Step 9. Transform the real chaotic sequence to an inte-

ger form with the transform given in Eq. (9).

Step 10. For the above integer chaotic sequence, apply

mod 8, and replace 0 by a number between 1 and 7, and

SM
′

SN
′

SM1

′

SMM
′

SN1

′

SNN
′

SM1

′

SMM
′

SM1

′

SM2

′

SN1

′

SNN

′

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 187-198

http://dx.doi.org/10.5626/JCSE.2014.8.4.187 192 Gururaj Hanchinamani and Linganagouda Kulakarni

use these M × N values as rotation amounts for M × N

pixel values.

Step 11. Scan the image vertically (top to bottom and

then left to right), then apply right circular rotation on a

pixel by pixel basis.

Step 12. Scan the image horizontally (left to right and

then top to bottom), then apply right circular rotation on a

pixel by pixel basis.

Step 13. Generate M chaotic values of Xi sequence (X1,

..., XM) and N chaotic values of Yi sequence (Y1, ..., YN)

using Eqs. (3) and (4).

Step 14. Copy Xi chaotic values to SM and Yi chaotic

values to SN.

Step 15. Sort SM and SN, find the position of the

sorted chaotic values in the original chaotic sequence and

store in and , respectively.

Step 16. Cyclically rotate the pixel positions column-

wise from first column to last column in reverse direction,

and the amount of rotation is based on , ..., .

Step 17. Cyclically rotate the pixel positions row-wise

from first row to last row in reverse direction, where the

amount of rotation is based on , ..., .

Step 18. Inverse shuffle the column position of all val-

ues from first row to last row according to , ..., .

Step 19. Inverse shuffle the row position of all values

from first column to last column according to , ...,

.

V. EXPERIMENTS AND SECURITY ANALYSIS

The proposed work is implemented using the C pro-

gramming language on a Linux platform running on a

personal computer with an Intel Core i3-2120 CPU at

3.30 GHz with 2.91 GB of RAM. The initial values and

system parameters of the chaotic system are randomly set

according to Eq. (11) as {Z0 = 0.3, r = 0.99, a1 = 1.0, a2 =

1.01, ε1 = 0.20, ε2 = 0.30}, where {Z0, r} are the parame-

ters of the Sin map and {a1, a2, ε1, ε2} are the parameters

of the Pomeau-Manneville map. The test images are

256 × 256 gray scale images chosen from the USC-SIPI

image database (http://sipi.usc.edu/database/). This sec-

tion analyzes the security of the proposed scheme to

show its effectiveness in resisting attacks, such as brute-

force attacks, statistical attacks, entropy-based attacks,

and differential attacks.

The proposed encryption scheme has been tested with

a variety of images with differing content. Fig. 2 shows

the visual assessment of the encrypted images and

decrypted images for four different images. The first row

shows the original plain images, second row shows the

encrypted images and the last row shows the decrypted

images. The encrypted images are totally unrecognizable,

disordered, unintelligible, incomprehensible, random, and

noise-like images without any leakage of the original

information. The decrypted images exactly match the

original plain images.

A. Histogram Analysis

An image histogram is a plot that shows the frequency

distribution of the pixel intensity values. The histograms

present the statistical properties of the images [1, 3, 8].

An encrypted image is anticipated to have no statistical

similarity with the original plain image. The histograms

of several plain images and encrypted images are com-

puted and analyzed and are shown in Fig. 3. From Fig. 3

it can be seen that the histograms of the encrypted images

are uniformly distributed and are completely different

from that of the original plain image, and bear no statisti-

cal similarity to the original images. Hence the proposed

scheme is resistant to histogram based statistical attacks.

B. Key-Space Analysis

Bruteforce attack is an attack model, where an invader

tries to break the cryptosystem by exhaustive search with

each and every possible key [3]. It can be resisted by

increasing the key-space. The key set of the proposed

encryption scheme is {Z0, r, a1, a2, ε1, ε2}, where {Z0, r}

are the keys of the Sin map and {a1, a2, ε1, ε2} are the

keys of the Pomeau-Manneville map. With 64 bits for

each parameter and there are six parameters, the key-

length is 384 bits and the key-space is 2384. Hence the

proposed algorithm has adequate key-space and is resis-

tant to brute-force attacks. Table 1 lists the key-space size

SM
′

SN
′

SN1

′

SNN

′

SM1

′

SMM

′

SN1

′

SNN
′

SM1

′

SMM
′

Fig. 2. Original images, encrypted images and decrypted images
with proposed algorithm (a) Lena, (b) Oakland, (c) Jellybeans,
and (d) Splash.

A New Approach for Image Encryption Based on Cyclic Rotations and Multiple Blockwise Diffusions Using Pomeau-Manneville and Sin Maps

Gururaj Hanchinamani and Linganagouda Kulakarni 193 http://jcse.kiise.org

of the proposed scheme compared to other approaches.

C. Information Entropy Analysis

In information theory, entropy is a measure of the

uncertainty associated with a random variable [2, 3, 8].

This quantifies the expected value of the information

contained in a message, and it is a measure of the amount

of randomness in the information content, defined as

(12)

where Si represents the pixel intensity values, P(Si) is the

probability of the symbol Si, and r is the total number of

symbols (256 for gray level image). Suppose that the

gray level image has 28 = 256 gray levels with identical

probabilities S = (S0, S1, S2, ..., S255). According to Eq.

(12), we obtain an entropy value H(S) = 8. Generally, the

entropy of the original plain image is smaller than the

ideal value of 8, due to high redundancy and correlations.

The entropy reaches the maximum ideal value of 8 when

all pixels are distributed randomly. The entropies of the

original plain images and encrypted images are listed in

Table 2. From the results, it is clear that the entropies of

the encrypted images are extremely close to the ideal

value of 8. The information outflow in the proposed

encryption scheme is insignificant and is secure against

entropy based attacks. The comparison of entropy values

with other schemes is listed in Table 3.

D. Correlation Analysis

By and large, for any original plain image having spe-

cific visual content, each pixel is greatly correlated with

its adjacent pixels in all three directions: horizontal, verti-

cal, and diagonal [3]. Therefore, an encryption scheme is

anticipated to generate encrypted images with no such

correlations to the neighboring pixels. The correlation

coefficient of neighboring pixels in an image is calcu-

lated according to Eqs. (13)–(16).

(13)

(14)

H S() P Si()log2

1
P Si()

i=0

r 1–

∑=

E x() 1
N
---- xi

i=1

N

∑=

D x() 1
N
---- xi E x()–()2

i=1

N

∑=

Fig. 3. Histograms of original and encrypted images. (a-d)
Histograms of original images Lena, Oakland, Jellybeans, and
Splash. (e-f) Histograms of respective encrypted images.

Table 1. Key-space of the proposed method and some other
methods proposed in literature

Encryption

scheme

Proposed

approach
Ye [20]

Chattopadhyay

et al. [12]

Key-space size 2384 2128 2256

Table 2. Entropy values for original and encrypted images for
different images

Image
Entropy

Original image Encrypted image

Lena 7.426985 7.997390

Oakland 6.062537 7.997442

Jellybeans 5.723857 7.997538

Splash 7.232135 7.997480

Moon surface 6.711624 7.997070

San Francisco 5.894227 7.997397

Pentagon 6.549220 7.997143

Man 7.534870 7.997478

Airplane 6.712137 7.997325

San Diego 6.361934 7.997047

Table 3. Comparison of entropy values of the proposed scheme with other methods for Lena image

Method Proposed approach RC5 RC6 Patidar et al. [17] Pareek et al. [18]

Entropy values 7.997390 7.9812 7.9829 7.9923 7.9884

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 187-198

http://dx.doi.org/10.5626/JCSE.2014.8.4.187 194 Gururaj Hanchinamani and Linganagouda Kulakarni

(15)

(16)

where x and y are adjacent pixels of the original or

encrypted images, E(x) is the mean value, D(x) is the

deviation with regard to mean, cov(x, y) is the covariance

among adjacent pixels, and rxy is the correlation coeffi-

cient. To assess the correlation within the original and

encrypted images, pairs of 4096 adjacent pixels are ran-

domly selected in horizontal, vertical and diagonal direc-

tions, and their correlation coefficients are calculated

using Eq. (16). The correlation coefficients of the original

plain images and encrypted images for various images

are listed in Table 4. From the correlation results it is

observed that the adjacent pixels in the original image are

extremely correlated to each other, but that the correlation

coefficients for encrypted images are very close to zero.

Thus the proposed scheme is resistant to correlation

based statistical attacks. The comparison of correlation

results with other approaches is given in Table 5.

E. Gray Value Degree (GVD) Analysis

The gray difference of a pixel with its four neighbor-

hood pixels is calculated as in [3, 20]:

,

(17)

where I(m, n) indicate the pixel intensity value at location

(m, n), and I(,) is the pixel intensity values of the four

neighboring pixels. The average neighborhood gray differ-

ence for the whole image can be calculated by Eq. (18):

(18)

cov x, y() 1
N
---- xi E x()–() yi E y()–()

i=1

N

∑=

rxy
cov x, y()
D x() D y()

-------------------------------=

G
Σ I m, n() I m

′

, n
′()–[]2

4
--=

here m
′

, n
′()

m 1– , n()
m 1+ , n()
m, n 1–()
m, n 1+()⎩

⎪
⎨
⎪
⎧

=

m
′

n
′

W G m, n()()
G

N 1–

n=2∑
M 1–

m=2∑ m, n()

M 2–() N 2–()×
--=

Table 4. Correlation coefficients of adjacent pixels in different directions for original and encrypted images

Image
Correlation coefficients for encrypted images Correlation coefficients for original images

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.006620 -0.001182 -0.001825 0.968683 0.943269 0.933408

Oakland -0.004383 -0.002966 0.006973 0.853729 0.885210 0.799235

Jellybeans -0.008395 0.007179 0.004751 0.980616 0.978190 0.963775

Splash 0.001427 -0.006721 -0.001450 0.979588 0.970683 0.957963

Moon surface 0.004252 -0.002863 0.002611 0.932532 0.899993 0.870292

San Francisco 0.004762 -0.005266 0.000895 0.792038 0.800018 0.760571

Pentagon -0.011602 0.001178 -0.003034 0.803426 0.794238 0.718547

Man -0.008528 -0.013527 -0.001581 0.950883 0.937704 0.912943

Airplane -0.004987 -0.003271 0.000374 0.926508 0.932170 0.876223

San Diego -0.000259 0.004623 0.003210 0.813044 0.816869 0.738995

Table 5. Comparison of correlation coefficients of the proposed
scheme with other methods for Lena image

Method
Direction

Horizontal Vertical Diagonal

Plain-image 0.968683 0.943269 0.933408

Proposed scheme 0.006620 -0.001182 -0.001825

Francois et al. [8] 0.0089 -0.0215 -0.0074

AES -0.0160 0.8018 -0.0140

Chen’s 0.0442 0.9728 0.0469

Arnold’s 0.0787 -0.0793 -0.0633

Table 6. Gray value degree (GVD) values for different test images

Image GVD value

Lena 0.962221

Oakland 0.986025

Jellybeans 0.989301

Splash 0.978644

Moon surface 0.977346

San Francisco 0.982308

Pentagon 0.959951

Man 0.937024

Airplane 0.947789

San Diego 0.957429

A New Approach for Image Encryption Based on Cyclic Rotations and Multiple Blockwise Diffusions Using Pomeau-Manneville and Sin Maps

Gururaj Hanchinamani and Linganagouda Kulakarni 195 http://jcse.kiise.org

where M and N are the numbers of rows and columns of

the image, respectively. By using Eqs. (17) and (18), the

gray value degree is computed as

(19)

where and W indicate the average neighborhood gray

difference of the original plain image and encrypted

image. The GVD value ranges between -1 and +1. The

gray value degree values for different images computed

by the proposed scheme are listed in Table 6. From

Table 6 it can be observed that the gray value degrees are

close to the ideal value of +1. Table 7 shows the evalua-

tion of GVD compared to other methods.

F. Peak Signal-to-Noise Ratio (PSNR) Analysis

By considering the original plain image as a signal and

the encrypted image as a noise [3, 7], an objective assess-

ment of the encryption scheme can be performed by com-

puting the PSNR. The PSNR is defined as

(20)

where MSE indicates the mean square error and is calcu-

lated according to Eq. (21).

(21)

where I(i, j) indicates the pixel value of the original plain

image and is the pixel value of the encrypted image

at position (i, j). The PSNR values for different test images

are computed and listed in Table 8. From Table 8 it can be

observed that the PSNR values are smaller, which indi-

cates the increased complexity in getting the original

plain image from the encrypted image for opponents.

G. Key Sensitivity Analysis

Key sensitivity means that a one-bit change of the key

should produce a radical change in the encrypted image

using the same plain image [1-10]. Key sensitivity analy-

sis is conducted with the following scheme.

Step 1. The original plain image is encrypted by using

a test key K1 to create cipher image C1.

Step 2. The original plain image is encrypted another

time with a minuscule change in the test key K1, i.e., K2 to

create cipher image C2.

Step 3. The two cipher images C1 and C2 with slightly

different keys are compared pixel by pixel to see the

number of differing pixels.

 The number of pixels change rate (NPCR) and unified

average changing intensity (UACI) parameters are used

to evaluate the key sensitivity and are discussed after this.

NPCR is the percentage of the number of differing pix-

els between two images and is defined as

(22)

(23)

where C1 and C2 are two encrypted images with slightly

different keys K1 and K2. C1(i, j) and C2(i, j) are the pixel

values of C1 and C2 at position (i, j). D is a bipolar array

of the same size as C1 and C2 and its contents are either 0

or 1 based on Eq. (23).

UACI is the percentage of the average changing inten-

sity difference between two images and is defined as

(24)

The key sensitivity is assessed by testing one parame-

ter at a time with a slightly change in the keys. The pro-

posed scheme has six parameters {Z0, r, a1, a2, ε1, ε2}.

Table 9 shows the NPCR and UACI values for six differ-

ent parameters. From Table 9 it can be observed that the

NPCR and UACI values are extremely close to their ideal

values of 99.6% and 33.4%, respectively. Thus the pro-

posed scheme has great key sensitivity.

Furthermore, the key sensitivity can also be demon-

strated visually with the following approach. The original

GVD
W

′

G m, n()() W G m, n()()–

W
′

G m, n()() W G m, n()()+
--=

W
′

PSNR 20 log10

255

MSE
---------------⎝ ⎠
⎛ ⎞dB×=

MSE 1
MN
--------- I i, j() I

′

i, j()–()2

j=1

N

∑
i=1

M

∑=

I
′

i, j()

NPCR
D i, j()i,j∑

M N×
------------------------ 100%×=

D i, j() 1, if C1 i, j() C2 i, j()≠
0 , Otherwise⎩

⎨
⎧

=

UACI 1
M N×

C1 i, j() C2 i, j()–

255

ij
∑ 100%×=

Table 7. The gray value degree (GVD) values of the proposed
scheme and other approaches

Image

GVD value

Proposed

approach
Arnold’s Ye [20]

Lena 0.962221 0.89 0.954

Table 8. The PSNR values for different test images

Image PSNR (dB)

Lena 9.255873

Oakland 8.859804

Jellybeans 8.451614

Splash 8.792241

Moon surface 10.186010

San Francisco 10.150878

Pentagon 10.247757

Man 8.083686

Airplane 8.043295

San Diego 9.315116

PSNR: peak signal-to-noise ratio.

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 187-198

http://dx.doi.org/10.5626/JCSE.2014.8.4.187 196 Gururaj Hanchinamani and Linganagouda Kulakarni

key is altered with a slightly change and different keys

are generated. The keys can be summarized as,

Original key Key1 = (0.3, 0.99, 1.0, 1.01, 0.2, 0.3),

and the slightly altered keys,

Key2 = (0.30000000001, 0.99, 1.0, 1.01, 0.2, 0.3),

Key3 = (0.3, 0.99000000001, 1.0, 1.01, 0.2, 0.3),

Key4 = (0.3, 0.99, 1.0000000001, 1.01, 0.2, 0.3),

Key5 = (0.3, 0.99, 1.0, 1.01000000001, 0.2, 0.3),

Key6 = (0.3, 0.99, 1.0, 1.01, 0.20000000001, 0.3),

Key7 = (0.3, 0.99, 1.0, 1.01, 0.2, 0.30000000001).

The encrypted images with the correct key {C1} and

the bit altered keys {C2, C3, C4, C5, C6, C7} are given in

Fig. 4(b)–(h). Even though all look related, they are

wholly dissimilar from each other. This can be confirmed

by finding the difference image between C1 and the other

encrypted images {C2, C3, C4, C5, C6, C7}. Fig. 4(i)–(n)

shows the difference images {C1 − C2, C1 − C3, C1 − C4,

C1 − C5, C1 − C6, C1 − C7}. From the difference images, it

can be observed that: a large amount of the pixels are

nonzero, thus the difference is adequate.

Furthermore, the key sensitivity test is also assessed

using the decryption process. Decryption is performed

with the right key and slightly different keys. Fig. 5(a)

shows the decrypted image with the correct key Key1 and

Fig. 5(b)–(g) are the decrypted images with the slightly

altered keys Key1, Key2, Key3, Key4, Key6, Key7. The

decrypted images with the slightly altered keys are non-

recognizable, thus the correct decryption cannot be

achieved if there is a small alteration in the key.

H. Plain-Image Sensitivity Analysis

Plain-image sensitivity means that a 1-bit change of the

plain image should produce a radical change in the encrypted

image using the same key [1-10]. The plain-image sensi-

tivity assessment is performed with following steps.

Step 1. Encrypt the original plain-image to create

cipher image C1.

Step 2. Change 1-bit of original plain-image at any

random position, and encrypt another time to create

cipher image C2.

Step 3. The two cipher images C1 and C2 are compared

pixel by pixel to see the number of differing pixels.

 The plain image sensitivity is assessed by using NPCR

and UACI parameters as specified in Eqs. (22)–(24). The

NPCR and UACI values are calculated for different arbi-

trarily chosen locations by changing one bit at a time. It is

observed that they are close to their ideal values of 99.6%

and 33.4%, respectively, irrespective of the pixel position

chosen. Table 10 shows the NPCR and UACI values for a

Table 9. Key sensitivity results for Splash image with different
parameters of the chaotic map

Parameter changed NPCR (%) UACI (%)

Z0 99.591064 33.408295

r 99.603271 33.395805

a1 99.610901 33.406994

a2 99.594961 33.392109

ε
1

99.612427 33.344021

ε2 99.595642 33.402004

NPCR: number of pixels change rate, UACI: unified average changing

intensity.

Fig. 4. Key sensitivity analysis for encryption process for Splash
image. (a) Original image. (b) Encrypted image with correct key
Key1. (c–h) Encrypted images with slightly different keys. (i–n)
Difference image between C1 and other incorrect encrypted
images.

Fig. 5. Key sensitivity analysis for decryption process for Moon
surface image. (a) Decryption with correct key. (b–g) Decryption
with slightly changed keys.

A New Approach for Image Encryption Based on Cyclic Rotations and Multiple Blockwise Diffusions Using Pomeau-Manneville and Sin Maps

Gururaj Hanchinamani and Linganagouda Kulakarni 197 http://jcse.kiise.org

randomly chosen location (50, 75) and with a pixel inten-

sity value of 197. The NPCR and UACI are computed by

changing one bit at a time from the lower bit (bit 0) to

upper bit (bit 7), where the average NPCR and UACI val-

ues are found to be 99.611854% and 33.442140%. Thus,

the proposed approach has higher sensitivity to plain-

images and is resistant to differential attacks.

I. Computational Speed Analysis

The time complexity of the proposed scheme is

O(M × N), where M and N are the height and width of the

image, respectively. Only two rounds of the encryption

process provide adequate security. The time required to

encrypt 256 × 256 gray scale image is 0.000006 second

and for decryption it is the same. Hence the proposed

approach can offer a fast and competent way for image

encryption. The comparison of the encryption time with

other schemes is listed in Table 11.

VI. CONCLUSIONS

In this paper, an efficient image encryption scheme

based on cyclic rotations and multiple blockwise diffu-

sions with two chaotic maps was proposed. It was imple-

mented using the C programming language on a Linux

platform and the speed attained was 0.000006 seconds

for a 256 × 256 images, hence it is computationally effi-

cient. The proposed scheme has a key space of 2384,

which is adequate to avoid bruteforce attacks. The aver-

age entropy achieved is 7.997331, which is close to the

ideal value of 8, and hence the information outflow is

insignificant. The NPCR and UACI values are close to

their ideal values of 99.6% and 33.4%, respectively, for

both key sensitivity and plain image sensitivity, hence the

method is secure against differential attacks. The correla-

tions are close to zero and the histogram is almost uni-

formly spread, thus statistical attacks are resisted. The

GVD is close to 1 and the PSNR is smaller. The results

shown in Section V are the obtained results after two

rounds of encryption. Hence, the proposed scheme offers

high security and high speed. The proposed scheme is

also applicable to larger sized images.

REFERENCES

1. A. A. A. El-Latif, L. Li, T. Zhang, N. Wang, X. Song, and

Niu, X, “Digital image encryption scheme based on multi-

ple chaotic systems,” Sensing and Imaging: An Interna-

tional Journal, vol. 13, no. 2, pp. 67-88, 2012.

2. G. Ye and K. W. Wong, “An efficient chaotic image encryp-

tion algorithm based on a generalized Arnold map,” Nonlin-

ear Dynamics, vol. 69, no. 4, pp. 2079-2087, 2012.

3. G. Hanchinamani and L. Kulakarni, “Image encryption based

on 2-D Zaslavskii chaotic map and pseudo hadmard trans-

form,” International Journal of Hybrid Information Technol-

ogy, vol. 7, no. 4, pp. 185-200, 2014.

4. I. S. Sam, P. Devaraj, and R. S. Bhuvaneswaran, “An inter-

twining chaotic maps based image encryption scheme,” Non-

linear Dynamics, vol. 69, no. 4, pp. 1995-2007, 2012.

5. A. A. A. El-Latif, L. Li, and X. Niu, “A new image encryp-

tion scheme based on cyclic elliptic curve and chaotic sys-

tem,” Multimedia Tools and Applications, vol. 70, no. 3, pp.

1559-1584, 2012.

6. C. K. Huang, C. W. Liao, S. L. Hsu, and Y. C. Jeng,

“Implementation of gray image encryption with pixel shuf-

fling and gray-level encryption by single chaotic system,”

Telecommunication Systems, vol. 52, no. 2, pp. 563-571, 2013.

7. N. Taneja, B. Raman, and I. Gupta, “Combinational domain

encryption for still visual data,”Multimedia Tools and Appli-

cations, vol. 59, no. 3, pp. 775-793, 2012.

8. M. François, T. Grosges, D. Barchiesi, and R. Erra, “A new

image encryption scheme based on a chaotic function,” Sig-

nal Processing: Image Communication, vol. 27, no. 3, pp.

249-259, 2012.

9. X. Huang, “Image encryption algorithm using chaotic Che-

byshev generator,” Nonlinear Dynamics, vol. 67, no. 4, pp.

2411-2417, 2012.

10. L. Zhao, A. Adhikari, D. Xiao, and K. Sakurai, “On the

security analysis of an image scrambling encryption of pixel

bit and its improved scheme based on self-correlation

encryption,” Communications in Nonlinear Science and

Table 11. Execution time comparison for 256×256 image

Method Encryption time (sec)

Ye [20] 0.150

Gao and Chen [21] 0.633

Ye [22] >10

Huang [9] 0.547

Proposed scheme 0.000006

Table 10. Plain-image sensitivity test for Jellybeans image

Bit position
Changed pixel

values
NPCR (%) UACI (%)

0 196 99.629211 33.477940

1 199 99.662781 33.445370

2 193 99.617004 33.376114

3 205 99.594116 33.432789

4 213 99.574280 33.438553

5 229 99.594116 33.354668

6 133 99.632263 33.523315

7 69 99.591064 33.488377

Average values 99.611854 33.442140

NPCR: number of pixels change rate, UACI: unified average changing

intensity.

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 187-198

http://dx.doi.org/10.5626/JCSE.2014.8.4.187 198 Gururaj Hanchinamani and Linganagouda Kulakarni

Numerical Simulation, vol. 17, no. 8, pp. 3303-3327, 2012.

11. J. W. Yoon and H. Kim, “An image encryption scheme with

a pseudorandom permutation based on chaotic maps,” Com-

munications in Nonlinear Science and Numerical Simula-

tion, vol. 15, no. 12, pp. 3998-4006, 2010.

12. D. Chattopadhyay, M. K. Mandal, and D. Nandi,

“Symmetric key chaotic image encryption using circle map,”

Indian Journal of Science and Technology, vol. 4, no. 5, pp.

593-599, 2011.

13. A. Akhshani, S. Behnia, A. Akhavan, H. A. Hassan, and Z.

Hassan, “A novel scheme for image encryption based on 2D

piecewise chaotic maps,” Optics Communications, vol. 283,

no. 17, pp. 3259-3266, 2010.

14. C. Cokal and E. Solak, “Cryptanalysis of a chaos-based

image encryption algorithm,” Physics Letters A, vol. 373, no.

15, pp. 1357-1360, 2009.

15. S. Behnia, A. Akhshani, S. Ahadpour, H. Mahmodi, and A.

Akhavan, “A fast chaotic encryption scheme based on piece-

wise nonlinear chaotic maps,” Physics Letters A, vol. 366,

no. 4, pp. 391-396, 2007.

16. G. Alvarez and S. Li, “Some basic cryptographic require-

ments for chaos-based cryptosystems,” International Journal

of Bifurcation and Chaos, vol. 16, no. 8, pp. 2129-2151, 2006.

17. V. Patidar, N. K. Pareek, and K. K. Sud, “A new substitu-

tion–diffusion based image cipher using chaotic standard and

logistic maps,” Communications in Nonlinear Science and

Numerical Simulation, vol. 14, no. 7, pp. 3056-3075, 2009.

18. N. K. Pareek, V. Patidar, and K. K. Sud, “Image encryption

using chaotic logistic map,” Image and Vision Computing,

vol. 24, no. 9, pp. 926-934, 2006.

19. J. Hu and F. Han, “A pixel-based scrambling scheme for

digital medical images protection,” Journal of Network and

Computer Applications, vol. 32, no. 4, pp. 788-794, 2009.

20. G. Ye, “Image scrambling encryption algorithm of pixel bit

based on chaos map,” Pattern Recognition Letters, vol. 31,

no. 5, pp. 347-354, 2010.

21. T. Gao and Z. Chen, “A new image encryption algorithm

based on hyper-chaos,” Physics Letters A, vol. 372, no. 4,

pp. 394-400, 2008.

22. R. Ye, “A novel chaos-based image encryption scheme

with an efficient permutation-diffusion mechanism,” Optics

Communications, vol. 284, no. 22, pp. 5290-5298, 2011.

Gururaj Hanchinamani

He received an M.E. degree in computer science and engineering from Walchand college of engineering
Sangli, India. He is pursuing his Ph.D. degree at Visvesvaraiah Technological University Belgaum, India. His
research interests are information security and computer architectures. He is currently working as associate
professor at the computer science department, BVB college of engineering and technology, Hubli,
Karnataka, India.

Linganagouda Kulakarni

He received his Ph.D. degree in pattern recognition from Mysore university, India. His research interests are
image processing, computer networks and information security. He is currently working as a professor in the
computer science department, BVB college of engineering and technology, Hubli, Karnataka, India.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

