
Copyright 2014. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 8, No. 4, December 2014, pp. 215-227

Two-Level Scratchpad Memory Architectures to Achieve Time
Predictability and High Performance

Yu Liu and Wei Zhang*

Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA

yuliu@siu.edu, wzhang4@vcu.edu

Abstract
In modern computer architectures, caches are widely used to shorten the gap between processor speed and memory

access time. However, caches are time-unpredictable, and thus can significantly increase the complexity of worst-case

execution time (WCET) analysis, which is crucial for real-time systems. This paper proposes a time-predictable two-

level scratchpad-based architecture and an ILP-based static memory objects assignment algorithm to support real-time

computing. Moreover, to exploit the load/store latencies that are known statically in this architecture, we study a Scratch-

pad Sensitive Scheduling method to further improve the performance. Our experimental results indicate that the perfor-

mance and energy consumption of the two-level scratchpad-based architecture are superior to the similar cache based

architecture for most of the benchmarks we studied.

Category: Embedded computing

Keywords: Hard real-time systems; Scratch-pad memory; Time predictability

I. INTRODUCTION

Worst-case execution time (WCET) is crucial for hard

real-time systems, such as aircraft and automobile control

software. Missing deadlines in such systems may result

in putting human lives in danger or other catastrophic

outcomes. Many architectural features of modern micro-

processors, such as caches, pipelines, and dynamic branch

prediction, however, have been designed to boost the

average-case performance. Unfortunately, these advanced

architecture features are often harmful to time-predict-

ability, because their timing is dependent on the program’s

historic dynamic behavior. In particular, a cache-based

memory structure is used to shorten the gap between pro-

cessor speed and memory access time. Although there

has been some progress in timing analysis for caches,

generally, it is extremely hard and complex to accurately

obtain the WCET for processors with cache memories,

especially for data caches, unified caches, multi-level

caches, and shared caches in multi-core/multi-threaded

processors.

Scratchpad memories (SPMs), as an alternative tech-

nique to hardware-controlled caches, offer the character-

istic of time-predictability and reasonable performance

[1-3]. SPMs are small, physically separate memories

directly mapped into the address space of a memory sys-

tem, which always use high-speed SRAM. Compared

with caches of the same capacity, SPMs generally are

more area- and energy-efficient because SPMs do not

need to use tag arrays.

To efficiently exploit SPMs, however, it is crucial to

determine the memory objects assignment to SPMs. Early

Received 1 July 2014; Revised 13 September 2014; Accepted 20 November 2014

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2014.8.4.215 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 215-227

http://dx.doi.org/10.5626/JCSE.2014.8.4.215 216 Yu Liu and Wei Zhang

works on this topic focused mostly on studying compila-

tion time algorithms to statically allocate hot spots of pro-

grams and/or data into the SPMs, where the objective

was either to save energy consumption or access time to

the greatest extent possible [2, 3]. To further improve the

performance, researchers have also studied how to

dynamically allocate the memory objects, including soft-

ware-managed [4] and hardware-assisted replacement

methods [5]. However, these dynamic allocation approaches

may harm the time-predictability, because of their dynamic

replacement of memory objects. In contrast, static algo-

rithms are very friendly to WCET estimations, because it

is fully predictable which memory will be used for a cer-

tain memory access [1].

Banakar et al. [6] described a comprehensive evalua-

tion between scratchpad and cache memories in their

research. However, their work focused on a single-level

shared scratchpad and cache memory, which is not a rep-

resentative architecture used in modern high-perfor-

mance microprocessors. To our knowledge, no two-level

SPM based architecture with separated L1 instruction and

data SPMs and a unified L2 SPM to support both instruc-

tions and data has been thoroughly studied and evaluated.

Because two-level cache architectures have been used

widely in modern processors to boost performance, it is

worthwhile to exploit the SPM-based two-level architec-

ture and compare it with the similar two-level caches to

understand their pros and cons in terms of both perfor-

mance and energy efficiency.

However, two-level SPMs or multi-level SPMs gener-

ally can bring new challenges to SPM allocation. First,

because different levels of SPMs have various access

latencies, it is important to make intelligent decisions for

placing data/instructions into the appropriate level of SPM

to achieve the best performance. Second, because the L2

SPM is shared by both data and instructions, just like a

unified L2 cache, the SPM allocation algorithm must

decide whether it is profitable to place instructions or

data into the L2 SPM and how much SPM space should

be used for data or instructions. Third, unlike multi-level

caches that are typically inclusive, two-level SPMs are

exclusive. This brings the question as to whether it is

worth designing a two-level SPM architecture. For exam-

ple, can we simply use a larger L1 SPM. This paper will

explore the design space to answer these questions.

Additionally, to achieve time-predictability, this paper

chooses a statically-scheduled processor based on very

long instruction word (VLIW) processor architecture,

although the two-level SPM architecture can also be

applied to other architectural styles. VLIW microproces-

sors execute instructions in parallel, based on a fixed

schedule determined by the compiler. Consequently, both

the integer linear programming (ILP)-based memory

objects allocation method and the SPM-sensitive sched-

uling discussed in this paper are implemented in the

backend of the compiler.

Our contributions in this paper are thus two-fold. First,

we propose a two-level architecture with small, separate

L1 instruction and data SPMs and a larger shared (i.e.,

unified) L2 SPM. An ILP-based static memory objects

assignment algorithm is used for the proposed architec-

ture so as not to harm the characteristic of time predict-

ability of SPMs. Also, both the performance and energy

consumption of our two-level SPM based architecture are

completely evaluated and compared with those of the tra-

ditional two-level cache based architecture. Second, we

study a novel Scratchpad Sensitive Scheduling method to

further improve the performance of the proposed archi-

tecture without compromising time predictability, which

exploits the statically known load/store latencies due to

the use of SPMs. Our experimental results indicate that

both the observed WCET and energy consumption of the

two-level SPM based architecture are superior to those of

the cache based architecture with the same size.

We have undertaken comprehensive research work on

SPM-based architecture performance evaluation and

optimization. We have published several papers based on

our work, and each has a specific focus. Specifically, we

have a paper [7] focusing on the comparison of the static

and dynamic memory object-allocation method on differ-

ent SPM-based multi-core architectures. This paper

focuses mainly on introducing the design of two-level

SPM-based architectures and SPM Sensitive Scheduling,

which use the advantages of SPM.

II. TWO-LEVEL SCRATCHPAD BASED
ARCHITECTURE

The scratchpad is a memory array with decoding and

column circuitry logic, and we need not check for the

availability of data/instruction in the scratchpad [8].

Thus, SPMs have the essential characteristics of time-

predictability and low energy consumption. Most modern

high-performance computer systems offer two-level cache

based architectures, as shown in Fig. 1. The level 1 cache

is the fastest form of memory, which is built into the chip

but is limited in size. Also, two separate L1 caches are

normally embedded into the processor to store either

instructions or data, which isolates possible interference

between them in an otherwise unified cache. The level 2

cache is slower than the L1 cache but is larger in size,

trading off between speed and size, which is often shared

by both instructions and data. The level 2 cache is impor-

tant to mitigate the L1 cache miss latency, which other-

wise has to fetch from memory for every L1 miss.

To combine the advantages of both SPMs and two-level

architectures for balancing access latency and capacity,

we propose a two-level SPM-based architecture for real-

time systems, as shown in Fig. 2. Similarly, the L1 SPM

Two-Level Scratchpad Memory Architectures to Achieve Time Predictability and High Performance

Yu Liu and Wei Zhang 217 http://jcse.kiise.org

is the fastest SRAM with a small size, while the L2 SPM

is a slower SRAM with a larger size. Because there is no

replacement requirement in any higher level memory of

our architecture, the L1 instruction, L1 data, L2 shared

scratchpad, and the main memory are all connected

directly to the microprocessor.

Such an SPM-based architecture is clearly time-predict-

able. Compared with a single-level SPM-based architecture,

the added L2 SPM is still time-deterministic. Although the

data access latency can vary, depending on whether it is in

the L1 SPM, the L2 SPM, or the main memory, we plan to

develop a static 2-level SPM allocation so that we can stati-

cally determine which data is stored at which level, thus

making the execution time statically predictable.

In addition to time predictability, the proposed two-

level SPM based architecture can also potentially attain

better performance. First, because the SPM does not have

a tag array, it can be faster to access the SPM than a

cache. Moreover, because the access latency in the SPM-

based memory architecture is known statically, this

makes it possible to use the compiler to optimize the data

access order so that the total execution time can be

reduced in a time-predictable manner. Additionally, the

use of the L2 SPM can dramatically reduce accesses to

the main memory, which can further increase the perfor-

mance. There is no hierarchical path between the L1 and

L2 SPM in Figs. 1 and 2. The reason is that we focus on

the static-based allocation method in this paper. Conse-

quently, we do not need to transfer memory objects

between the L1 and L2 SPM. That is why we do not

present a path between the L1 and L2 SPM in the figures.

In [7], we investigated the dynamic-based method, which

requests memory object transferring between different

level SPMs. Thus, the path between the L1 and L2 SPM

is used in [7].

III. MEMORY OBJECT ASSIGNMENT

In this paper, we use a static algorithm to allocate

memory objects to SPMs, because the static method can

keep the characteristic of time-predictability, which is the

most important design objective of a real-time system.

An ILP-based method is used to allocate the hot spots to

the three SPMs in our architecture, and the details are

introduced in the following subsections. Additionally, as

mentioned, the two-level SPM-based architecture is based

on the VLIW architecture. VLIW microprocessors exe-

cute instructions in parallel, based on a fixed schedule

determined by the compiler. So, both the memory object

assignment and scheduling are implemented in the back-

end of the compiler and executed in the compiling stage

rather than the running stage. Thus, none of them has any

impact on the execution time. Furthermore, the run-time

of the memory allocation spent in the compiling stage

mostly depends on the ILP solver rather than the memory

allocation method itself.

A. Memory Objects

The memory objects covered in our work include

instruction objects and data objects. First, the instruction

objects consist of basic blocks, functions, and combina-

tions of consecutive basic blocks. A basic block Bi is the

basic unit of instruction objects in the control flow graph

(CFG), and the smallest one used in our ILP-based algo-

rithm. The function Fi is another instruction object consid-

ered in our work. Also, to minimize jump instructions,

moving consecutive basic blocks is preferred [3]. Thus, the

combination of consecutive basic blocks Ci is used in our

algorithm. For example, the function F0 has three basic

blocks B0, B1, and B2. So, we have two combinations of

consecutive basic blocks, including C0 (B0 and B1), and C1

(B1 and B2). Second, our data objects consist of global sca-

lars and non-scalar variables [3], which are represented as

Di. Note that the stack data is not considered in the mem-

ory objects, because generally the global scalars and non-

scalar variables dominate the data in a real-time system.

Fig. 1. The architecture of the two-level cache-based memory
system.

Fig. 2. The architecture of the two-level SPM-based memory
system. SPM: scratchpad memory.

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 215-227

http://dx.doi.org/10.5626/JCSE.2014.8.4.215 218 Yu Liu and Wei Zhang

However, the ILP-based static algorithm can be easily

extended to handle the stack data following some recent

research work on stack data allocation [2, 4, 9].

It should be noted that the granularity of memory

objects is important to the performance. If the size of a

memory object is larger than the size of SPMs, it will be

allocated to the main memory rather than SPMs, and then

the performance, like WCET, will surely be worse. To

address this, a memory object can be broken into smaller

parts, and they may fit the SPMs. Thus, we have multiple

types of memory objects including the basic blocks, func-

tions and combinations of consecutive basic blocks. For

example, if a whole function can fit into SPMs, it is the

best outcome. If we cannot make it because of the size,

we can partially allocate some basic blocks of this func-

tion into SPMs so as not to jeopardize performance.

B. Assignment Algorithm

In our scratchpad-based architecture, we have three

SPMs: the L1 instruction, L1 data, and L2 SPMs. Accord-

ingly, we need to use the ILP-based static allocation algo-

rithm for each of them.
● L1 Instruction SPM: All instruction objects men-

tioned above need to be considered as candidates for

this SPM. The objective of setting ILP is to select the

most significant instruction hotspots into this L1

SPM to maximally save execution time. Eq. (1) is the

objective formula. In this equation, S(xi) is the size of

instruction objects, and W(xi) is the weight of instruc-

tion objects, where xi can be Bi, Fi, and Ci. That is,

W(xi) means the number of references to any memory

object. Also, Bi, Fi, and Ci can be either 1 or 0, where

1 means it is allocated to the L1 instruction SPM, and

vice versa. Tl1i is the time saved by assigning a single

byte of instruction to this scratchpad.

We have two constraints in the ILP formulas. The

first is Eq. (2), which ensures that the sum of the size

of all selected objects does not exceed the size of this

scratchpad Sl1i. The second one is Eq. (3), which pre-

vents a basic block from being selected more than

once, because one basic block can occur in Bi, Fi, and

several Ci.

(1)

(2)

(3)

● L1 Data SPM: All data objects mentioned above

need to be considered as candidates for this scratch-

pad. The objective of setting ILP is to select the most

significant data hotspots into this L1 data SPM to

minimize execution time. Eq. (4) is the objective for-

mula, where St(Di) is the size of data type (data type

determines the size of each memory operation of data

object, such as char, int, float, and double), W(Di) is

the weight of memory operations of data objects,

S(Di) is the size of data objects, and Tl1d is the time

saving from assigning a single byte of data to this

scratchpad. Also, Di can be either 1 or 0, where 1

means it is allocated to the L1 data SPM, and vice

versa. The constraint in the ILP formulas is Eq. (5),

which ensures the sum of the size of all selected

objects will not exceed the size of this scratchpad Sl1d.

(4)

(5)

● L2 Shared SPM: All instruction and data objects not

selected to be allocated in L1 scratchpad need to be

considered as candidates for the L2 SPM. The objec-

tive of setting ILP is to select the most significant

instruction/data hotspots in the remaining candidates

into the L2 scratchpad to reduce execution time as

much as possible. Eq. (6) is the objective formula. In

this equation, S(xi) is the size of instruction/data objects;

W(xi) is the weight of instruction/data objects, where

xi can be Bi, Fi, Ci, and Di; and St(Di) is the size of

data type. Also, Bi, Fi, Ci, and Di can be 1 or 0, where

1 means it is allocated to the L2 shared SPM and 0

indicates it is not. Tl2 is the time saved from assigning

a single byte of instruction/data to this scratchpad.

Similarly, we have two constraints in the ILP formu-

las. The first is Eq. (7), which ensures that the sum of

the size of all selected objects will not exceed the

size of this scratchpad Sl2. The second one is Eq. (8),

which prevents a basic block from being selected

more than once, because one basic block can occur in

Bi, Fi, and several Ci.

(6)

max Bi W Bi()× S Bi()× Tl1i×{ }
i=1

n

∑

+ Fi W Fi()× S Fi()× Tl1i×{ }
i=1

n

∑

+ Ci W Ci()× S Ci()× Tl1i×{ }
i=1

n

∑

Bi S Bi()×{ }
i=1

n

∑ Fi S Fi()×{ }
i=1

n

∑+

+ Ci S Ci()×{ }
i=1

n

∑ Sl1i≤

Bi Fi Ci{ }
i=1

j

∑ 1≤+ +

max Di W Di()× St Di()× Tl1d×{ }
i=1

n

∑

Di S Di()×{ }
i=1

n

∑ Sl1d≤

max Bi W Bi()× S Bi()× Tl2×{ }
i=1

m

∑

+ Fi W Fi()× S Fi()× Tl2×{ }
i=1

m

∑

+ Ci W Ci()× S Ci()× Tl2×{ }
i=1

m

∑

+ Di W Di()× St Di()× Tl2×{ }
i=1

m

∑

Two-Level Scratchpad Memory Architectures to Achieve Time Predictability and High Performance

Yu Liu and Wei Zhang 219 http://jcse.kiise.org

(7)

(8)

IV. SCRATCHPAD-SENSITIVE SCHEDULING

In this section, to exploit the load/store latencies that

are known statically in our two-level SPM-based memory

architecture, we studied a Scratchpad-Sensitive Schedul-

ing method to improve the performance without compro-

mising time predictability by optimizing the Load-To-

Use Distance (see Section IV-A for details).

A. Background of Load Sensitive Scheduling

Dynamically-scheduled processors such as out-of-

order superscalar processors are known to have a timing

anomaly [10], which can significantly complicate WCET

analysis and hurt time predictability. To achieve time-pre-

dictability, this paper chooses a statically scheduled pro-

cessor based on VLIW processor architecture, although

the two-level SPM architecture can also be applied to

other architectural styles. VLIW microprocessors execute

instructions in parallel based on a fixed schedule deter-

mined by the compiler. Consequently, the instruction

scheduling in the compiler stage is very important to

determine the execution time of a program on the VLIW

microprocessor. When an instruction scheduler becomes

more aware of the latencies of load instruction and uses

such information during scheduling, then we say it is a

Load-Sensitive Scheduler [11].

In a cache-based architecture, it is generally very hard

and complex to determine statically the latency of each

load instruction because the operation of the cache is

essentially dynamic. To deal with the lack of perfect

knowledge of load latencies, an Optimistic Scheduler

assumes that a load instruction always hits in the cache,

while a Pessimistic Scheduler assumes that a load instruc-

tion always misses in the cache. While the Pessimistic

Scheduler is always safe to schedule instructions that

depend on the loads, it may lead to poor performance

because many loads may actually hit in the cache at run-

time. In contrast, the Optimistic Scheduler may schedule

instructions too aggressively, thus special hardware needs

to be used to enforce that whenever a load instruction

actually misses in the cache, the processor is stalled until

the load returns to ensure the correctness of execution.

We call a load instruction as Load Op, which loads

data from memories. Also, we call an instruction that

uses the data loaded by a Load Op a Use Op. The number

of execution cycles scheduled between the Load Op and

Use Op is called the Load-To-Use Distance in this paper.

Also, the Stall-On-Use model is commonly used to han-

dle data cache misses in VLIW, in which the micropro-

cessor will not be stalled until the Use Op is executed.

Obviously, the Stall-On-Use model may reduce the Use

Stall Cycles based on the Load-To-Use Distance, and the

reduced stall cycles are called the Hidden Stall Cycles.

The relationship in Stall-On-Use model is illustrated in

Fig. 3.

Basically, the execution time consists of the computa-

tion and the memory stall time. The Optimistic Schedul-

ing has the shorter Load-To-Use Distance, which may

have longer use stall time if the data loaded is ready later.

In contrast, the Pessimistic Scheduler has the longer

Load-To-Use Distance but short Use Stall Cycles, which

may have longer execution time because the instruction

level parallelism is low.

B. Scratchpad Sensitive Scheduling

According to the analysis above, properly scheduling

the Load-To-Use Distance can boost performance. For

example, if we can schedule a Load Op having a large

memory latency earlier and schedule its Use Op later, we

can get the maximum Hidden Stall Cycles to shorten the

Use Stall Cycles. Meanwhile, the microprocessor cycles

within the Load-To-Use Distance can be used to schedule

other instructions that do not depend on this load instruc-

tion [11], which can improve the degree of instruction

level parallelism to shorten the execution time.

The key advantage of our scratchpad-based architec-

ture is to preserve time predictability because the mem-

ory objects are allocated statically to SPMs in the

compiler stage and no dynamic replacement is requested

during the running time. Therefore, we can develop a

scheduling algorithm named Scratchpad Sensitive Sched-

uling to be sensitive to the varying memory latencies of

load instructions, as the data can be loaded from the L1

data SPM, the L2 SPM or the main memory.

Our Scratchpad Sensitive Scheduling is a basic block-

based list scheduling algorithm. Its basic idea is to main-

tain a list of instructions ready to execute, to choose the

instruction to schedule from the ready list, and then to

update the ready list for the next microprocessor cycle.

Generally, the list scheduling selects instructions from

the ready list, based on the priorities of instructions. The

priority is a function of what the algorithm designer views

Bi S Bi()×{ }
i=1

m

∑ Fi S Fi()×{ }
i=1

m

∑+

+ Ci S Ci()×{ }
i=1

m

∑ Di S Di()×{ }
i=1

m

∑ Sl2≤+

Bi Fi Ci{ }
i=1

j

∑ 1≤+ +

Fig. 3. The relationship between hidden stall cycles, use stall
cycles and memory latency for load op in the stall-on-use model.

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 215-227

http://dx.doi.org/10.5626/JCSE.2014.8.4.215 220 Yu Liu and Wei Zhang

as an important criterion in selecting instructions [11].

In this paper, we extend the default Critical Path

Scheduling algorithm in Trimaran infrastructure [12] to

schedule the appropriate Load-To-Use Distance to improve

the performance of programs running on our scratchpad-

based architecture. Basically, the Critical Path Schedul-

ing in Trimaran is a typical list scheduling algorithm,

whose priorities for instructions are based on the height

of instructions above the last exit instruction in basic

blocks [12]. Eq. (9) is its priority function of each instruc-

tion i in basic blocks, where α is the weighted factor for

the height of instructions. Because the sorting of instruc-

tions in the ready list is based on the ascending order, the

instruction with larger height has higher priority. The α is

set as -1 by default in Trimaran [12].

priority (i) = α × height (i) (9)

In our Scratchpad Sensitive Scheduling, we consider

two factors related to the Load-To-Use Distance, includ-

ing the memory latency for a Load Op (curLat) and the

related Load Op memory latency for a Use Op (preLat).

The goal is to increase the priority of Load Ops with large

memory access latencies, while decreasing the priority of

Use Ops whose corresponding Load Ops have large

access memory latencies. Then, we can enlarge the Load-

To-Use Distance if there is flexibility in the scheduling.

Eq. (10) is its priority function for each instruction i in a

basic block, where α is the weighted factor for the height

of instructions (set as -0.1 to ensure that instructions with

larger height have higher priority), β is the weighted fac-

tor for the memory latency of Load Op (set as -0.45 to

make the Load Op with higher priority), and γ is the

weighted factor for the Load Op memory latency of a Use

Op (set as 0.45 to let the Use Op with lower priority). The

exact values of α, β, and γ are set by hand optimization,

based on several experiments. However, these values can

be set by multivariate analysis in future work. To be spe-

cific, for a different set of benchmarks, the optimized α,

β, and γ might be different, because it depends on the pat-

terns of load and use Op. For the set of benchmarks used

in this paper, we simply manually adjusted the values of

α, β, and γ for several rounds of testing, compared the

results, and chose the set of α, β, and γ offering the best

performance result as the hand-optimized values. We

expected that the values of α, β, and γ can be optimized

by the multivariate analysis or other optimization methods.

However, this needs a significant research effort and is

beyond the scope of this paper.

It is worth noting that if an instruction’s successor

instruction is a Load Op, it can inherit the curLat of its

successor to raise the flexibility of Load Sensitive Sched-

uling. The reason is that the scheduling flexibility of a

Load Op may be limited because its predecessor is sched-

uled prior to it. However, we can try to schedule the pre-

decessor instruction earlier by giving it higher priority,

and then the Load Op may be scheduled earlier to enlarge

the Load-To-Use Distance. An algorithm to determine the

priorities of instructions in the basic block is summarized

in Fig. 4. The complexity of this algorithm is O(N),

where N is the number of instructions in the basic block.

Fig. 4. An algorithm to determine the priorities of instructions in the Scratchpad Sensitive Scheduling.

Two-Level Scratchpad Memory Architectures to Achieve Time Predictability and High Performance

Yu Liu and Wei Zhang 221 http://jcse.kiise.org

priority (i) = α × height (i) + β × curLat (i)

+ γ × predLat (i) (10)

V. EVALUATION METHODOLOGY

We study the proposed two-level SPM based architec-

ture and Scratchpad Sensitive Scheduling on a VLIW

processor with four integer functional units, two floating

point functional units, one load/store unit, and one branch

unit. The VLIW processor has a global register file with

32 registers. The Trimaran compiler/simulator infrastruc-

ture [12] is used to evaluate the performance of the target

VLIW processor. Trimaran consists of a front-end com-

piler IMPACT, a back-end compiler ELCOR, and a

cycle-level VLIW processor simulator. Also, the energy

consumption data of the SPM and cache are obtained

using Cacti [13], which are incorporated into EPIC-

Explorer, a parameterized VLIW-based platform frame-

work for design space exploration [14] to report the total

energy consumption. The ILP equations and inequalities

were solved using a commercial ILP solver CPLEX [15].

The cache-based architecture uses the same processor with

the same configuration, except for the cache memory part.

The default value of latencies in different levels of

memories for the cache-based and the SPM-based archi-

tectures can be found in Table 1. The small values for the

L2 shared scratchpad memory are used for fetching

instructions/data of one or two words, as the SPMs do not

have to fetch a whole cache block, like the cache. LRU is

used as a cache replacement policy. Also, the write policy

of data cache is chosen as Write-Back and Write-Allocate.

The framework of the extended Trimaran infrastruc-

ture for evaluation our work is demonstrated in Fig. 5.

ELCOR outputs the memory objects information for set-

ting ILP objective function and constraints to assign

memory objects hotspots in scratchpad memories, which

is solved by a commercial ILP solver CPLEX [15]. The

results from the ILP solver were used by ELCOR again to

assist Scratchpad-Sensitive Scheduling, if enabled, and to

support the simulation by the Trimaran simulator. A

cache/SPM switcher is defined to switch the function of

our framework between the cache-based and scratchpad-

based architecture. Simulation results are also used by

EPIC-Explorer to generate an energy performance report.

Also, the EPIC-Explorer and Trimaran simulator were

extended to support both the cache-based and the SPM-

based architectures.

To comparatively evaluate our SPM-based architecture

and the cache-based architecture for real-time systems,

we selected eight real-time benchmarks (i.e., kernels)

from the MRTC real-time benchmark suite [16], the

salient characteristics of which are given in Table 2.

These benchmarks are either with the single fixed execu-

tion time, or with the variable execution time depending

on different inputs.

VI. EXPERIMENTAL RESULTS

A. Observed WCET and Energy Results

● WCET Comparison: Our performance evaluation

focuses on the observed WCET in terms of the number

of clock cycles, including the computation cycles,

the instruction cache stall cycles and the use stall

cycles. Also, we focus on the WCET on both scratch-

pad and cache memories. The comparison results are

shown in Fig. 6. All the WCET results of the cache-

Table 1. Configuration parameters and their values in the base
configuration of the simulated cache-based and SPM-based
architecture

Configuration parameter Value

Cache-based architecture

L1 Instruction/data cache LRU, 128 Bytes

16 Bytes cache line

1 Cycle latency

L2 Shared cache LRU, 256 Bytes

32 Bytes cache line

10 Cycles latency

Memory Unlimited size

100 Cycles latency (8 Words fetch)

SPM-based architecture

L1 Instruction/data SPM 128 Bytes

1 Cycle latency

L2 Shared SPM 256 Bytes

3 Cycles latency (1 Word Fetch)

5 Cycles latency (2 Words Fetch)

Memory Unlimited size

100 Cycles latency (8 Words fetch)

Fig. 5. The framework to evaluate our two-level SPM
architecture and SPM-based scheduling. SPM: scratchpad
memory, ILP: integer linear programming.

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 215-227

http://dx.doi.org/10.5626/JCSE.2014.8.4.215 222 Yu Liu and Wei Zhang

based architecture are normalized to that of the SPM-

based architecture. Thus, the performance of the

SPM-based architecture is better than that of the

cache-based architecture if the ratio is larger than 1,

and vice versa. From Fig. 6, we can observe that the

SPM based architecture performs better on all bench-

marks except lms and minver, compared to either the

best or the median WCET of the cache based archi-

tecture among all the four different associativity set-

tings.
● Energy Consumption Comparison: Our energy con-

sumption evaluation results consist of caches/SPMs

energy consumption, the main memory energy con-

sumption and the microprocessor energy consump-

tion. The comparison results are shown in Fig. 7. All

the energy dissipation results of the cache-based

architecture are normalized to that of the SPM-based

architecture. Thus, the energy consumption of SPM-

based architecture is better than the cache-based

architecture if the data is larger than 1, and vice

versa. From Fig. 7, we can observe that the SPM-

based architecture performs better on 75% bench-

marks compared to either the best or the median

energy consumption of the cache-based architecture

among the four different set associativities.

In summary, these experimental results show that the

proposed two-level SPM-based architecture has better

observed WCET and energy consumption than the cache-

based architecture in most cases. However, we also

observed a few cases where the cache-based architecture

performed better. Usually, if a benchmark does not have

significant hotspots, its performance on the SPM-based

architecture may not be as good as that of the cache-

based architecture. The reason is that, unlike SPMs that

are statically allocated, caches can dynamically reuse the

space by replacing old instructions/data. For example, the

benchmarks lms and minver consist of several loops with

similar sizes, which are short of significant hotspots and

thus lead to inferior performance. In detail, the memory

allocation method in this paper is a static-based one. Only

some of these loops can be fitted into the SPMs, because

we cannot load other loops into the SPMs during the run-

time. Additionally, the solution to this issue is actually

the dynamic based allocation method, discussed in our

previous paper [7].

Table 2. Salient characteristics of selected real-time benchmarks

Benchmark Description Path type Compute cycles Static instructions

compress A demonstration for data compression program Multiple paths 4438 429

crc A demonstration for CRC operation Multiple paths 25208 219

fdct Forward Discrete Cosine Transform Single path 2014 718

fft1 FFT using Cooly-Turkey algorithm Multiple paths 2894 508

lms An LMS adaptive signal enhancement Multiple paths 457557 663

ludcmp Simultaneous linear equations by LU decomposition Multiple paths 3138 305

minver Matrix inversion for 3x3 floating point matrix Multiple paths 1915 490

qsort Non-recursive version of quick sort algorithm Multiple paths 1769 276

CRC: cyclic redundancy check, FFT: fast Fourier transform, LMS: least mean square.

Fig. 6. The WCET comparison between the SPM-based and the
cache-based architectures, which are normalized to the WCET of
the SPM-based architecture (L1 size: 128 Bytes, L2 size: 256
Bytes). WCET: worst-case execution time, SPM: scratchpad
memory.

Fig. 7. The energy consumption comparison between the SPM-
based and cache-based architectures, which are normalized to
the energy consumption of the SPM-based architecture (L1 size:
128 Bytes, L2 size: 256 Bytes). SPM: scratchpad memory.

Two-Level Scratchpad Memory Architectures to Achieve Time Predictability and High Performance

Yu Liu and Wei Zhang 223 http://jcse.kiise.org

B. Sensitivity Study

To evaluate the size sensitivity of our SPM-based

architecture and the cache-based architecture, three pairs

of size settings in L1 and L2 memories were used in our

experiments, as shown in Table 3. The observed WCET

results on different size settings are shown in Fig. 8 for

the caches, and Fig. 10 for the SPMs. The energy con-

sumption results on different size settings are shown in

Fig. 9 for the caches, and Fig. 11 for the SPMs. Note that

the results of the cache-based architecture are the best

results among the four associativity settings. From these

figures, it can be seen that both the observed WCET and

energy consumption improved with the increase in mem-

ory size on both the SPM- and cache-based architectures.

Fig. 12 shows the difference between the observed

WCET of cache- and SPM-based architectures. Also,

Fig. 13 demonstrates the energy consumption difference

between the cache- and SPM-based architectures. All

results were normalized to the performance of the SPM-

based architecture. However, because the improvement

rate of these two architectures on the same benchmark

with the increase of the cache/SPM size is not the same,

their performance difference does not always follow the

increase of the SPM/cache size. The exact performance

of the SPM-based architecture is determined by whether

there are outstanding hotspots in the program and the

exact size of hotspots, because we used the static memory

objects allocation algorithm to maintain the time predict-

ability. Also, different benchmarks have different best

SPM working sizes, which depend on the exact size of

their significant hotspots. Basically, if the SPM size

almost fits the size of hotspots, the benchmark has the

best performance on this size of SPM. For example, the

benchmark compress performs best on the size setting 2

from Figs. 12 and 13. If the size of the SPM is larger than

Table 3. Size settings of the cache-based and SPM-based
architectures (unit: Bytes)

Level Setting 1 Setting 2 Setting 3

L1 Inst. 128 256 512

L1 Data 128 256 512

L2 Shared 256 512 1024

Fig. 9. The energy consumption comparison between the
caches with different size settings (S1: size setting 1, S2: size
setting 2, S3: size setting 3).

Fig. 11. The energy consumption comparison between the
SPMs with different size settings (S1: size setting 1, S2: size
setting 2, S3: size setting 3). SPM: scratchpad memory.

Fig. 8. The observed WCET comparison between the caches
with different size settings (S1: size setting 1, S2: size setting 2, S3:
size setting 3). WCET: worst-case execution time.

Fig. 10. The observed WCET comparison between the SPMs
with different size settings (S1: size setting 1, S2: size setting 2, S3:
size setting 3). WCET: worst-case execution time, SPM: scratchpad
memory.

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 215-227

http://dx.doi.org/10.5626/JCSE.2014.8.4.215 224 Yu Liu and Wei Zhang

the size of hotspots, some non-hotspots will be allocated

to the SPM. On the other hand, if the size of the SPM is

smaller than the size of hotspots, some hotspots cannot be

allocated to the SPM. Therefore, both cases will limit the

performance of the SPM compared to that of the cache.

C. Why Two-Level SPMs?

We also evaluated the improvement of our two-level

SPM-based architecture by comparing it to the perfor-

mance and energy efficiency of the one-level SPM archi-

tecture, which has larger L1 instruction and data scratchpad

memories but does not have the L2 scratchpad. In this

one-level SPM-based architecture, the total size of its

level-one instruction and data SPMs is equal to the sum

of the sizes of SPMs (i.e., L1 instruction, L1 data and L2

SPMs) in a two-level SPM architecture. More specifi-

cally, the size of the L1 SPMs were set as 128 bytes for

each of the instruction and data SPM, and the L2 scratch-

pad size was set as 256 bytes in the two-level architec-

ture, and the size of L1 SPMs was set as 256 bytes for the

instruction and data in the one-level SPM architecture,

respectively. Because the size of L1 SPMs in the one-

level architecture is enlarged, they have larger latencies

than the small SPMs used in the two-level architecture. In

this experiment, the latency of large L1 SPMs in the one

level architecture is set as the same as the latency of the

L2 scratchpad in the two-level architecture, since their

size is the same. It should be noted that in high-perfor-

mance microprocessors, the L1 caches are typically kept

small because a larger L1 caches often result in longer L1

cache access latency, which is also another reason that

Fig. 12. The difference between the observe WCET of caches
and SPMs under different size settings (S1: size setting 1, S2: size
setting 2, S3: size setting 3). WCET: worst-case execution time,
SPM: scratchpad memory.

Fig. 13. The energy consumption difference between the
caches and SPMs under different size setting (S1: size setting 1,
S2: size setting 2, S3: size setting 3). SPM: scratchpad memory.

Fig. 14. One-level SPM-based architecture. SPM: scratchpad
memory.

Fig. 15. The observed WCET comparison between the one-level
and two-level SPM-based architecture. WCET: worst-case
execution time, SPM: scratchpad memory.

Fig. 16. The energy consumption comparison between the
one-level and two-level SPM-based architecture.

Two-Level Scratchpad Memory Architectures to Achieve Time Predictability and High Performance

Yu Liu and Wei Zhang 225 http://jcse.kiise.org

those processors often employ a larger L2 cache while

keeping the L1 caches small.

The performance comparison results are presented in

Fig. 15, and the energy consumption comparison results

are demonstrated in Fig. 16. The data are normalized to

the execution time and energy consumption of a two-

level SPM-based architecture, respectively. We can

observe that both the performance and energy consump-

tion of a two-level architecture are better than those of a

one-level SPM architecture, indicating the advantage of

adding an L2 SPM instead of using large L1 SPMs. We

also notice that the benchmark fdct showed only slight

performance improvements. The reason is that the size of

hotspots in this benchmark was larger than with the L1

SPM size. Thus, they can only be allocated to the L2

scratchpad in the two-level architecture, which limits the

performance improvement.

D. Results of Scratchpad Sensitive Scheduling

Our experimental results of Scratchpad Sensitive Sched-

uling are shown in Tables 4–6 for different cache/SPM

size settings, respectively. As in our analysis in Subsec-

tion IV-A, our Scratchpad Sensitive Scheduling may

improve the computation and Use Stall Cycles if there is

flexibility in scheduling. Among our eight real-time

benchmarks, we observed four with obvious Use Stall

Cycles, which have possibility of being improved by our

scheduling algorithm. From Tables 4–6, we find that 75%

of these four benchmarks did show performance

improvement. The maximum improvement of computa-

tion cycles is about 3.9%, and the maximum improve-

ment of use stall cycles is about 10%.

Also, we observe larger improvements in Use Stall

Cycles on the benchmarks with originally large Use Stall

Cycles (e.g., the benchmarks lms and ludcmp), while

there is almost no improvement on the benchmarks with

originally small Use Stall Cycles (e.g., the benchmarks

compress and crc). The reason is that for benchmarks

with more original Use Stall Cycles, the compiler is more

likely to set the Load-to-Use Distance to reduce the Use

Stall Cycles. In contrast, there is less room for the com-

piler to reduce the Use Stall Cycles for benchmarks with

originally small Use Stall Cycles.

Table 4. The comparison of performance improvement of Scratchpad Sensitive Scheduling (L1 size: 128 Bytes, L2 size: 256 Bytes)

Benchmark Scratchpad (Default) Scratchpad (SSS) Difference

256-128 Computation Use Stall Computation Use Stall Diff (C) Diff (U)

compress 4438 294 4389 294 0.989 1.000

crc 25208 984 25208 984 1.000 1.000

lms 457557 121527 452632 113346 0.989 0.933

ludcmp 3138 2698 3017 2554 0.961 0.947

Table 5. The comparison of performance improvement of Scratchpad Sensitive Scheduling (L1 size: 256 Bytes, L2 size: 512 Bytes)

Benchmark Scratchpad (Default) Scratchpad (SSS) Difference

512-256 Computation Use Stall Computation Use Stall Diff (C) Diff (U)

compress 4438 1176 4389 1176 0.989 1.000

crc 25208 984 25208 984 1.000 1.000

lms 457557 81802 456850 73621 0.998 0.900

ludcmp 3138 3223 3017 3169 0.961 0.983

Table 6. The comparison of performance improvement of Scratchpad Sensitive Scheduling (L1 size: 512 Bytes, L2 size: 1024 Bytes)

Benchmark Scratchpad (Default) Scratchpad (SSS) Difference

1024-512 Computation Use Stall Computation Use Stall Diff (C) Diff (U)

compress 4438 1335 4389 1335 0.989 1.000

crc 25208 329 25208 329 1.000 1.000

lms 457557 136403 456853 129461 0.998 0.949

ludcmp 3138 3336 3017 3336 0.961 1.000

Journal of Computing Science and Engineering, Vol. 8, No. 4, December 2014, pp. 215-227

http://dx.doi.org/10.5626/JCSE.2014.8.4.215 226 Yu Liu and Wei Zhang

VII. CONCLUSIONS

In this paper, we propose a time-predictable two-level

SPM-based architecture, and use an ILP-based static

memory objects assignment algorithm to maintain the

characteristic of time predictability. Both the perfor-

mance and energy consumption of our SPM-based archi-

tecture are compared quantitatively with a cache-based

architecture. Also, we studies the Scratchpad Sensitive

Scheduling to further improve the performance of our

proposed architecture. Our experimental results indicated

that our proposed SPM-based architecture performed bet-

ter than the cache-based architecture for the majority of

benchmarks we assessed.

In future work, we would like to assess time-predict-

able dynamic SPM allocation schemes for multi-level

SPMs. Also, we plan to extend the scope of the Scratch-

pad Sensitive Scheduling using trace-based scheduling or

superblock/hyperblock scheduling while keeping time-

predictability.

REFERENCES

1. L. Wehmeyer and P. Marwedel, “Influence of onchip scratch-

pad memories on WCET prediction,” in Proceedings of the

4th International Workshop on Worst-Case Execution Time

(WCET) Analysis, Sicily, Italy, 2004, p. 1-4.

2. O. Avissar, R. Barua, and D. Stewart, “An optimal memory

allocation scheme for scratch-pad-based embedded systems,”

ACM Transactions on Embedded Computing Systems, vol. 1,

no. 1, pp. 6-26, 2002.

3. S. Steinke, L. Wehmeyer, B. S. Lee, and P. Marwedel,

“Assigning program and data objects to scratchpad for

energy reduction,” in Proceedings of the Design, Automa-

tion and Test in Europe Conference and Exhibition, Paris,

France, 2002, pp. 409-415.

4. J. F. Deverge and I. Puaut, “WCET-directed dynamic scratch-

pad memory allocation of data,” in Proceedings of the 19th

Euromicro Conference on Real-Time Systems (ECRTS2007),

Pisa, Italy, 2007, pp. 179-190.

5. S. Metzlaff, S. Uhrig, J. Mische, and T. Ungerer, “Predictable

dynamic instruction scratchpad for simultaneous multi-

threaded processors,” in Proceedings of the 9th Workshop on

MEmory Performance: DEaling with Applications, Systems

and Architecture (MEDEA2008), Toronto, Canada, 2008, pp.

38-45.

6. R. Banakar, S. Steinke, B. S. Lee, M. Balakrishnan, and P.

Marwedel, “Comparison of cache-and scratch pad based

memory systems with respect to performance, area and

energy consumption,” Technical Report 762, University of

Dortmund, Germany, 2001.

7. Y. Liu and W. Zhang, “Exploiting multi-level scratchpad

memories for time-predictable multicore computing,” in

Proceedings of the IEEE 30th International Conference on

Computer Design (ICCD2012), Montreal, Canada, 2012, pp.

61-66.

8. R. Banakar, S. Steinke, B. S. Lee, M. Balakrishnan, and P.

Marwedel, “Scratchpad memory: design alternative for cache

on-chip memory in embedded systems,” in Proceedings of

the 10th International Symposium on Hardware/Software

Codesign (CODES2002), Estes Park, CO, 2002, pp. 73-78.

9. J. Whitham and N. Audsley, “Implementing time-predict-

able load and store operations,” in Proceedings of the 7th

ACM International Conference on Embedded Software

(EMSOFT2009), Grenoble, France, 2009, pp. 265-274.

10. T. Lundqvist and P. Stenstrom, “Timing anomalies in

dynamically scheduled microprocessors,” in Proceedings of

the 20th Real-Time Systems Symposium, Phoenix, AZ, 1999,

pp. 12-21.

11. C. R. Hardnett, K. V. Palem, R. M. Rabbah, and W. F.

Wong, “Scheduling load operations on VLIW machines,”

Technical Report GITCC-01-015, Georgia Institute of Tech-

nology, Atlanta, GA, 2001.

12. Trimaran, http://www.trimaran.org.

13. P. Shivakumar and N. P. Jouppi, “Cacti 3.0: an integrated

cache timing, power, and area model,” Technical Report

2001/2, Compaq Computer Corporation, Harris County, TX,

2001.

14. G. Ascia, V. Catania, M. Palesi, and D. Patti, “EPIC-

Explorer: a parameterized VLIW-based platform framework

for design space exploration,” in Proceedings of the 1st

Workshop on Embedded Systems for Real-Time Multimedia

(ESTImedia), Newport Beach, CA, 2003, pp. 65-72.

15. CPLEX, http://www.ilog.com/products/cplex/.

16. Mälardalen Real-Time Research Center, “WCET project -

benchmarks,” http://www.mrtc.mdh.se/projects/wcet/bench-

marks.html.

Two-Level Scratchpad Memory Architectures to Achieve Time Predictability and High Performance

Yu Liu and Wei Zhang 227 http://jcse.kiise.org

Yu Liu

Yu Liu is currently a research scientist in Canadian Nuclear Laboratories (was Atomic Energy of Canada Ltd.).
He received his B.S. and M.S. degrees from Sichuan University, China in 2000 and 2003 respectively, and Ph.D.
degree from Southern Illinois University Carbondale in 2011. He worked in Motorola from 2003 through
2007, and IBM from 2011 through 2013. Also, he had two summer research works in Pacific Northwest
National Lab, U.S. Department of Energy in 2009 and 2010, respectively. His research interest includes real-
time system, wireless sensor network, cyber-physical system and high performance computing.

Wei Zhang

Wei Zhang is a professor in the Department of Electrical and Computer Engineering at Virginia
Commonwealth University. Dr. Wei Zhang received his Ph.D. from the Pennsylvania State University in 2003.
From August 2003 to July 2010, Dr. Zhang worked as an assistant professor and then as an associate
professor (tenured) at Southern Illinois University Carbondale. His research interests are in embedded and
real-time computing systems, computer architecture, compiler, and low-power systems. Dr. Zhang has
received the 2009 SIUC Excellence through Commitment Outstanding Scholar Award for the College of
Engineering, and 2007 IBM Real-time Innovation Award. Dr. Zhang has received 5 research grants from the
National Science Foundation. In addition, his research and educational efforts have been supported by
industry including leading IT companies such as IBM, Intel, Motorola, and Altera. Dr. Zhang has published
more than 120 papers in refereed journals and conference proceedings. He is a senior member of the IEEE,
and an associate editor of the Journal of Computing Science and Engineering. He has served as a member of
the organizing or program committees for several IEEE/ACM international conferences and workshops.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

