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Abstract
In pedestrian detection applications, one of the most popular frameworks that has received extensive attention in recent

years is widely known as a ‘Hough forest’ (HF). To improve the accuracy of detection, this paper proposes a novel split

function to exploit the statistical information of the training set stored in each node during the construction of the forest.

The proposed split function makes the trees in the forest more robust to noise and illumination changes. Moreover, the

errors of each stage in the training forest are minimized using a global loss function to support trees to track harder train-

ing samples. After having the forest trained, the standard HF detector follows up to search for and localize instances in

the image. Experimental results showed that the detection performance of the proposed framework was improved signif-

icantly with respect to the standard HF and alternating decision forest (ADF) in some public datasets.
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I. INTRODUCTION

Over the last decade, the problem of pedestrian detec-

tion has attracted  the attention of many researchers in the

image processing area and computer vision field, because

such systems are in wide demand for a variety of modern

applications in the real-world, such as video surveillance

[1], autonomous navigation [2], and human-computer

interaction [3]. Due to the importance of these applica-

tions in daily life and the drawbacks of current detection

algorithms, the pedestrian detection problem has been

studied intensively to satisfy the high requirements of real-

world applications. Although researchers have been dedi-

cating much effort to this task for a long time, there are

still unresolved gaps due to the difficulties and challenges

of the problem such as:
● Human occlusion: Because humans appear in vari-

ous and unpredictable backgrounds, occlusion can

occur at any time. Thus, to achieve high performance

in human detection, the occlusion challenge needs to

be effectively handled.
● Human articulation: The appearance of humans can

be extremely varied, by changes in pose, distance, or

the view point of the camera. Thus, human detection

algorithms need to take this aspect into account to

make the system more robust and accurate.
● Background noise: Changes in context due to

weather conditions, illumination changes, and com-

plex backgrounds are crucial reasons for detection

failure or miss-detection.

Received 17 April 2014; Revised 5 November 2014; Accepted 16 November 2014

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2014.8.4.207 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 207-214

http://dx.doi.org/10.5626/JCSE.2014.8.4.207 208 Trung Dung Do et al.

● Processing time: Finally, processing time is a tough

requirement for many real-world applications to

operate in real time. The state-of-the-art approaches

to human detection still need to be improved mark-

edly to satisfy this requirement.

Generally, pedestrian detection algorithms include two

phases, offline (training) and online (testing). First, in the

offline phase, some parameter models are learned based

on a collection of pedestrian and non-pedestrian samples

by tuning the parameters in a supervised manner. These

parameters are adjusted during the training process to fit

the input data in the real world. To achieve this, machine

learning algorithms, such as support vector machine

(SVM) [4], artificial neural network (ANN) [5], boosting

[6, 7], and random forests (RF) [8, 9], can be applied. Sec-

ond, after models have been learned, they can be used to

detect pedestrians and to localize their positions in images.

This paper focuses on the training phase by combining

some popular existing machine learning techniques to

construct a robust and accurate system for human detec-

tion. In fact, there are several approaches in the literature,

such as holistic approaches, parts-based approaches, and

patches-based approaches.

Holistic (global) approaches: This kind of approach

exploits all information encoded in an entire object image

rather than using a small set of features. Generally, the

local visual descriptors are defined in a fixed order to

match with the reference instance (template matching).

One weakness of this approach is the demand for a large

number of reference instances because of the appearance

changes due to, for example, poses and illumination. In

[10], the authors used Dominant Orientation Templates

(DOT) [11] for fast feature calculation, and a holistic

approach to detect the regions of interest in the test image

rapidly. These detected regions were then used for the

post-processing of pedestrian detection to achieve high

performance and low processing time. However, approaches

using the DOT features for pedestrian detection are sensi-

tive to illumination changes, noise, and pose variations

due to the computation of some dominant orientations in

DOT rather than consideration of all orientations as in the

histogram of oriented gradients (HOG) [12].

Parts-based (local) approach: Typical parts-based

approaches to object detection consider local pieces of the

image, and classify the pieces into background or fore-

ground using machine learning algorithms, then building

the object detector based on the pieces. However, such

approaches cannot cope with major difficulties in the

detection task, when the object of interest is small, or

imaging conditions are unfavorable. To enhance the per-

formance of the classical parts-based approach, the geo-

metric information of the object is taken into account by

modeling the position relationship of the parts of the

object. In the work of Murphy et al. [13], the local fea-

tures are used to describe parts extracted from images.

The parts near the center object will be considered as a

positive example, and the parts outside the object’s

bounding box will be a negative one. Then, these extracted

parts are passed to the boosting classifier for training

data. To overcome the limitation of local feature men-

tioned above, authors of this paper introduced the gist of

an image. This gist captured texture and spatial layout of

an image that can be learned as global features. Using

both the local features and global features, the performance

of the detection task can be improved significantly.

Patches-based approaches: This approach was intro-

duced by Leibe et al. [14]; it generates a codebook based

on sets of positive patches (presence of object) and nega-

tive patches (no object present). In the detection process,

extracted patches of the unseen image are used to match

against the codebook entries for finding the pedestrian

hypothesis. This approach can be used to detect the pres-

ence of a pedestrian in the scene and to localize its posi-

tion by analyzing the obtained object hypothesis. However,

when the training data are significantly huge, or the

dimension of feature is very high, the problems of creat-

ing and processing the codebook become highly expen-

sive. To address this, the RF technique [15, 16] or the HF

[17-19] framework can be applied to efficiently and rap-

idly generate a codebook even when the dimensions of

the feature are infinite.

The purpose of this study was to develop a patches-

based approach by providing a novel split function for the

RF techniques as well as its extension for the HF frame-

works. During forest construction, the errors are consecu-

tively optimized, using the global loss function [20, 21]

in each stage of the training process. The rest of this

paper is organized as follows: Section II briefly describes

Fig. 1. Pedestrians IRINA training data set (blue rectangles and red rectangles are patches randomly extracted from negative and
positive images, respectively. Green lines indicate offsets).
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the HF framework and the proposed novel split function,

and applied boosting idea to the HF framework. Experi-

mental results and analysis compared with the standard

HF framework are shown in Section III. Finally, Section IV

provides the conclusions and discusses future work.

II. NOVEL SPLIT FUNCTION AND ERROR
OPTIMIZATION FOR HF

A. Novel Split Function for HF Framework

The HF framework proposed by Gall and Lempitsky

[17] can be considered as a derivation of the RF [8],

which consists of a collection of trained decision trees.

Due to the interesting characteristics of using an ensem-

ble model, such as fast training and testing, flexibility for

high-dimensional data, robustness to noise, and expand-

ability for parallel processing, the HF framework has

received much attention in recent years. Generally, the

HF uses an ensemble model of decision trees to generate

a discriminative codebook using a patches-based method.

The essential key idea for splitting data in internal nodes

of the HF is the combination of using both information

about appearance and geometry regarding patches. In

more detail, trees in the HF are constructed, based on a

set of a large number of patches (Pi = {Ii, ci, di}) as shown

in Fig. 1. Where Ii is the feature set (appearance) of a

patch, ci is the class label, which indicates whether this

patch belongs to positive or negative training image, and

di is the offset of the patch (a vector between the center of

patch and the referent point). To make a decision about

which patch is being directed to the left or right child

node, the split function needs to be evaluated as follows:

(1)

where l(,) is split function (test function) as shown in

Fig. 2, Θ denotes the set of parameters including θ1, θ2,

θ3, k which are represented by two random points, ran-

dom threshold, and index of channels in feature space,

respectively. In order to decide which parameter set of

the split function in the current node is most suitable for

separating training data, the information gain needs to be

maximized, defined as:

 (2)

where Sj is the set of training patches reaching to the j

node, |.| represents the number of patches in the current

set,  and  are the sets of training data directed to left

and right, respectively, and H(S) =

 is the Shannon entropy of set S.

Here, p(c|S) is a normalized empirical histogram of labels

corresponding to the training point in S. The split func-

tion in the standard HF is very simple, in that it only con-

siders the different intensities between two random points

θ1, θ2 of the particular channel k in the feature space.

Thus, it is sensitive to noise and illumination changes.

Therefore, to overcome this limitation, the statistical

information in feature space is used by randomly select-

ing five points θj with j=1...5. The intensity of these

points (θj) is replaced by the mean of the neighbor-

hoods rather than intensity of the points themselves in the

standard HF. Then, the maximal intensity value of these

points is chosen for comparing to the random threshold θ6

to make the decision about directing this patch to the left

or right child node. The entire process is illustrated in

Fig. 2, and the split function in Eq. (1) can be rewritten

as:

 (3)

where the set of parameters Θ in the current node consists

of five points θj with j=1...5, the threshold value θ6, and

the index of channel k in feature space.

This process of choosing the novel split function men-

tioned above can generate a more discriminative code-

book which shows robustness for noise as well as

adaptability to illumination changes.

B. Error Optimization

In the standard HF, the decision tree is constructed in a

l Pi,Θ( ) 0,   if  Pi
k
θ1( ) Pi

k
θ2( ) θ3<–

1,                    otherwise⎩
⎨
⎧

=

Ij H Si( ) Sj

i
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Fig. 2. Process for calculating standard split function and novel split function for each patch.
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depth-first manner, meaning that the training data is first

split in the left child node until the stopping criteria are

reached, as illustrated in Fig. 3(a). Using this kind of con-

struction, the error of the tree is calculated only after the

entire tree is constructed. If the training data set is big, or the

dimensions of the data are very high, this method is not an

efficient way to compute errors. In contrast to the depth-

first manner, building a tree in a breadth-first manner can

efficiently handle error of tree by consecutively calculat-

ing the loss in each stage (see Fig. 3(b) for more details).

Adopting ideas from boosting algorithms [7] and alter-

nating decision forests (ADF) [18], the errors of the train-

ing forest can be minimized using weights for all patches

from both positive and negative images. These weights

will be updated in each stage of the tree construction pro-

cess by minimizing the global loss. Thus, the weights

become higher for classifying harder patches and smaller

with easier ones. This process is able to support trees to

focus attention on harder samples rather than treating all

samples equally as in standard HF. To do that we need to

1) perform tree construction in a breadth-first manner

instead of depth-first, 2) update weights in each stage,

and 3) change the estimation class probability to exploit

the updated weights.

Constructing trees in a breadth-first manner has the

advantages of being able to specify the stage of the forest

corresponding to the depth of tree to estimate the global

loss function [18] defined as:

(4)

where l(.,.) the loss function; Ii, ci the feature set and the

label of patch. N is the number of training patches;

 =  is described as trained classi-

fier, and  the classifier in the current iteration t;

finally  are the set of parameters of the trained clas-

sifier and the parameters to be trained in the current itera-

tion t, respectively.

After defining it, the global loss function can be used

to calculate the boosting weights in the current stage.

This weight  of the patch Pi in the iteration t can be

defined as:

(5)

There are several different boosting algorithms that

can be differentiated by the loss function they use. In this

work, the tangent loss function [20] was used to mini-

mize the errors within stage during the training forest. Its

formulation is defined as:

Lt(I) = (2arctan(F(I)) − 1)2 (6)

Using the tangent loss function, the weight update in

Eq. (5) can be rewritten as:

(7)

To take the weights into account in the split function,

the estimation class probability needs to be changed as:

 (8)

where [yi = c] is the indicator function which returns 1 if

the label yi of patch  is equal to c, and 0 otherwise.

By training the decision tree in the breadth-first man-

ner, one can calculate errors gradually in each stage of

tree construction, and adjust weights in a suitable way to

minimize errors. This process is iterated until the depth of

tree is reached or the number of patches in each node is

smaller than some threshold value.

III. EXPERIMENTAL RESULTS

A. Data Preparation and Training Forest

In this work, the data used for training were taken from

the INRIA database [12], which consists of 1,237 posi-

tive samples (human presence) and 3,891 negative sam-

ples (no human presence). Only 600 positive examples

and 600 negative examples were selected to train the forest.

Those examples were resized to a fixed size, so that the

larger bounding box size including width or height was

approximately 100 pixels, on average, over the data set.

In each example, 50 patches with fixed size (16 × 16)

were sampled randomly to create the training data set.

Thus, the number of positive patches was 30,000, and the

number of negative patches was 30,000. Features used to

describe patches are combinations of simple local fea-

arg min
θ
t l

N

i=1∑ ci;F1:t 1– Ii;θ( ) ft Ii;θ
t( )+( )

F1:t 1– Ii;θ( ) Σ v.fj Ij;θ
j( )t 1–

j=1

ft I;θ
t( )

θ, θ
t

ξi
t

ξi

t ∂l ci,F1:t 1– Ii;θ( )( )
∂F I( )

---------------------------------------=

ξi
t 4 2arc F Ii,ci( )( ) 1–tan( )

1 F Ii,ci( )( )2+
--------------------------------------------------------–=

p c S( )
S

i=1∑ yi c=[ ].ξi

t

ξi

tS

i=1∑
------------------------------------=

Pi S∈

Fig. 3. Tree construction in (a) depth-first manner and (b) breadth-first manner.
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tures, such as LAB color space, the first- and the second-

order derivatives in the x and y directions of the gray

image, and HOG features. For constructing the forest, 15

decision trees were used and the maximum depth for each

tree was 15. To obtain the best separate data for each

internal node, 2,000 split functions were generated ran-

domly to find the maximal information gain (Section II).

After finishing tree construction with the proposed

method, 13 parameters were stored in internal nodes (ver-

sus 7 parameters in the standard HF), and the probability

of foreground and a set of offsets were stored in the leaf

nodes. All of this information is needed for detecting

pedestrians in the scenes, and localizing the position by

analyzing the object hypothesis [12]. The constructed

forest is then used for comparing the performance of the

proposed method with respect to the standard HF on

some public data sets, including TUD-pedestrian, TUD-

crossing, and TUD-campus.

B. Evaluation

The performance of the proposed approach was evalu-

ated on three challenging public data sets: TUD-pedes-

trian, TUD-crossing, and TUD-campus [22]. The TUD-

pedestrian data set contains 250 images with 311 side-

view fully visible pedestrians with significant variation in

clothing and articulation. The TUD-crossing sequence

consists of 201 images with 1,008 annotated pedestrians,

and the TUD-campus sequence contains 71 images of

303 annotated pedestrians.

For comparison with standard HF, precision-recall

curves were generated. Precision and recall can be

defined as:

(9)

(10)

where true positive (TP) is the correct detection, false

positive (FP) is a false alarm, false negative (FN) is a

miss-detection. In this paper, the PASCAL measure [23]

was used to define whether the detected object is correct,

false, or missed: 

(11)

where  are the detected bounding box and the

ground truth box, respectively. According to Eq. (11), the

bounding box is considered as a true positive detection if

the overlap area of detection and the ground-truth bound-

ing box exceeds 50%. Unmatched  is counted as a

false positive and unmatched  as a false negative.

The detection results of the proposed method are shown

in Fig. 4(a) with TUD-pedestrian, Fig. 4(b) with TUD-

crossing, and Fig. 4(c) with TUD-campus. Using a novel

precision TP
TP FP+
-------------------=

recall TP
TP FN+
-------------------=

a0

area BBdt BBgt∩( )
area BBdt BBgt∪( )
------------------------------------------ 0.5>=

BBdt, BBgt

BBdt

BBgt

Fig. 4. The detection results evaluated on (a) TUD-pedestrian, (b) TUD-crossing-sequences, and (c) TUD-campus-sequences datasets
(blue: true detection, green: missed detection, red: false alarm).
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split function and the boosting idea from boosting algo-

rithms, the individual pedestrians were detected success-

fully within the different conditions of background, such

as weather changes, or illumination variations, even

when the pedestrians appeared in a group as seen in

Fig. 4(b) and (c). Precision-recall curves were generated

for comparing the proposed method with standard HF

and ADF (Fig. 5). The average precision (AP) and area

under curve (AUC) [24] were calculated. A summary is

shown in Table 1.

To evaluate the influence of the randomness point

number Ω in a novel split function on the randomness

sample number Γ generated in each node, statistical

information was calculated for the TUD-pedestrian data

set. Experimental values of average precision are shown

in Table 2. With 2,000 randomness numbers generated in

each node, the proposed method (novel split function

[NFS]) gave the best performance (the highest AP = 0.881)

when Ω = 5. This value can be compared with result of

standard HF (AP = 0.863) and ADF (AP = 0.869). How-

ever, with the increased number of randomness points in

the novel split function, the system will require more pro-

cessing time in both the training and testing phases com-

pared with standard HF and ADF.

IV. CONCLUSIONS AND FUTURE WORK

Using a novel split function to exploit the statistical

information of features, the constructed forest is more

Fig. 5. Precision-recall curves generated for (a) TUD-pedestrian, (b) TUD-crossing-sequences, and (c) TUD-campus-sequences data sets.

Table 1. Comparison of AP and AUC with different methods on
some public data sets

Datasets
HF Proposed method ADF

AP AUC AP AUC AP AUC

TUD_1 0.863 0.851 0.881 0.872 0.869 0.847

TUD_2 0.741 0.784 0.792 0.814 0.766 0.780

TUD_3 0.586 0.648 0.684 0.698 0.621 0.654

TUD_1: TUD-pedestrian, TUD_2: TUD-crossing, TUD_3: TUD-

campus, AP: average precision, AUC: area under curve, HF: Hough

forest, ADF: alternating decision forest.

Table 2. Comparison of AP with respect to different methods for
TUD-pedestrian dataset

Method Γ = 500 Γ = 1000 Γ = 2000 Γ = 4000

HF 0.842 0.854 0.863 0.842

ADF 0.848 0.862 0.869 0.857

NSF (Ω = 2) 0.845 0.840 0.871 0.853

NSF (Ω = 3) 0.853 0.858 0.874 0.858

NSF (Ω = 4) 0.865 0.857 0.877 0.841

NSF (Ω = 5) 0.849 0.843 0.881 0.849

NSF (Ω = 6) 0.841 0.838 0.873 0.852

NSF (Ω = 7) 0.831 0.833 0.871 0.851

AP: average precision, HF: Hough forest, ADF: alternating decision

forest, NSF: novel split function.
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robust to noise and illumination changes. Moreover, the

idea from boosting is used to minimize errors gradually

during the training process; thus, the forest can focus

attention on hard samples. However, the proposed

method fails to detect a pedestrian when the background

consists of many different objects, such as cars, trees, and

buildings. This limitation can be solved by combining

with motion information such as the background model-

ing, in video sequences. The proposed method can be

applied to train for other object types, such as vehicles

and animals as a direction for future work.
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