
Copyright 2015. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 9, No. 1, March 2015, pp. 1-8

Efficient Accessing and Searching in a Sequence of Numbers

Jungjoo Seo and Myoungji Han

Department of Computer Science and Engineering, Seoul National University, Seoul, Korea

jjseo@theory.snu.ac.kr, mjhan@theory.snu.ac.kr

Kunsoo Park*

Department of Computer Science and Engineering and Korea Institute of Computer Technology, Seoul National University,

Seoul, Korea

kpark@theory.snu.ac.kr

Abstract
Accessing and searching in a sequence of numbers are fundamental operations in computing that are encountered in a

wide range of applications. One of the applications of the problem is cryptanalytic time-memory tradeoff which is aimed

at a one-way function. A rainbow table, which is a common method for the time-memory tradeoff, contains elements

from an input domain of a hash function that are normally sorted integers. In this paper, we present a practical indexing

method for a monotonically increasing static sequence of numbers where the access and search queries can be addressed

efficiently in terms of both time and space complexity. For a sequence of n numbers from a universe U = {0, ..., m − 1},

our data structure requires n lg(m/n) + O(n) bits with constant average running time for both access and search queries.

We also give an analysis of the time and space complexities of the data structure, supported by experiments with rainbow

tables.

Category: Smart and intelligent computing

Keywords: Data structure; Access/search; Rank/select; Time-memory tradeoff

I. INTRODUCTION

Given a monotonically increasing sequence A of n

numbers from a finite universe U = {0, ..., m − 1} of car-

dinality m, let us consider the following two queries.

● access(i) : return the i-th number in A.
● search(x) : return an index i such that A[i] = x and −1

otherwise.

We want to answer these two queries efficiently while

consuming as little space as possible on the word RAM

model with the word size Θ(lg m) bits.

One of the applications of the problem is cryptanalytic

time-memory tradeoff (TMTO) which is aimed at a one-

way function. In TMTO, a number of huge tables of inte-

gers are generated and stored in non-decreasing order.

Storing a sorted sequence of integers is exactly the prob-

lem we want to address in this paper. There are numerous

areas beyond TMTO that encounter the integer indexing

problems, such as database, text indexing, and social net-

work graphs [1].

There are several data structures that represent a

Received 24 December 2014; Revised 13 February 2015; Accepted 17 February 2015

*Corresponding Author

†A preliminary version of this paper was presented at the 17th Japan-Korea Joint Workshop on Algorithms and Computations (WAAC 2014).

Open Access http://dx.doi.org/10.5626/JCSE.2015.9.1.1 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 9, No. 1, March 2015, pp. 1-8

http://dx.doi.org/10.5626/JCSE.2015.9.1.1 2 Jungjoo Seo et al.

sequence of numbers [2–8]. The wavelet tree represents a

sequence of numbers from the range [1..r] supporting

access, rank, and select in O(lg r) time where r = O(poly-

log(n)). Here, rankc(p, V) returns the number of c’s up to

position p in V and selectc(j, V) returns the position of the

j-th c in V. Ferragina et al. [8] improved the time com-

plexity to constant time using nH0(A) + O(n) bits where

H0(A) is the zero-order empirical entropy of A. Brodnik

and Munro [4] presented a succinct data structure that

supported search in constant time with the space require-

ment of B + O(B) bits where B = is the informa-

tion-theoretic lower bound of space that is needed to

store a set of n elements from a universe of size m. Pagh’s

data structure [5] achieved constant time with the improved

space of B + O(n) bits. Raman et al. [7] gave a succinct

data structure that also supported rank/select operations.

In this paper, we show that there is a simple data struc-

ture that indexes a non-decreasing sequence of integers to

support not only a membership query but also a random

access operation. We also give an analysis for the time

and space complexity of the data structure. The average

running time of the two operations is constant, assuming

that select is done in constant time, and the required

space is n lg(m/n) + O(n). While theoretical succinct data

structures in the literature are very complex to imple-

ment, the data structure explained in Section III is simple

to implement. In Section IV, we give an improved data

structure to support multisets, exploiting the idea of [7].

Because our data structures are based on rank/select, we

adopted multiple implementations of rank/select data

structures [7, 9, 10] and the experimental results are pre-

sented in Section V. To verify practicality, we tested our

data structures on rainbow tables.

II. PRELIMINARIES

Here, we introduce a simple method to index a mono-

tonically non-decreasing sequence A from U that is

explained in [11, 12]. This method will be called Sindex

throughout the paper. We denote m as the size of U and n

as the size of A. Then we can represent any element of U

with bits. Consider the s most significant bits of

each number in A where s ≤ lg n. For each integer 0 ≤ i <

2
s
, if we can locate the boundaries of the maximal subar-

ray A[l..h] that contains numbers having i as a prefix of

their binary representation, the numbers can be stored

with least significant bits without loss of

information. To directly determine the boundaries, we

build an index table I. An index table I contains 2
s ele-

ments of size bits each, and I[i] is the smallest

number j such that the s most significant bits of A[j] is

greater than or equal to i. With the index table I and the

reduced integer array R of n numbers of size

bits each, all elements in A are stored without loss of

information.

A. Access

To retrieve the value of A[i] for access(i), suppose A[i]

is the concatenation of two bit strings q and r of size s and

 bits, respectively. To compute q, we search I

for the position of the largest number that is smaller than

or equal to i. r can be obtained by directly accessing the

reduced array R. Because the number of elements in I is

2
s
, access(i) requires O(s) time with the index table.

B. Search

Let x be the given number to search for. Also, let x be

the concatenation of two bit strings xq and xr where the

sizes of xq and xr are s and bits, respectively.

First, we have to find the boundaries l and h of the maxi-

mal subarray so that all the elements in A[l..h] have xq as

their prefixes. l can be obtained by accessing I[xq], and h

is simply I[xq + 1] − 1. Note that if there are no numbers

of the prefix xq in A, then h = l − 1, which indicates that x

does not exist. After l and h where l ≤ h are computed, we

can determine the existence and the position of x by find-

ing the xr in R using binary search.

C. Space Requirement

The number of bits required for the index table method

is the sum of bits for two components I and R. The spaces

for I and R are and , respectively.

We set s to to minimize the space require-

ment for the whole data structure. Thus, the total space is

.

D. Time Complexity

To analyze the time complexity of access and search,

we set s to to minimize the space require-

ment. The required time for access is O(s) = O(lg n) since

binary search on the I table of size 2
s takes O(lg 2

s
) and

accessing R takes O(1). For search, we analyze the time

complexity in the average case assuming that each ele-

ment of A is chosen uniformly at random from U.

THEOREM 1. Assume Sindex and each element of A is

randomly chosen from U. Given a number x ∈ U, the

binary search on R in search can be done in O(lg lg n)

time in the average case.

Proof. Consider a fixed element x ∈ U to search for.

Now imagine choosing n numbers from U to construct A.

Let Xi, 1 ≤ i ≤ n, be a random variable such that Xi = 1 if

the i-th chosen number has the same prefix of size s with

that of x, and Xi = 0 otherwise. Let X = X1 + ... + Xn, i.e., X

is the random variable that represents the number of ele-

ments in A that have the same prefix as that of x. X is the

size of subarray to perform binary search in search. When

a number is chosen randomly from U, the probability that

lg m

n⎝ ⎠
⎛ ⎞

lg m

lg m s–()

lg n

lg m s–()

lg m s–()

lg m s–

2
s
lg n n lg m s–()

lg n lg lg n–

O n lg m
n
---- lg lg n+()()

lg n lg lg n–

Efficient Accessing and Searching in a Sequence of Numbers

Jungjoo Seo et al. 3 http://jcse.kiise.org

its prefix equals to that of x is 1/2s = . Thus Xi

is a Bernoulli random variable with p = .

Because Xi’s are independent and identically distributed

random variables, X is a binomial random variable with

parameters n and p = . Thus, E[X] = np =

. By Jensen’s inequality [13],

≤

=

≤

= lg lg n + 1

= O(lg lg n)

□

III. PRACTICAL INDEXING

In this section, a more efficient data structure with

respect to time and space complexity is explained. The

improved data structure will be called Pindex throughout

this paper. To improve the space efficiency of the index

table of Sindex, we adopt a unary index scheme from

Elias [14] and Fano [15] that is used frequently in the lit-

erature [16, 17]. As in Section II, prefixes of a fixed

length of each number in the given sequence are used to

construct an index. To make the content complete, we

first explain the representation from [14] and give the

analyses of time and space complexity.

Given a monotonically increasing sequence A of n

numbers from a finite universe U , let z = and the

quotient qi be the z most significant bits of A[i] and the

remainder ri be the least significant bits. Note

that the sequence of qi is also monotonically non-decreas-

ing, i.e., 0 ≤ qi ≤ qi+1 < 2
z for 1 ≤ i < n. The remainders r1,

..., rn are stored in table R by simply concatenating them

using bits. To store the quotients q1, ..., qn,

we use the unary representation for the differences of the

consecutive quotients. More specifically, qi is encoded to
 1 where q0 = 0 and 0

x is the bit string consisting of

x zeros. The encoded quotients are concatenated to a sin-

gle bit string Q. Q requires at most 2n bits, because the

number of 1s is n and the number of 0s is at most 2z ≤ n.

Note that the number of 1s is greater than or equal to that

of 0.

Before we proceed with the analysis, let us briefly

introduce rank and select, because they are performed on

the bit string Q for access and search. Rank and select on

a bit vector V are defined as follows.

● rankc(p, V) : return the number of c’s up to position p

in V.

● selectc(j, V) : return the position of the j-th c in V.

c can be any of 0 or 1. There has been extensive

research on the rank/select data structure in the literature

that aims to achieve optimality of time and space theoret-

ically [7] or to give practical implementations with plen-

tiful experiments [9, 10, 18-20].

A. Access

We perform the same procedure that was introduced in

[17]. Given a query access(i), qi and ri need to be com-

puted to obtain A[i]. To compute qi, we first compute the

position of the i-th 1 in Q, and then calculate the number

of 0s up to the position of the i-th 1 in Q. Because the

number of 0s before the i-th 1 is , qi is the

number of 0s up to the i-th 1 in Q. Thus, qi = select1(Q, i) − i.

ri can be obtained by accessing R directly. The required

time for access is O(se) where se is the cost of a select.

B. Search

Given a query search(x) where x ∈ U, let q and r be the

quotient and the remainder of x, respectively. As in Sec-

tion II, we first determine the boundaries l and h of the

maximal subarray so that all the numbers in A[l..r] have q

as their prefixes. If such a subarray exists, the first q

occurrences of 0 should be followed by 1 and the size of

the subarray is equal to the number of consecutive 1s fol-

lowing the q-th 0. Thus letting i and j be select0(Q, q) and

select0(Q, q + 1), respectively, l and h are computed by

l = i − q + 1 and h = l + j − i − 1. Note that h = l − 1 if

there is no number that has q as its prefix A. Once we

compute the boundary, the subarray R[l..h] is searched

for r by binary search.

THEOREM 2. Assume P index and each element of A is

randomly chosen from U. Given a number x ∈ U, the

binary search on the remainder table R in search can be

done in O(1) time in the average case.

Proof. Consider the random variable X in Section II-D.

Because the p = 1/2z = , E[X] = . By

Jensen’s inequality, E[lg X] = O(1). □

COROLLARY 1. Search for a given number x ∈ U

requires O(se) time in the average case where se is the

cost for select on Q.

C. Space Requirement

The data structure explained in Section III consists of

three components: table R, bit string Q and an auxiliary

data structure to support select on Q. To store table R, we

need bits. Q requires at most 2n bits.

Thus, the total space requirement depends on the data

structure that is chosen to support select on Q. Let L(u, l)

be the required space to support select on a bit string of

1 2⁄
lg n lg lg n–

1 2⁄
lg n lg lg n–

1 2⁄
lg n lg lg n–

n 2⁄
lg n lg lg n–

E lg X[] lg E X[]

lg n

2
lg n lg lg n–

lg n

2
lg n lg– lg n 1–

lg n

lg m z–

n lg m z–()

0
q
i
q
i 1–

–

Σk=1

i
qi qi 1––

1 2⁄
lg n

n 2⁄
lg n

n lg m lg n–()

Journal of Computing Science and Engineering, Vol. 9, No. 1, March 2015, pp. 1-8

http://dx.doi.org/10.5626/JCSE.2015.9.1.1 4 Jungjoo Seo et al.

length l that contains u ones. Then the total space require-

ment is . There are

many data structures in the literature that support select

[10]. Although the space requirements of their implemen-

tations differ, one can construct the auxiliary data struc-

ture using extra space less than the size of Q. Thus, we

can say that L(n, 2n) is O(n). By omitting ceilings and

floors, the space complexity becomes

.

IV. MULTISET

While the Pindex data structure can accommodate

multisets, there can be high redundancy in an R table. We

show another data structure the Mindex that reduces the

space requirement in the case of multisets by the tech-

nique used in [7]. Let SA be the set that has elements of a

monotonically increasing sequence A of size n, and P be

a bit vector of length n where P[i] is 0 if A[i] = A[i − 1] and

1 otherwise. Then we build a Pindex of SA and a rank/

select data structure of P for 1 bits. The i-th elements of A

can be obtained by performing access(rank1(P, i)) on SA
using Pindex. To address search(x) on A, we first com-

pute i = search(x) using Pindex of SA, and get select1(P, i).

COROLLARY 2. Mindex requires bits

where is the average repeated times of the ele-

ments in A.

V. EXPERIMENTAL RESULTS

In the experiment, we measured the average size of

range for binary search on the R array for search to verify

the theorems that we proved, and tested the actual run-

ning time of access and search. The space requirement

was also measured. The average binary search range on

the R array does not depend on the implementation of

rank/select data structure whereas the running time and

space requirement do. In addition, we show the improve-

ment of Mindex on the space requirement in case of mul-

tisets. To demonstrate the efficiency of Pindex and Mindex

in the real world, we conducted an experiment with rain-

bow tables. Various implementations of rank/select data

structures were used for the experiment [7, 9, 10]. The

implementation of [9], [10] and [7] are referred to as Kim,

Vigna, and RRR, respectively. For RRR, we adopted the

SDSL-Lite library [21], which implements RRR using

techniques described in [19] and [20].

Table 1 shows the average size of range for binary

search on R table for search with various sizes of

sequences. For each sequence size, random sequences are

generated on three different integer distributions: uniform,

normal and exponential. To generate a random number,

we randomly chose a real number between 0 and 1, and

then multiplied it by 240. The mean and standard devia-

tion for the normal distribution are chosen to 0.5 and

0.05, respectively. The λ for the exponential distribution

was set to 6. The average size of range for binary search

on R table for search is measured by performing search a

million times with numbers that are chosen from the uni-

verse. As we expected from the theorems, the average

range size for Pindex is constant while it increases as n

grows for Sindex. Note that the average size increases lin-

early with lg n. It increases discretely because we use

rounding function for computing s in Sindex.

The space requirement for each implementation is

shown in Fig. 1. All implementations of Pindex consume

less space than Sindex. Among the rank/select data struc-

tures, the RRR implementation shows the best perfor-

mance in terms of space requirement. For the sequence of

size 228, the RRR-based Pindex shows about 31% perfor-

mance improvement compared with Sindex in terms of

space requirement.

The measured running time of access is presented in

Fig. 2. The x-axis is the sizes of sequences and y-axis is

the time taken to perform a million accesses. As can be

seen, all Pindex’s except RRR took less time than Sindex.

O n() n lg m lg n–() L n, 2n()+ +

n lg m
n
---- O n()+

n

k
--- lg mk

n
-------⎝ ⎠
⎛ ⎞ O n()+

k n

SA

-------=

Table 1. The average size of range for binary search on R table for search with various values of n where the size of universe is 240

n

Sindex Pindex

Uniform Normal Exponential Uniform Normal Exponential

22 1.999 2.000 2.001 1.499 1.624 1.500

24 3.999 3.998 4.002 1.626 1.499 1.435

26 7.998 8.006 8.012 1.690 1.594 1.376

210 15.997 16.013 15.984 1.642 1.567 1.433

214 15.998 16.003 15.998 1.633 1.573 1.428

218 31.999 31.976 31.973 1.634 1.570 1.434

222 32.012 32.041 32.030 1.632 1.569 1.433

226 31.993 32.028 31.939 1.631 1.569 1.433

Efficient Accessing and Searching in a Sequence of Numbers

Jungjoo Seo et al. 5 http://jcse.kiise.org

The difference becomes bigger when the size of sequence

increases. There was no noticeable difference amongst

three implementations of Pindex apart from RRR. RRR

showed the worst performance, because select of RRR

implementation [21] has O(lg n) complexity rather than

constant time described in [7], where n is size of sequence.

Similarly, Fig. 3 presents the measured running time of

search. Theoretically, search of Sindex has O(lg n) time

complexity while Vigna, and Kim have constant complex-

ity. Nevertheless, the results showed no remarkable dif-

ference amongst them. This is because the range of binary

search in search of Sindex is negligibly small compared

to the size of a sequence (see Table 1). RRR again showed

the worst performance, because select takes O(lg n) in the

implementation of RRR [21] which is invoked twice in

search.

Table 2 shows the measured space requirements and

running time of access and search of Pindex and Mindex

on randomly generated multisets of size 226 from a uni-

verse of size 248. For the rank/select data structure, we

chose RRR and Vigna that showed efficiency in space and

time, respectively. The running time was measured by

performing access and search 10 million times with ran-

dom queries. The value of improvement in Table 2 is the

ratio of the space requirement of Pindex to that of Mindex

with the same rank/select data structure. Because the size

of the R table takes a dominant proportion of the space

requirement, Mindex shows much better efficiency in

space compared with Pindex in the case of multisets. Also,

as the average redundancy grows, the space requirement

decreases. The running times of Mindex for both access

and search are slightly longer than those of Pindex because

of there is one more rank and select invocation in access

and search, respectively.

To demonstrate that the Pindex and Mindex are effi-

cient in real-world applications, we tested the two data

structures on rainbow tables. A rainbow table is one of

the cryptanalytic time/memory tradeoff methods that

aims to invert cryptographic hash functions. In a rainbow

table, elements from an input domain of a hash function

which are normally represented as integers are stored in

sorted order. There are two types of rainbow tables: perfect

and non-perfect. All elements in a perfect rainbow table

are distinct while a non-perfect rainbow table may contain

repeated elements. The rainbow tables that were used in

the experiment were generated to invert SHA-1 hash

function, and the input domain is a set of strings of length

from 1 to 8 with lowercase, uppercase and digits. The

size of the input domain is 221,919,451,578,090 ≈ 247.657.

Table 3 shows the measured running time of access

and search, and space requirements for Sindex and Pindex

data structure for a perfect rainbow table of 80,517,490

distinct elements. Because a perfect rainbow table is a

set, we do not consider Mindex here. Regardless of the

choice of a rank/select data structure, Pindex consumes

less space than Sindex as we expected. Although RRR has

a disadvantage in run time, it outperforms in terms of the

space requirement.

Fig. 1. Space requirement for Sindex and all implementations
for Pindex.

Fig. 2. Time for access for Sindex and all implementations for
Pindex.

Fig. 3. Time for search for Sindex and all implementations for
Pindex.

Journal of Computing Science and Engineering, Vol. 9, No. 1, March 2015, pp. 1-8

http://dx.doi.org/10.5626/JCSE.2015.9.1.1 6 Jungjoo Seo et al.

To test the performance of Mindex, two non-perfect

rainbow tables of size 80,530,636 and 202,331,368 were

used for the experiment. A real number below the size of

a multiset is the average redundancy of each table. The

value of improvement is the ratio of the space of Sindex

to each of Pindex and Mindex data structure. As shown in

the table, all Pindex and Mindex achieved better perfor-

mance in space compared with Sindex, and Mindex con-

Table 2. The measured running time of access and search (seconds), and the space requirement (megabytes) for multisets of various
average redundancies

Average redundancy 1 2 3 4

Pindex

RRR

Access 15.28 14.74 14.82 13.60

Search 27.28 26.22 26.25 24.76

Space (MB) 1425.37 1425.24 1425.14 1425.05

Vigna

Access 5.96 5.11 4.47 4.77

Search 6.73 5.98 6.13 5.64

Space (MB) 1664.00 1664.00 1664.00 1664.00

Mindex

RRR

Access 21.02 21.31 20.36 19.88

Search 36.86 36.88 36.2 35.23

Space (MB) 1474.11 779.73 523.73 409.45

Improvement 0.97 1.83 2.72 3.48

Vigna

Access 7.21 5.21 4.87 4.43

Search 9.17 7.54 6.73 6.32

Space (MB) 1779.57 988.77 713.23 575.15

Improvement 0.94 1.68 2.33 2.89

The sizes of multisets and the universe are 2
26
 and 2

48
, respectively.

Table 3. The measured running time of access and search (seconds), and the space requirement (megabytes) for a perfect rainbow table
that consists of 80,517,490 elements

Sindex
Pindex

RRR Vigna

Access 5.94 15.80 5.80

Search 7.84 28.10 6.85

Space (MB) 1666.54 1245.71 1486.35

Table 4. The measured running time of access and search (seconds), and the space requirement (megabytes) for two non-perfect
rainbow tables

Size of multiset Operation Sindex
Pindex Mindex

RRR Vigna RRR Vigna

80,530,636 (1.83)

Access 7.79 16.20 5.68 23.05 6.55

Search 6.42 28.30 6.62 39.74 8.62

Space (MB) 1666 1245 1486 734 1004

Improvement - 1.34 1.12 2.27 1.66

202,331,368 (2.51)

Access 9.47 17.10 6.69 23.97 7.30

Search 6.66 29.70 7.60 41.93 9.87

Space (MB) 3971 2932 3488 1271 1872

Improvement - 1.35 1.62 2.31 1.86

Efficient Accessing and Searching in a Sequence of Numbers

Jungjoo Seo et al. 7 http://jcse.kiise.org

sumes much less space than Pindex with both rank/select

data structure.

VI. CONCLUSIONS

In this paper, we introduced two fundamental operations

on a non-decreasing sequence of numbers and showed

that there are efficient data structures with respect to both

time and space complexity. The running times of both

operations are proven to take constant time assuming that

the numbers are chosen uniformly at random from their

universe. We also showed that these data structures are

practically efficient by performing experiments on real-

world data, e.g., rainbow tables for cryptanalytic time-

memory tradeoff. It would be interesting to find more

applications of these data structures.

ACKNOWLEDGMENTS

This research was supported by Next-Generation In-

formation Computing Development Program through the

National Research Foundation of Korea funded by the

Ministry of Science, ICT & Future Planning (2011-

0029924).

REFERENCES

1. M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu,

T. Jackson, et al., “Unicorn: a system for searching the social

graph,” Proceedings of the VLDB Endowment, vol. 6, no. 11,

pp. 1150-1161, 2013.

2. A. C. C. Yao, “Should tables be sorted?” Journal of the

ACM, vol. 28, no. 3, pp. 615-628, 1981.

3. M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a

sparse table with 0(1) worst case access time,” Journal of

the ACM, vol. 31, no. 3, pp. 538-544, 1984.

4. A. Brodnik and J. I. Munro, “Membership in constant time

and almost-minimum space,” SIAM Journal on Computing,

vol. 28, no. 5, pp. 1627-1640, 1999.

5. R. Pagh, “Low redundancy in static dictionaries with con-

stant query time,” SIAM Journal on Computing, vol. 31, no.

2, pp. 353-363, 2001.

6. L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter, “When

indexing equals compression: experiments with compressing

suffix arrays and applications,” ACM Transactions on Algo-

rithms, vol. 2, no. 4, pp. 611-639, 2006.

7. R. Raman, V. Raman, and S. R. Satti, “Succinct indexable

dictionaries with applications to encoding k-ary trees, prefix

sums and multisets,” ACM Transactions on Algorithms, vol.

3, no. 4, article no. 43, 2007.

8. P. Ferragina, G. Manzini, V. Makinen, and G. Navarro,

“Compressed representations of sequences and full-text

indexes,” ACM Transactions on Algorithms, vol. 3, no. 2,

article no. 20, 2007.

9. J. C. Na, J. E. Kim, K. Park, and D. K. Kim, “Fast computa-

tion of rank and select functions for succinct representa-

tion,” IEICE Transactions on Information and Systems, vol.

E92, no. 10, pp. 2025-2033, 2009.

10. S. Vigna, “Broadword implementation of rank/select que-

ries,” in Proceedings of the 7th International Conference on

Experimental Algorithms, Provincetown, MA, 2008, pp. 154-

168.

11. A. Biryukov, A. Shamir, and D. Wagner, “Real time cryp-

tanalysis of A5/1 on a pc,” in Proceedings of the 7th Inter-

national Workshop on Fast Software Encryption, New York,

NY, 2001, pp. 1-18.

12. J. Hong and S. Moon, “A comparison of cryptanalytic

tradeoff algorithms,” Journal of Cryptology, vol. 26, no. 4,

pp. 559-637, 2012.

13. S. M. Ross, A First Course in Probability, 6th ed., Upper

Saddle River, NJ: Prentice Hall, 2002.

14. P. Elias, “Efficient storage and retrieval by content and

address of static files,” Journal of the ACM, vol. 21, no. 2,

pp. 246-260, 1974.

15. R. M. Fano, On the Number of Bits Required to Implement

an Associative Memory, MIT Project MAC Computer Struc-

tures Group, 1971.

16. D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna, “Theory

and practice of monotone minimal perfect hashing,” Journal

of Experimental Algorithmics, vol. 16, article no. 3.2, 2011.

17. R. Grossi and J. S. Vitter, “Compressed suffix arrays and

suffix trees with applications to text indexing and string

matching,” SIAM Journal on Computing, vol. 35, no. 2, pp.

378-407, 2005.

18. D. Okanohara and K. Sadakane, “Practical entropy-com-

pressed rank/select dictionary,” in Proceedings of the 9th

Workshop on Algorithm Engineering and Experiments (ALE-

NEX), 2007, pp. 60-70.

19. F. Claude and G. Navarro, “Practical rank/select queries over

arbitrary sequences,” in String Processing and Information

Retrieval, Lecture Notes in Computer Science vol. 5280,

Heidelberg: Springer, pp. 176-187, 2009.

20. G. Navarro and E. Providel, “Fast, small, simple rank/select

on bitmaps,” in Experimental Algorithms, Lecture Notes in

Computer Science vol. 7276, Heidelberg: Springer, pp. 295-

306, 2012.

21. S. Gog, “SDSL-Lite,” https://github.com/simongog/sdsl-lite.

Journal of Computing Science and Engineering, Vol. 9, No. 1, March 2015, pp. 1-8

http://dx.doi.org/10.5626/JCSE.2015.9.1.1 8 Jungjoo Seo et al.

Jungjoo Seo

Jungjoo Seo received his B.S. degree in Computer Science and Engineering from Sungkyunkwan University
in 2009. He is currently a Ph.D. student in the Department of Computer Science and Engineering at Seoul
National University. His research interests are in algorithms, computer theory, and cryptography.

Myoungji Han

Myoungji Han received his B.S. degree in Computer Science and Engineering from Seoul National University
in 2010. He is currently a Ph.D. student in the Department of Computer Science and Engineering at Seoul
National University. His research interests are in computer theory and string algorithms.

Kunsoo Park

Kunsoo Park received his B.S. and M.S. degrees in Computer Engineering from Seoul National University in
1983 and 1985, respectively, and Ph.D. degree in Computer Science from Columbia University in 1991. From
1991 to 1993, he was a Lecturer at King’s College, University of London. He is currently a Professor in the
Department of Computer Science and Engineering at Seoul National University. His research interests
include design and analysis of algorithms, cryptography, and bioinformatics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

