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Abstract
The most important challenge in the region-based abstraction method as an approach to compute the state space of time

Petri Nets (TPNs) for model checking is that the method results in a huge number of regions, causing a state explosion

problem. Thus, region-based abstraction methods are not appropriate for use in developing practical tools. To address

this limitation, this paper applies a modification to the basic region abstraction method to be used specially for comput-

ing the state space of TPN models, so that the number of regions becomes smaller than that of the situations in which the

current methods are applied. The proposed approach is based on the special features of TPN that helps us to construct

suitable and small region graphs that preserve the time properties of TPN. To achieve this, we use TPN-TCTL as a timed

extension of CTL for specifying a subset of properties in TPN models. Then, for model checking TPN-TCTL properties

on TPN models, CTL model checking is used on TPN models by translating TPN-TCTL to the equivalent CTL. Finally,

we compare our proposed method with the current region-based abstraction methods proposed for TPN models in terms

of the size of the resulting region graph.
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I. INTRODUCTION

Formal methods are popular techniques for the model-

ing and verification of timed systems. Because of impor-

tance of timed systems in critical applications, verification

of these systems has been addressed by many research

papers in recent decades. One of the most successful for-

mal methods is model checking, which seeks to automat-

ically verify a property of a system expressed in temporal

logics upon a model of the system showing the behavior

of the system. Time-dependent models are generally

exploited to model time features of timed systems. To

specify the property of behavior of timed systems, timed

temporal logics can be used. Several models have been

proposed for modeling timed systems, such as Timed

Automata (TA) [1, 2] and Time Petri Net (TPN) [3, 4]. In

TA, as one of the most popular and applicable models

which has been generated by extending ω-automata, time

can be presented by a real variable called clock [1, 2].

TPN is an extension of Petri Nets (PNs) for modeling

timed systems in which the time feature is demonstrated

by a time interval. Two main timed extensions of PNs are

TPN [3] and timed Petri net (TdPN) [4]. TPN, for any

transition, assigns a time interval that a transition can fire

in the specified interval, but in TdPN, each enabled tran-

sition fires upon passing the given duration as soon as
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possible. Thus, TPN is a general concept, compared with

TdPN, which makes it the most popular and compatible

approach for modeling the behavior of timed systems. In

both models, time can be assigned to places (P-TPN, P-

TdPN), transitions (T-TPN, T-TdPN), or arcs (A-TPN,

A-TdPN). Here, we consider the extension of TPN in

which time is assigned to transitions (T-TPN). 

Two main approaches can be found in the literature for

model checking of TPNs. The first approach is translat-

ing a TPN model into a TA model, which shows that

CTL, CTL*, and LTL model checking are decidable for

bounded TPN [5-7]. The second is directly computing the

abstract state space of the TPN model [8-14]. Because

using dense-time firing interval for transitions in a TPN

generates an infinite state space, abstraction methods are

used to represent the state space of a TPN in a finite man-

ner. To compute the state space of a TPN, there are three

major abstraction methods: state class, region-based, and

zone-based [8, 9, 12, 15]. The state class method defines

a graph in which each node shows a state class containing

a special marking and firing domain of transitions

enabled in the state class [8, 9]. Although the basic state

class technique preserves untimed linear properties, sev-

eral abstraction methods have been proposed based on

state class, such as geometry region [14], atomic state

class [10, 14], and strong state class [10], which preserve

untimed branching properties CTL* on TPN models. For

more information on this concept, see [16]. Region and

zone-based methods in the TPN context are the same

methods defined for TA, where they use possible clock

valuation of transitions for constructing a finite number

of states [1, 2, 16, 17]. In [11], the state class based abstrac-

tion method was used for on-the-fly model checking of a

subset of TCTL properties. In [15, 18], the region graph

of the TPN model was exploited to TCTL model check-

ing of TPN. To reduce the state space of TPN, a partial

order reduction algorithm has been proposed in [18]. A

zone-based approach has been used for computing the

state space of TPN in [11, 12]. In [19], the proposed

methods for model checking temporal properties on TPN

and TA have been studied comprehensively.

The most important challenge in region-based abstrac-

tion methods is that these methods generate a very large

number of regions, causing state explosion. Thus, region-

based abstraction methods are not applicable in practice

because of their lack of efficiency. Similar to TA, region-

based abstraction methods for TPN also result in huge

numbers of regions. To moderate this, this paper proposes

a modified region-based abstraction method to compute

the state space of TPN models, so that the number of

regions is smaller than the existing methods, making it

possible to be used efficiently in practice. The proposed

approach is based on the distinguished feature of TPN

against TA that enables us to construct a suitable and

small region graph, which preserves the time properties

of TPN. Furthermore, we use TPN-TCTL logic [11, 13]

as an extension of TCTL [1] for specifying a subset of

properties on TPN model.

Due to the nature of the TPN models, we try to define

the region graph more effectively in which non-essential

regions are integrated into a region, so that the graph

obtained from the proposed method is much smaller than

the graphs resulting from the current region-based

approaches. The main idea is based on two specific fea-

tures of TPN models: 1) at each marking, it suffices to

consider the time value of the clock variables of only

enabled transitions during their enabling interval, and 2)

in the consecutive regions used for expressing continuous

elapsing time of enabled transitions, where there is no

possibility to change the marking (without any fireable

transition), and in all consecutive regions in which just

one single specific transition can fire, we can group these

regions into a single region with a single time interval,

obtained by combining the value of each clock in all its

related regions. Thus, merging these regions, the result-

ing region graph will have a smaller number of regions,

and consequently, the state space of a TPN model can be

represented by a fewer number of states.

Using the proposed abstraction method, we can use

existing efficient CTL model checking (especially sym-

bolic CTL model checking) algorithms for model check-

ing TCTL properties on TPN models. Moreover, CTL

properties based on the proposed marking based logic

(without considering the time constraint in logic) can be

verified in the resulting transition systems. The proposed

method is based on the marking of TPN models and pre-

serves marking reachability of TPN models. Thus, we

defined TPN-TCTL logic for specifying a subset of prop-

erties that express marking reachability properties. There

are still some temporal properties that we cannot verify

on the transition system obtained from the proposed

method. For example, in [7], the authors proposed a

TCTL logic in which a sequence of transitions firings is

considered with regard to the bisimulation relation

between a TPN and its state class TA, whereas these

properties are not preserved by the proposed abstraction

method. Due to the fact that marking reachability in the

proposed abstraction method is considered, we use an

appropriate class of TCTL logic to specify marking prop-

erties of TPN models. Given that in most applications,

the marking properties are the most important properties

required for model checking TPN models, as many

research papers have considered, such as [11, 13].

The rest of the paper is organized as follows. In Sec-

tion II, some preliminaries required to explain the pro-

posed abstraction method are given. In Section III, the

proposed approach for region-based state space abstrac-

tion of TPN models is introduced. In Section IV, TPN-

TCTL which is based on TCTL is introduced for TPN

models to specify the time properties, and then, its
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semantic is defined by means of a transition system. The

experimental results of the proposed method compared to

the current region-based methods in term of the size of

region graph are given in Section V. Finally, Section VI

concludes the paper and presents some guidelines for

future work.

II. PRELIMINARIES

In this section, some background information related

to TA and TPN required to be able to explain the pro-

posed idea are given. Because of the lack of the space,

only important definitions and concepts are introduced

here. For more comprehensive information, see [1-4, 16, 19].

A. Timed Automata

Let N and R≥0 denote the sets of natural and non-negative

real numbers, respectively. Also, let C be a set of real value

clocks. The clock constraint over clocks C, shown as CC(C),

is defined as ,

where  and .

DEFINITION 1. A TA is an 8-tuple (L, Act, C, → , L0,

lnv, AP, L) where L is a finite set of locations (states), Act

is a finite set of actions and C is a finite set of real-valued

clock variables. In the definition above, → 

 is a finite set of transitions where (l, g, a, r,

)∈→ is a transition from location l to location  with

the clock constraint (guard) g, action a, and a set of clock

variables r that must be reset. Also,   is a finite set

of initial locations, and  Inv : L → CC(C) is invariant-

assignment function that for each location assigns a clock

constraint over clocks C, AP is a finite set of atomic

propositions, and  L : Loc → 2AP is a labeling function

for each location. Moreover, we can define clock valua-

tion function as V : C → R
≥0  that for all clocks x ∈ C

assigns their current values V(x).

Let TA = (L, Act, C, → , L0, lnv, AP, L) is a TA, the

semantics of TA is a timed transition system (TTS),

TTS = (S, s0, →), where S = L × V is a finite set of

states and s0 = (l0, 0) is a finite set of initial states.

→  is a transition relation including

discrete and continuous transitions defined as follows.

● Discrete Transition: for all , discrete transi-

tion  is defined by Eq. (1).

→ in TA such as :

(1)

● Continuous Transition: for all , continuous

transition  is defined by Eq. (2).

(2)

B. Region-Based TCTL Model Checking of TA

As mentioned earlier, there have been two proposed

general abstraction methods for computing the state

space of a TA: region-based and zone-based methods.

The region-based method is based on the concept of

equivalence class. The basic idea is constructing a finite

transition system from a TA in which the states are equiv-

alence classes of the states in the related TA [1, 2, 16].

DEFINITION 2. Let  and fract(x) denote the integral

and fractional parts of clock x, respectively, and cx denote

the largest constant that clock x is compared to in any

clock constraint of TA. Clock valuations v and  are

clock equivalent, denoted by , if the following con-

ditions hold:

1. For all x ∈ C, either  =  or > cx
and > cx.

2. For all x,y ∈ C, with v(x) ≤ cx and v(y) ≤ cy,
fract(v(x)) ≤ fract(v(y)) iff fract( (x)) ≤  fract( (y)).

3. For all x ∈ C with v(x) ≤ cx, fract(v(x)) = 0 iff
fract( (x)) = 0.

DEFINITION 3. After defining equivalence class, , a clock

region denoted by [v] is defined by all clock valuations

belonging to the same equivalence class,

. Each region can be represented by

specifying:

I. For each clock, , one clock constraint from the

set :

|

|

(3)

II. For each pair of clocks, x and y, such that c − 1 < x <
c and k − 1 < y < k in Eq. (3), fractional parts of clocks are
considered as following sets: 

1. {c − 1 < x < c  k − 1 < y < k  fract(x) > fract(y)}

2. {c − 1 < x < c  k − 1 < y < k  fract(x) < fract(y)}

3. {c − 1 < x < c  k − 1 < y < k  fract(x) = fract(y)}

To represent the behavior of a TA as a transition sys-

tem, each state is shown as pair <s, v>, and state region is

defined as [s] =< s, [v] >= {<s, > |  ∈ [v]}. The pas-

sage of time over several regions implies the change from

a region to another. So, the concept of successor region is

defined for computing all possible regions. The successor

region of r is  which is denoted by   = successor (r), if :

For all v ∈ r: ∈ R≥0. v + d ∈  and 

≤  ≤ d.v +  ∈ (4)

g :: x c <  x c >  x c ≤  x c ≥  g ¬  g g∧=

c N∈ x C∈

L CC× C( )⊆
Act 2

C
L×××

l′ l′

L0 L⊆

S Act R 0≥∪( ) S×⊆

a Act∈
<l v>, <l′ v′>,α→

l, g, a, r, l′( )∃ ∈

g v( ) true         =

v′ v r 0←[ ]       =

Inv l′( ) v′( ) true=⎩
⎨
⎧

d R 0≥∈
<l v>, <l v′>,d→

v′ v d            +=

vln l( ) v′( ) true=⎩
⎨
⎧

x

v′
v v′≅

v x( ) v′ x( ) v x( )
v′ x( )

v′ v′

v′

≅

v[ ] v′ V∈ v′ v≅{ }=

x C∈

x c={ c 0, 1, ... cx= }  ∪

c 1 x c< <–{ c 1, 2, ... cx= }  ∪

x cx>{ }

∧ ∧
∧ ∧
∧ ∧

v′ v′

r′ r′

d∃ r′

 0∀ d′ d′ r r′∪( )
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Also, successor state can be defined as successor(< s,

v >) = < s, successor(v) >. Now, we can define a Region

Transition System (RTS) in which each state includes a

state region. To check TCTL properties on RTS obtained

from a TA, we need to translate TCTL to the correspond-

ing CTL by eliminating timing constraints in TCTL in

which all timed properties have been preserved [1, 16].

C. Time Petri Nets

DEFINITION 4. A TPN is a 7-tuple (P, T, , , M0,

α, β), where P is a finite set of places, T = {t1, ..., tn} is a

finite set of transitions,  ∈ (NP)T and  ∈ (NP)T

where N denotes natural numbers that are backward and

forward incidence mappings, respectively.  is

the initial marking,  is the earliest firing time

of transitions (EFT), and finally β ∈  is the

latest firing time of transitions (LFT). The semantics of a

TPN is also defined by a TTS. Before defining the related

TTS, we need to define several concepts. The marking M

in TPN is defined by an element of NP in which for each p

∈ P, M(p) denotes the number of tokens in place p. The

transition ti is enabled in marking M (ti ∈ enabled(M)), if

M ≥ ; where the number of tokens in marking M satis-

fies the condition required for each place in . Also,

newly enabled transition tk after firing transition ti in

marking M which is denoted by tk ∈ ↑ enabled(M, ti) is

defined as follows.

↑ enabled(M, ti) = 

{tk ∈ T | (M −  +  ≥ )  

((M −  < )  (ti = tk))} (5)

To demonstrate the elapsing of time for transitions,

valuation function V ∈ (R≥0)
T is defined in which Vk

expresses the time elapsed since transition tk was last

enabled. The semantics of a TPN is defined as a TTS = (S,

s0, →), where S = NP × (R≥0)
T is a set of infinite states, s0

= (M0, 0) is an initial state that includes initial marking

and zero value of all enabled transitions in M0, and →∈ S

× × S is transition relation including discrete

and continuous transitions as follows.

● Discrete Transition: for all ti ∈ T, discrete transition

(M, V)   is defined if the following conditions

hold:

(6)

● Continuous Transition: for all , continuous

transition (M, V)   is defined as follows.

(7)

III. PROPOSED ABSTRACTION METHOD

We propose an abstraction method to compute the state

space of TPN models, based on region approach. We try

to use the region method efficiently according to the spe-

cial features of TPN models compared to TA models. To

achieve this, several modifications are applied to the

region-based abstraction method used in TA for decreas-

ing the number of regions. We describe our proposed

method step-by-step by defining some concepts.

DEFINITION 5. The state space of a bounded TPN can

be defined as a TTS in which each state is shown as < M,

V >, where M is a special marking among all finite mark-

ings obtained from the related bounded TPN, and V is the

clock valuation of all enabled transitions in marking M.

To demonstrate all possible states of a TPN model

finitely, clock equivalence is used as described in Defini-

tion 2. It turns out that only the clock valuation of

enabled transitions in marking M should be considered in

definition of regions. Thus, the concept state region is

defined as Eq. (8), by paying attention to the Definition 3.

(8)

In a sequence of consecutive regions in which chang-

ing the marking is not possible and in consecutive regions

in which only a single specific transition can fire, we can

merge these regions into a single merged region. A

merged region is expressed by a time constraint obtained

by merging clock valuations of all merged regions.

DEFINITION 6. Let  denote the kth successor region

of region r, which is denoted by  = successor(r)k; for all

k ∈ N, if k = 0 then  and otherwise:

 = successor(r)k =

(9)

Now, we can define the merged region concept using

Definition 6. A merged region rk with length k where the

first region is ri, is defined as rk = .

Hence, in a merged region with length k, the clock valua-

tion of each transition can be represented by one of the

following clock constraints:

.( ) •
.( ) •

.( ) •
.( ) •

M0 N
P( )∈

α R 0≥( )T∈
R 0≥ ∞{ }∪( )T

t
 •

t
 •

t
 •

i ti
  •

t
  •

k ∧

t
 •

i t
  •

k  ∨

T R 0≥∪( )

ti→ M′, V′( )

M t
  •

i                                            ≥

M′ M t
  •

i ti
  •

+–=                             

α ti( ) Vi β ti( )                               ≤ ≤

V′k
0     ;if tk   enabled M, ti( )∈
Vk   ;otherwise                   ⎩

⎨
⎧

=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

↑

d R 0≥∈
d→ M, V′( )

V′ V d                                              +=

 k 1, ..., n{ }, M t
  •

k≥ V′k β tk( )≤⇒( )∈∀⎩
⎨
⎧

s[ ] < M, v vi  ti enabled M( )∈∀{ }=[ ] >  = =

< M, v′ v′i  ti enabled M( )∈∀{ } >={ |v′ v[ ]∈ }

r′
r′

r′ r=

r′
successor successor ...successor r( )...( )( )

for k times
---------------------------------------------------------------------------------------------------

 successor ri( )jk

j=0∪
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1. c1 < vi < c2 shown as interval (c1, c2) where in the
first region, vi is represented by clock constraint c1 < vi <

c1 + 1, and in the last region, vi is represented by clock

constraint c2 − 1< vi < c2 and k = 2 * (c2 − c1) − 1.
2. c1 ≤ vi < c2 shown as interval [c1, c2), where in the

first region, vi is represented by clock constraint vi = c1,

and in the last region, vi is represented by clock constraint

c2 − 1 < vi < c2 and k = 2 * (c2 − c1) .
3. c1 < vi ≤ c2 shown as interval (c1, c2], where in the

first region, vi is represented by clock constraint c1 < vi <

c1 + 1, and in the last region, vi is represented by clock

constraint vi = c2 and k = 2 * (c2 − c1).
4. c1 ≤ vi ≤ c2 shown as interval [c1, c2] where in the

first region, vi is represented by clock constraint vi = c1,

and in the last region, vi is represented by clock constraint

vi = c2 and k = 2 * (c2 − c1) + 1.

The fractional parts of clocks are also considered in

each merged region. Each TPN model can be considered

as a combination of sequential and concurrent parts,

where in a sequential part of a TPN, only a single transi-

tion is enabled in each marking, and in a concurrent part,

several transitions can fire simultaneously at a specific

marking. For example, Fig. 1(a) shows a segment of a

TPN model containing one concurrent part and one

sequential part. Moreover, Fig. 1(b) shows a simple TPN

model for mutual exclusion problem of two processes

that consists of two sequential parts.

The distinguished features of TPN models considered

in our work for decreasing the number of regions are

listed as follows.

1. In a sequential part of a TPN model, the marking

does not change before the EFT of the enabled transition.

For example, in Fig. 2 the marking mi cannot be changed

at interval [0, 2) and the clock valuation of corresponding

transition at this interval can be expressed as a clock con-

straint 0 ≤ xk ≤ 2. This state is specified by defining a
merged region. Also, for firing this transition, a merged

region can be defined in which the clock valuation of a

transition is represented by a clock constraint (2 ≤ xk ≤ 4)
that is equal to the firing interval of the transition tk. Thus,

in each state of a TPN at which only a single enabled

transition can fire in a specific interval, it is possible to

express clock valuation of an enabled transition by a

merged region.

2. In a concurrent part of TPN models, when several

transitions are enabled in a special marking, before mini-

mum EFT of these transitions, marking cannot change.

This circumstance can be declared by a single merged

region in computing the state space of the corresponding

TPN. In a duration that several concurrent enabled transi-

tions can fire simultaneously, a new marking is obtained

by firing a transition, which can be shown by a new base

region. For example, in Fig. 3, any of three transitions is

enabled before it fires. The marking m0 in time interval

(0, 1) cannot change. In interval [1, 2], only transition t0
can fire, which can be expressed by a single merged

region, but in interval (2, 4) in which all transitions t1 , t2
and t3 can fire at any moment, we should consider all pos-

sible base regions as Definition 3. Finally, in interval [4,

5] which can be represented by a single merged region,

transition t1 should fire.

The proposed abstraction method is based on the basic

region graph approach, which has been proposed for

computing the state space of TA models. The basic region

can be used for model checking TPN models. Our

method uses the basic region concept by considering the

special features of the TPN models for decreasing the

size of the required region graph to verify marking reach-

ability properties. Our proposed method only uses a com-

Fig. 1. (a, b) Two simple TPN models and their concurrent and sequential part.

Fig. 2. A small part of a TPN model with a single enabled transition.
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pact representation of regions without any modification

in the concept of region. So, we can prove the correctness

of the proposed method based on the proved correctness

of the basic region abstraction method. The significant

issue in our method is using the merged regions that

should be considered to demonstrate that our method is

correct. By considering that each merged region shows a

group of consecutive regions in corresponding basic

region graph, all basic regions will be included in region

graph, which results from the proposed method.

A. Region Transition System for TPN

Now, we can compute all regions of a TPN model as

finitely in which all clock valuations of transitions in the

TPN are represented by regions. There exist two types of

regions: base region as in Definition 3, and merged

region as in Definition 6. For a merged region, we can

define state merged region as in Eq. (10) in which the

clock valuation of transitions belongs to one of its regions.

(10)

Subsequently, we compute the state space of a TPN

model as an RTS in which each state contains a state

region or state merged region.

DEFINITION 7. The state space of a TPN = (P, T, ,

∈ (NP)T, M0, (α, β)) can be defined as a Region Tran-

sition System S = (S, s0, →), where:

- S is a finite set of states, each s ∈ S is formed as <M,

r > where M is a marking and r is a region (base or

merged region).

- s0 ∈ S is the initial state as <M0, [vo] > where M0 is an

initial marking in TPN, and [vo] is a region where vo =

{vi = 0| ∈enabled(M0)}.

- →  is a transition relation includ-

ing discrete and continuous transitions, defined as

follows.

● Discrete Transition: for all , discrete transition

< M, r >  < , > is defined if all the condi-

tions listed in Eq. (11) are held.

(11)

● Continuous Transition: for action τ, in continuous

transition < M, r > < M, >, region  is a base

or merged region, specified by considering afore-

mentioned features described for all sequential and

concurrent parts of TPN. Continuous transition is

used to move from one state to another state when

actually no transition fires in that state. 

Fig. 4 shows a simple TPN model containing a single

concurrent part with two transitions and its related region

graph resulting from our proposed method.

B. Number of Regions in the Proposed
Abstraction Method

The number of regions for a TPN model is computed

by considering both the number of sequential and concur-

rent parts of the model and firing intervals of its transi-

tions. To compute the number of regions, each TPN

model can be considered as a combination of sets of

sequential and concurrent parts. Thus, the number of

regions in the TPN model can be computed by consider-

ing the following cases.

1) Sequential Transitions

When there is a set of transitions Tsequence = {ti, ti+1, ...,

tj} in a sequential part of a TPN, where {ti} = enabled

(mi) and for each k, i ≤ k < j, {tk+1} =↑ enabled(mk, tk) , to

represent the clock valuations of enabled transition ti in

marking mi before it can fire, a single merged region r is

used for expressing elapsed time from xi = 0 until EFT of

transition ti. Also, for expressing firing interval of an

enabled transition, a single merged region  is used

where clock valuation of the enabled transition is equal to

its firing interval. Hence, for firing each transition

belonging to a sequential part, two merged regions as r

and  are required. The enabled transition can fire in

region , which causes a new state to be obtained in

which the clock valuation of each newly enabled transi-

tion in its related region is zero.

 Thus, the number of all regions in a sequential part

s[ ] <M, r>= =

< M, v′ v′i ti∀{ enabled M( )} >  r′ r, v′ r′∈ ∈∃∈={ }

.( ) •

.( ) •

ti∀

S T R 0≥∪( ) S××∈

ti T∈
ti→ M′ r′

M t
  •

i                                                         ≥

M′ M t
  •

i ti
  •
                                        +–=

v′j r′∈ v′j 0   ;if   tj   ∈ enabled M, ti( )=

v′j vj   ;Otherwise                   =⎩
⎨
⎧

=

α ti( ) vi β ti( ) vi r                                 ∈∧≤ ≤⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

↑

τ→ r′ r′

r′

r′
r′

Fig. 3. A small part of a TPN model with three concurrent transitions.
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of TPN with transitions Tsequence = {ti, ti+1, .., tj} will be

2*|Tsequence| where |Tsequence| is the number of transitions.

According to the description above, the number of all

regions for each sequential part of TPN model containing

transitions Tsequence, can be computed linearly in the order

of O(|Tsequence|).

2) Concurrent Transitions

When several transitions in a TPN model can fire in a

single marking, all possible clock valuations of transi-

tions should be considered to compute the number of

regions. To do this, we use the concept of base region

according to the conditions mentioned earlier. The worst

case occurs when the concurrent transitions have the

most possible overlap in their firing intervals. In this

case, all base regions for clock valuation of concurrent

transitions should be taken into account. If the firing

intervals of all concurrent transitions in this case are the

same, then the number of required based regions to

express time interval [α, β] is computed as 2(β − α)+1. In

a state region where all |T| transitions can fire, new

regions are created until either all transitions fire or some

transitions do not fire, but the last possible region is

reached (given the conditions mentioned above, in the

last region, the clock valuation of transitions is equal to

β). Thus, the number of all possible subset of transitions

that can be selected to fire in each region can be com-

puted by Eq. (12).

(12)

With 2(β − α) + 1 number of regions, the number of all

possible regions obtained after firing |T| number of tran-

sitions is estimated as (2|T|) . (MaxDomain) where Max-

Domain = 2(max(βi) − min(αi)) + 1 at which max(βi) is the

maximum LFT and min(αi) is the minimum EFT of tran-

sitions in a concurrent part of a TPN. Thus, the number of

T

0⎝ ⎠
⎛ ⎞ T

1⎝ ⎠
⎛ ⎞ ... T

T⎝ ⎠
⎛ ⎞+ + + 2

T
=

Fig. 4. A simple TPN model and resulted region graph from our proposed approach.
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regions required to express a concurrent part of TPN with

|T| transitions is in order of O(2|T| × MaxDomain).

Hence, to compute all number of regions considering

the set of all sequential and concurrent parts of a TPN

model, the formula presented in Eq. (13) can be used:

(13)

where S is the set of all sequential parts of a TPN that

contains |Ti| sequential transitions in i
th part, and C is the

set of all concurrent parts of TPN that MaxDomainj is

MaxDomain of jth part in set c. Thus, in the worst case, all

transitions in a TPN model can be considered to be in a

concurrent part, which results in the number of regions

being bounded by O(2|T| × MaxDomain). Without loss of

generality, it is assumed that each transition is enabled

only in a special single marking (i.e., for each ti ∈ T, | |

= 1). So, paying attention to the number of all possible

markings (the size of the reachability graph), the number

of regions resulting from the proposed method is bounded

by O(|RG| × 2|T| × MaxDomain) where |RG| is the size of

the reachability graph of the TPN model.

C. Region Transition System with Real Clock

In the RTS resulting from a TPN model by applying

the proposed algorithm, we use the clock variable for

each transition in a certain period to show the passing of

time. To be able to check time properties in a desired

RTS, it is necessary to measure the actual time elapsed

until each state. For this purpose, we add a new clock

called Real Clock (RC) to the RTS to express the elapsing

time till each state. On the other hand, we append an

additional transition to the TPN model, which is enabled

in all markings [18]. This transition fires never and its

clock valuation keeps elapsed time because some proper-

ties are satisfied. The new clock independently increases

without resetting until a certain property is satisfied [1,

16]. Hence, this clock is used to measure the actual time

elapsed until each state that is expressed by a time inter-

val. The largest value of the new clock (i.e., LFT of the

newly added transition) is defined by considering the

maximal constant in TCTL formula, which should be

checked on TPN. The RTS with adding this clock vari-

able is defined as RTS  RC = (S, s0, Act, → ), where S 

M × , s0 ∈ S  and Act = . →  S × Act

× S is the relation function, the same as the function

defined for RTS in Definition 7.

Because the clock valuations of transitions are expressed

by time intervals in merged regions against the base

region where clock valuations are expressed as in Defini-

tion 3, the clock valuation of RC is expressed by an inter-

val in each state. The lower and upper bounds of this

interval are the minimum and maximum time required to

elapse to reach the considered state, respectively.

IV. TCTL FOR TPN MODELS

To model check the time properties on TPN models,

several logics based on TCTL [1] have been proposed

[11, 13]. TCTL can be used for specifying branching time

properties in TPNs, so we define an extension of TCTL

logic for specifying a subclass of properties on TPN mod-

els. To do this, according to the proposed method where it

preserves marking reachability by considering the firing

time of transitions in each state, we should use a suitable

logic for defining marking reachability properties to be

checked in the transition system that is resulted from the

proposed abstraction method.

DEFINITION 8. According to a bounded TPN model in

which LFT of transitions is not infinite, we define timed

temporal logic TPN-TCTL, as follows:

Φ ::= True |M(pi) ~ c|

(14)

where I is a time interval bounded to a natural number, ~

= {<, ≤, >, ≥, =} is a set of relational operators, and c ∈ N

is a natural constant. The notation M(pi) denotes the num-

ber of tokens in place pi. So, to show a special marking,

we can use conjunctions of M(pi) ~ c in which ~ is =. For

model checking of TPN-TCTL on TPN, we should trans-

late TPN-TCTL to the equivalent CTL to be able to apply

the standard CTL model checking on the desired RTS.

For translating TPN-TCTL to the corresponding CTL,

timing parameters should be eliminated from the TCTL

formula. Timing parameters can be replaced by a clock

constraint, based on the new clock added to CTL formula

for specifying the time interval considered in TCTL for-

mula [1, 16].

A. Translating TPN-TCTL to CTL

The basic idea for translating a TPN-TCTL formula is

that we can express a timing parameter by a clock con-

straint of a new clock in the equivalent CTL formula. The

new clock in CTL measures the elapsing time expressed

by the timing parameter in TPN-TCTL, which is denoted

by an interval. In fact, we need to express the actual time

required to get each state. For this end, we use the con-

cept of RC, defined for RTS. As stated earlier, RC repre-

sents the actual time required to reach each state as a time

interval. Thus, to check the clock constraint of a new

clock added to CTL formula, we can use the valuation of

RC. In the TPN-TCTL formula, the timing parameter

appears only as an until operator; thus, it is sufficient to

translate the TCTL until operator to the equivalent CTL.

Also, modal operators ◇ and □ can be obtained by the
until operator. The CTL until operator after eliminating

timing parameter from TPN-TCTL can be achieved, as

follows [1, 16]:

2* Ti( )
i=1

S

∑ 2
T
j
*MaxDomainj( )

j=1

C

∑+

t
 •

i

⊕ ⊆
X

T
RC∪( ) T τ{ }∪ ⊆

Φ Φ∧

Φ Φ ΦUIΦ∃ Φ∀ UIΦ Φ¬∨
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● s |= iff 

  s{M, RC = 0} |= 

● s |= iff 

  s{M, RC = 0} |= 

where s{M, RC = 0} denotes the clock valuation of RC in

state s, which can be considered as zero. Therefore, we

can use the difference existing between the clock valua-

tion of RC in state s and the desired states to measure the

actual elapsed time. Since the atomic propositions in each

state of RTS and in TPN-TCTL are markings, we can use

the resulting CTL for model checking of TPN-TCTL for-

mula on the RTS.

B. Semantics of TPN-TCTL

Let  = RTS RC = (S, s0, ACT, →) denote a

region transition system after adding the new clock RC

obtained from a bounded TPN model, TPN = (P, T, ,

 ∈ (NP)T, M0, α, β). In , each state is denoted by

s =<M, r > where M is a marking and r is a region

together with the clock valuation of RC. The semantics of

TPN-TCTL formula is defined as follows:

● s |= true,

● s |= M(pi) ~ c, iff Ms |= M(pi) ~ c,

● s |=  iff s � Φ,

● s |=  iff s |= Φ and s |= Ψ,

● s |=  iff s |= Φ or s |= Ψ, 

● s |=  that equivalent CTL formula is

. Therefore, s |=

iff for some :  j ≥ 0.(π [j], |= ((RC ∈ I)

 Ψ)  (  0 ≤ k < j.π [k] |= (Φ  Ψ)), and

● s |=  that equivalent CTL formula is

((Φ Ψ)U((RC ∈ I  Ψ). Therefore, s |= 

iff for all :  j ≥ 0.(π [j], |= ((RC ∈ I) 

Ψ)  (  0 ≤ k < j.π [k] |= (Φ  Ψ)).

C. Complexity of TPN-TCTL Model Checking
of TPN

Although the number of regions in a transition system

of a TA model grows exponentially in the length of clock

constraints, by observing only required paths of the con-

sidered TCTL formula, TCTL model checking on TA is

PSPACE-Complete [1, 2]. Our approach is also based on

the region method that was proposed for TA [1, 2].

Although the number of regions, and consequently, the

number of states of RTS resulting from a bounded TPN

by applying the proposed abstraction method depend on

the structure of the model, in the worst case, it is expo-

nential in the number of transitions. With translating the

TPN-TCTL formula to the equivalent CTL formula, the

problem of TPN-TCTL model checking is reduced to

CTL model checking on the resulted RTS. Complexity of

the CTL model checking on a transition system is O(|S| +

|E| + |Φ|), where |S| is the number of states, |E| is the num-

ber of transitions in a given transition system, and |Φ| is

the length of the CTL formula. Thus, TPN-TCTL model

checking on the RTS of a TPN model can be reduced to

CTL model checking. Hence, TPN-TCTL model check-

ing is PSPACE-Complete.

V. EXPERIMENTAL RESULTS

To compute the state space of TPN models for TCTL

model checking, several methods have been proposed

[11, 13, 18]. The proposed approach in [11] is a zone-

based abstraction that preserves marking reachability and

traces of the TPN models. In [13], by using a state class

method, an on-the-fly TCTL model-checking technique

for a subclass of TCTL properties was proposed. Although

this approach is an efficient model-checking approach, it

is defined over a special TPN (called Alarm-clock) and

cannot be used for general TPN models. We are espe-

cially concerned with region-based abstraction for model

checking TCTL properties. The most important challenge

in the region-based abstraction method of TPN models is

the number of regions. Generally, according to the expla-

nations in Subsection III-B, the number of regions in the

proposed method for any given TPN models is bounded

by Eq. (15), as follows:

(15)

whereas using the basic region abstraction method, the

number of resulting regions for a k-bounded TPN is

bounded by (k + 1)p.|T|!.2|T|  [11, 18],

where |T| is the number of transitions, and xi is a clock

associated with the transition ti, and cxi = βi.

A partial order reduction method was proposed in [18]

on a region graph for a TPN model to reduce the size of

the region graph. Because our approach and this method

were applied on TPN models for reducing the number of

regions, we compared our approach with this method

according to the example provided in [18] in terms of the

size of the resulting region graphs (i.e., RTS). This exam-

ple demonstrates TPN models for concurrent n-buffer

which is extended with time constraints on transitions.

Table 1 shows the numbers of vertexes and edges of

the region transition system resulting from this example

verifying the property explained in [18] for the capacity

of the buffer (parameter n). The column Proposed reports

ΦUIΨ( )∃

Φ Ψ∨( )U RC I∈( ) Ψ∧( )( )∃

ΦUIΨ( )∀

Φ Ψ∨( )U RC I∈( ) Ψ∧( )( )∀

RTS′ ⊕

.( ) •

.( ) • RTS′

Φ¬

Φ Ψ∧

Φ Ψ∨

ΦUIΨ∃
Φ Ψ∨( )U RC I∈( ) Ψ∧( )( )∃ ΦUIΨ∃

π Paths s( )∈  ∃
∧ ∧  ∀ ∨

Φ∀ UIΨ
 ∀  ∨ ∧ Φ∀ UIΨ
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the results of our proposed abstraction method, column

Partial refers to the partial order reduction method pro-

posed in [18], and column Region shows the results of

region graph approach given in [1, 2] for TPN models.

The results obtained from all three approaches confirm

the improvement of our proposed approach in term of the

size of region graph. However, the penalty in our method

is the increased time required to construct the region

graph because of finding suitable merged regions and

comparing them in the construction of the region graph.

Due to the definition of the merged region, it is necessary

to compute all possible basic regions for each merged

region by using the original region-based abstraction

method. Thus, all basic regions will be computed during

using the proposed method. So, this is a penalty of our

method compared with the method in [18] not for basic

region approach. Finally, with attention to this that the

complexity of TCTL model-checking of TPN models in

region-based approach determined by resulted region

graph (i.e., region transition system), and by considering

the size of the resulted transition system, the penalty in

our method is negligible and experimental results show a

preference for our method compared with the two other

region-based methods.

VI. CONCLUSIONS AND FUTURE WORK

For TCTL model checking of TPN models, state class,

region-based, and zone-based abstraction methods have

been proposed to compute the state space of TPNs.

Because of the enormous number of regions generated by

region-based methods, these methods are not appropriate

for use in practical tools. In this paper, we considered two

special features of TPN models for computing the state

space of TPN models based on region abstraction method

with fewer number of regions to model check a subclass

of TCTL properties. To do this, all consecutive regions in

which changing the marking is not possible in them are

first merged into a single region where clock valuations

of transitions are represented by a time interval. Next, all

consecutive regions in which just a single specific transi-

tion can fire on them are represented by a single region

where the value of its clock constraint is specified by a

time interval that represents actual time duration for fir-

ing the given transition. Then, we exploit TPN-TCTL for

specifying a subset of time properties of TPN models.

Next, by translating TPN-TCTL to the equivalent CTL,

standard CTL model checking is used for model checking

of TPN models. Thus, by decreasing the number of

regions, the proposed method can be used efficiently to

be applied to the large subset of TPN models.

As future work, other temporal properties (e.g., CTL*

and MITL) and efficient on-the-fly model checking tech-

niques can be studied to be used in the proposed abstrac-

tion method for decreasing the complexity of model

checking algorithms in both time and space aspects. Also,

the proposed method can be improved by using symbolic

methods to store the merged regions in a suitable struc-

ture. We are also working on developing a tool for analy-

sis and direct TCTL model checking of TPN models

based on the proposed abstraction method.
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