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Abstract
Genetic algorithm (GA) and particle swarm optimization (PSO) are two excellent approaches to multimodal optimization

problems. However, slow convergence or premature convergence readily occurs because of inappropriate and inflexible

evolution. In this paper, a novel optimization algorithm with a flexible grid optimization (FGO) is suggested to provide

adaptive trade-off between exploration and exploitation according to the specific objective function. Meanwhile, a uni-

form agents array with adaptive scale is distributed on the gird to speed up the calculation. In addition, a dominance cen-

troid and a fitness center are proposed to efficiently determine the potential guides when the population size varies

dynamically. Two types of subregion division strategies are designed to enhance evolutionary diversity and convergence,

respectively. By examining the performance on four benchmark functions, FGO is found to be competitive with or even

superior to several other popular algorithms in terms of both effectiveness and efficiency, tending to reach the global

optimum earlier. Moreover, FGO is evaluated by applying it to a parameter decision in a least squares support vector

machine (LS-SVM) to verify its practical competence.

Category: Smart and intelligent computing

Keywords: Optimization algorithm; Swarm intelligence; Evolutionary computation

I. INTRODUCTION

Over the last few years, evolutionary algorithms (EAs)

have proven to be a promising approach to complex

multimodal optimization problems [1-3]. These algorithms

share common methods, exploring the unknown regions

near the present optimum conditions. Evolution strategies

are general, nature-inspired heuristics for search and

optimization, and are especially useful for optimization

in the presence of noise [4]. A classic example is the
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crossover and mutation of the genetic algorithm (GA) [5-

7], which is based on the present superior survivors and

retains most of the present optimum gene sequence in the

chromosomes of the next generation. However, the gene

encoding and decoding in genetic operators probably

causes extreme change in the decision space, making

GA’s agents too diverse to improve the convergence rate.

Another typical example of rapid convergence is particle

swarm optimization (PSO) [8, 9]. The exploration of each

particle is guided by both the global best agent (gBest)

and the personal best agent (pBest). Inertia weight is used

in PSO to regulate the population diversity and avoid

premature convergence to some extent. However, once

the inertia weight and other parameters are determined,

the evolution feature of PSO will only be fit for particular

problems. Thus, it is difficult to set the parameter to an

appropriate value because of the complex optimization

environment. Many improved algorithms based on the

original genetic algorithm (GA) [10, 11], PSO [12, 13]

and other EAs [14, 15] have been developed. A simple

genes exchange local search policy is suggested in [16] to

improve the performance of the standard canonical GA.

Several initializations in different zones of the search

space are applied in [17] to improve the diversity of

particles. A controllable probabilistic particle swarm

optimization (CPPSO) algorithm is introduced in [18]

based on Bernoulli stochastic variables and a competitive

penalized method. A novel genetic algorithm that is non-

revisiting by remembering every position it has previously

searched is proposed in [19]. A vendor-managed inventory

(VMI) model is developed in [20] for PSO to find a near

optimum solution. Combining PSO and other intelligent

measures is also common in recent papers [21-23].

Accelerating parallel PSO via GPU was proposed in [24].

In many cases, the modifications can be seen as algorithmic

components that provide an improved performance,

especially performing a better trade-off between exploration

and exploitation. Additionally, other types of EAs, such

as an immune algorithm, artificial bee colony algorithm

(ABC) and artificial fish swarm algorithm (AFSA), have

been proposed in many approaches to deal with exploration-

exploitation. Furthermore, co-evolutionary algorithms with

current popular EAs provide feasible and effective

approaches to special problems [25, 26]. However, it is

still difficult to estimate an optimal parameter combination

[27] that includes the number of individuals [28] necessary

for effective exploration-exploitation of the solution space.

This difficulty implies that inflexible evolution may not

be appropriate in a real-world application. Therefore,

new EAs that can adjust their evolution dynamically with

particular population structures are suggested such as the

rain forest algorithm (RFA) [29] and the bidirectional

dynamic diversity EA [30]. The self-adaptive process [31-

33] is important for computational optimization algorithms

in various applications [34]. To give a simpler adaptive

approach, a novel optimization algorithm with flexible

grid optimization (FGO) is suggested in this paper to

provide an adaptive trade-off between exploration and

exploitation according to the information feedback of the

specific objective function. The current study proposes a

novel dynamic retractive evolution guided by two types

of dominant subregions. First, a flexible grid-based agent

swarm is suggested in FGO. All the agents are uniformly

distributed on the grid, which provides the most effective

exploration on the range of the present grid. Second, the

FGO algorithm updates the agents’ positions iteratively

by zooming and panning the grid. The position of each

agent is interlocked by one cell of the flexible grid. In the

cell, each agent can freely allocate its specific position.

Thus, it is convenient and efficient to calculate the new

positions of all the agents only by determining the region

and the density of next grid. Third, the region of the next

grid is divided by two types of subregions which are

designed according to the dominance centroid (DC) and

fitness center (FC) proposed in this paper. These two

subregions will be used alternately in the algorithm to

increase the convergence speed and avoid falling into

local optimum. Fourth, the density of the next grid (or

agents swarm) is based on the emergence of the optimum.

To estimate the number of agents required, a fanciful but

effective strategy is suggested. The number of agents will

be increased when the speed of emergence reduces, and

vice versa. Finally, this flexible grid provides the dominant

zooming and panning for the agents’ swarm, and whenever

the sampling information is fed back to the evolution

operator, the region and the density of the grid will be

readjusted according to the feedback. Thus, the exploration-

exploitation can meet the need of the application environ-

ment as much as possible.

The remainder of this paper is organized as follows.

Section II describes the proposed algorithm, the FGO, in

detail. It includes agents’ distribution, subregion decision,

and density decision for FGO. To verify the performance

of FGO, Section III presents the results obtained with the

optimization experiments on four benchmark problems.

Moreover, the sensitivity analysis of FGO’s parameters is

mainly discussed in this section. In Section IV, we apply

FGO to the parameter decision in a least squares support

vector machine (LS-SVM) and obtain excellent results.

Finally, a conclusion to the results is presented in Section V.

II. THE PROPOSED ALGORITHM

In this section, the proposed FGO algorithm with a

novel adaptive grid is discussed in detail. It is composed

of agents’ distribution, subregion decision, and density

decision throughout the entire evolution process. In the

FGO, DC and FC are suggested and serve as dominance

guiding to exploration-exploitation. Compact iterative

learning is also offered to provide information fusion and

make the evolution more appropriate for the unknown
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objective environment in application.

A. Agents’ Distribution

The distribution of the agents’ swarm is based on a

flexible grid in FGO. The grid divides one decision space

into several equal areas with vertical and horizontal lines.

Each intersection of the vertical and horizontal lines can

represent a sampling distribution of one agent as shown

in Fig. 1(a). However, this method will restrict agents’

distribution excessively. To improve the population diver-

sity, a crossing cell is proposed in this paper as shown in

Fig. 1(b). Thus, the position of each agent is interlocked

by one cell instead of one intersection of the flexible grid.

In the cell, each agent can freely allocate its specific posi-

tion as shown by the scattered black spots in Fig. 1(b). In

a practical application, the coordinates of agents will be

determined by the intersection in a flexible grid, and the

FGO operator will then introduce a certain range of ran-

dom fluctuations. 

The changing of agents’ distribution between two iter-

ations is based on the zooming and panning of the grid.

The scale of agents probably changes dynamically accord-

ing to the number of cells. Zooming will make agents

converge to the center of the present grid for exploitation,

and panning will make the agents move to another more

dominant area for exploration. Increasing or decreasing

the number of cells will adjust the degree of exploration-

exploitation. The size of every cell will be set uniformly

to adapt to the density of the present grid. A larger inter-

val among gridlines will provide larger cells, which

makes FGO’s population more diverse and exploration

stronger at an early stage of optimization. On the con-

trary, a smaller interval among gridlines will reserve

smaller cells, which restrains the FGO’s agents near each

intersection and maintain steady exploitation. Thus, after

a full exploration, the grid will be guided and shrunk to a

very small space, and all the agents will converge to the

dominant region. This converging process can be carried

out repeatedly to ensure the accuracy of the optimization

result. The adaptive changing of the grid is regulated by

the FGO operator, which processes the feedback of sam-

pling information in real time. This will ensure that the

region and the density of this gird will meet the actual

needs of exploration-exploitation in different areas, which

is why we call it a flexible grid.

B. Subregion Decision

The subregion suggested here refers to the region of

the flexible grid in the next iteration. By designing a

subregion for the flexible grid, FGO can carry out grid

zooming and panning simultaneously. The evolution of

FGO’s agents is carried out by a series of subregions

throughout the iterations of several generations. Therefore,

it is reasonable to plan a subregion considering the guide

of the potential dominant agents. DC and FC are proposed

here to determine the potential guides rather than the best

agents at present. The DC, shown as formula (1), refers to

the centroid of the present optimum agents. If only one

optimum agent is present, the DC at present is the

coordinate of this optimum agent. Obviously, the DC

might guide the evolution towards a local optimum. In

this case, we add another guiding agent, the FC, shown as

formula (2), to adjust the convergence direction.

The formula for calculating the coordinate of DC is

shown below:

(1)

where xi refers to the coordinate in the ith dimension of

the present optimum agents, and d refers to the dimensions

of decision variables. The formula used to calculate the

coordinate of FC is as follows:

(2)

where n refers to the population at present, Xi refers to

Fig. 1. Agents’ distribution. (a) Distribution at intersections and (b) distribution in cells.
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one coordinate of all the agents appearing at the present

generation, Fi, Fj, and Fmin refer to the fitness of  agent i,

the fitness of agent j, and the minimum fitness of present

agents, respectively.

Two types of subregion division strategies can be used:

one to design only around the DC and another to design

around both the DC and the FC. The first strategy

involves first dividing the present grid along with the

edges that consist of the upper and lower bounds of the

present optimum agents. The range of this sectional area

is then extended by 0.618 times as shown in Fig. 2(a),

and a subregion is designed for the next grid. Obviously,

the center of the next grid will be the present DC if we

choose this strategy to design the subregion. The second

strategy involves first dividing the present grid along

with the edges that consist of the upper and lower bounds

of the present optimum agents and FC. The range of this

sectional area is then also extended by 0.618 times as

shown in Fig. 2(b), and another subregion is designed for

the next grid. Obviously, the grid center in the next

generation will be adjusted away from the DC by the FC.

Usually, the subregion obtained by the second division

strategy is larger than the one obtained by the first divi-

sion strategy, especially when the guiding agents fall into

local optimum. Thus, the subregion obtained by the first

division strategy owns a faster convergence property,

while the subregion obtained by the second division strat-

egy can carry out effective exploration outside the con-

vergence area, which is very important for obtaining the

global optimum.

In the algorithm flow of FGO, these two types of

subregion decision functions will be called separately

according to the actual situation. However, whenever the

coordinates of both DC and FC are determined, the

operator will compare the fitness of these two special

positions. If the fitness of DC is not better than that of

FC, then FC will adjust the subregion dividing for two

succeeding iterations in terms of the second subregion

division strategies. This suggests that when there is no

significant superiority near the DC, FGO will carry out

more exploration for the global optimum. In addition,

when the FC is nearby or in the bounds of the present

optimum agents, the subregion will mostly divide around

the DC as shown in Fig. 3 because the potential dominant

areas implied by DC and FC coincide approximately. This

indicates that the convergence guided by DC is stronger

than that guided by FC. This is also why we need to

enhance the adjusting guided by FC in the process of FGO.

C. Density Decision

The density of the grid plays a major role in adaptively

assigning the degree of exploration-exploitation according

to the actual situation. The density decision proposed in

this paper is based on the progress of optimization.

Successive progresses between the three latest iterations

are compared by FGO to analyze the present situation on

the requirement of population as shown in formula (3),

Fig. 2. Subregion decision. (a) Subregion subject to DC and (b) subregion adjusted by FC. DC: dominance centroid, FC: fitness center, GC:
grid center.

Fig. 3. Subregion adjusted by nearby FC. (a) Adjusting with FC near the bounds and (b) adjusting with FC in the bounds. The bounds
refer to the bounds of the present optimum agents. DC: dominance centroid, FC: fitness center, GC: grid center.
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(3)

where  refers to the minimum fitness found by FGO

until the kth iteration or generation in a minimization

problem. Function f1 is named the situation function, the

value of which indicates whether the current population

meets the requirement in the current optimization area. 1

and 0 refer to ‘True’ and ‘False’, respectively, in the

logical operations.

When the situation function, f1, obtains a value of

‘True’, FGO will consider that there are successive

accelerated progresses and the density of the next grid

can be decreased according to formula (4) so that some

redundant population will be simplified. If the situation

function, f1, obtains a value of ‘False’, FGO will consider

that there are successive decelerated progresses or no

successive progresses and the density of the next grid

should be increased according to formula (5). In this case,

there are two possibilities. One possibility is that the

exploration is relatively inadequate with regard to the

features of the present sampling region. If so, a denser

grid will be required in the next iteration in order to avoid

missing some better potential dominant area. The other

possibility is that the exploitation is relatively inadequate

in a local or global optimum region. If so, a denser grid

should be provided in the next iteration in order to finish

the present convergence as soon as possible. In view of

the possibility of making the wrong judgment of an

unknown environment, the upper and lower bounds of

the grid density are also suggested as shown in formulas

(4) and (5).

Usually, the density of the next grid can be adjusted by

updating the number of mesh lines when the subregion is

determined. The number of mesh lines is closely interre-

lated with the number of agents and the update rules are

shown as follows:

where Nk is a vector that plans the number of mesh lines

in each dimension and α is a learning factor which will

affect the recognized degree of FGO for the feedback

information. Nmin and Nmax refer to the permissible minimum

and maximum numbers, respectively, of mesh lines in

each dimension. Nmin and Nmax are vectors with the same

dimensions of Nk and dynamically set the upper and

lower bounds, respectively, of the grid density according

to the changing subregion.

D. Process of FGO

The steps of the FGO algorithm are explained as follows:

Step 1: Set the value of manipulative parameters such

as α, Nmin, and Nmax.

Step 2: Generate a grid that covers the entire feasible

region with random numbers between Nmin and Nmax of

meshes.

Step 3: Distribute agents randomly in the cells on the

intersection of mesh lines and obtain the fitness of each

agent.

Step 4: Determine whether to explore or exploit in a

subregion, and if so, continue on; otherwise jump to Step 10.

Step 5: Determine the coordinates of DC and FC, then

determine whether it is necessary to adjust the subregion

with FC according to the fitness of DC and FC. If so,

jump to Step 7; otherwise continue. 

Step 6: Plan the subregion by using the first strategy

(DC-centered) described in subsection II-B, and then

jump to Step 8.

Step 7: Plan the subregion by using the second strategy

(FC-adjusted) described in subsection II-B.

Step 8: Plan the density of the next grid in the

subregion by using the method provided in subsection II-C.

Step 9: Generate the next grid in the subregion and

randomly distribute new agents in new cells for the next

generation. Then jump to Step 4.

Step 10: Determine whether to reset the grid to a new

initial state. If so, jump to Step 2; otherwise end the

program.

III. BENCHMARK PROBLEMS

The four benchmark problems frequently employed in

the published literature are adopted in this paper to

examine the performance of FGO by comparing with

other popular algorithms in terms of both effectiveness

and efficiency. Table 1 gives details of each benchmark

function and shows the search scope selected by the

comparison task later in this section. GA and PSO, of

which the parameter setting is shown in Table 2, are

chosen as comparisons to effectively illustrate the

competence of FGO due to their popularity. As FGO can

assign multiple cells at the same time with the grid, the

samples’ distribution process is faster; population diversity

is improved by the flexible grid and cells, which help

FGO to exit the local optimum earlier and find the global

optimum more rapidly and accurately. The sampling

density is adjusted with the feedback information of the

actual situation, which provides an adaptive exploration-

exploitation for FGO and expands the application of the

proposed algorithm.

A. Ackley Problem

The Ackley problem is a minimization problem.

Originally, this problem was defined for two dimensions,

but the problem has been generalized to N dimensions.

Fk

(4)

(5)
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The optimum solution of the problem is the vector X =

[0,· · · , 0] with f(X) = 0 as shown in Table 1. In order to

define an example of this function, we need to provide

the dimension of the problem (N). The low dimensional

case, N = 2, is considered here for ease of experiment

design, observation, and analysis. The function distribution

of the Ackley problem with two-dimensional decision

variables is shown in Fig. 4(a). Obviously, the local optima

are tightly packed over the entire decision space.

Fig. 5(a) compares the results of FGO with the other

two methods on the benchmark function of Ackley.

Obviously, FGO touches the global optimum first and

more rapidly than both GA and PSO. After about 0.005

seconds of exploration, FGO finds the global dominant

area first and converges to the global optimum very

quickly. This illustrates the exploration efficiency with

the flexile grid when dealing with problems of which the

outline is very similar to a convex optimization. This is

because the uniform agents distributed by cells in the grid

can quickly focus on a smaller dominant space for further

digging. It is very important for evolutionary algorithms

to make rapid progress even in the process of exploration;

otherwise, the searching will be blinded. On the other

hand, the rapid convergence also illuminates the superiority

of the subregion dividing strategies suggested in this

paper when dealing with the process of exploitation in a

dominant space.

B. Eggholder Problem

The Eggholder function is a difficult function to optimize,

because of the large number of local minima and the

complex distribution as shown in Fig. 4(b). The function

is usually evaluated on the square xi ∈ [−512, 512], for all

i = 1, 2 as shown in Table 1. The global minimum is f(X)

= −959.6407 with optimum decision variable of X = [512,

Table 1. Benchmark problems adopted in this paper

Name Expression Search scope Optimum

Ackley ,

i = 1, 2

min f(X) = 0,

at X = 0

Eggholder ,

i = 1, 2

min f(X) = -959.6407,

at X = [512, 404.2319]

Schaffer ,

i = 1, 2

min f(X) = 0,

at X = 0

Schwefel ,

i = 1, 2

min f(X) = 0,

at xi = 420.9687,

i = 1, ..., d

f X( ) 20– e
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n
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n
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e–

1

n
--- 2πx

i
( )cos

i=1

n

∑
e 20+ +×=

13– xi 16≤ ≤

f X( ) x2 47+( )sin x2
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Table 2. Comparison of parameter setting of GA, PSO, and FGO

Algorithm Population size Iterations Other settings

GA 100-150 5000 (MAX) Probability factor: 0.01-0.1, 

Encoding length: 15-25

PSO 50-100 2000 (MAX) ,

,

ω: 0.1-0.9, φp: 1-1.5, φg: 1-1.5

FGO 25-225 1000 (Outer×Inner)

GA: genetic algorithm, PSO: particle swarm optimization, FGO: flexible grid optimization.

vi,d ωvi,d φprp pi,d xi,d–( ) φgrg gd xi,d–( )+ +←

xi xi vi+←

Nk 1+

1 α–( ) Nk α Nmin×+× , for f1 F̃( ) 1,=

1 α–( ) Nk α Nmax×+× , for f1 F̃( ) 0.=⎩
⎨
⎧

=

F̃ : F̃k 2– , F̃k 1– , F̃k

α : 
0.618

1.618
-------------, Nmin : 5, Nmax : 15
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404.2319]. This type of marginal optimum will introduce

further difficulty to the optimization algorithm. Most of

the local optima are very attractive and deceptive, which

is appropriate as a valid method of testing the exploration

competence of evolutionary algorithms.

Fig. 5(b) compares the results of FGO with the other two

methods on the benchmark function of Eggholder. Both

FGO and PSO show excellent efficiency in the first 0.02

seconds and find the global optimum f(X) = −959.6407.

On the other hand, FGO discovered a more dominant area

almost at the beginning and continued exploring until

about 0.006 seconds, and then converged to the global

optimum. PSO required about 0.015 seconds more time

than FGO in the process of exploration. This experiment

demonstrates that the efficiency of optimizing can be

enhanced by the effective exploration of FGO.

C. Schaffer Problem

The two-dimensional Schaffer’s function has a single

global optimal solution f(0,0) = 0 surrounded by infinite

local optima and the difference between global optima

and the sub-optima is very small. The function distribution

of the Schaffer problem is shown in Fig. 4(c). It is the

circular peaks and valleys around the global minimum

point that trap many methods in one of the local optima

areas.

Fig. 5(c) compares the results of FGO with the other

two methods on the benchmark function of Schaffer. At

the beginning of optimizing, all of these algorithms were

trapped in the local optima areas of which the objective

functions are distributed near 0.01. However, FGO requires

very little time to break through the barriers of circular

peaks, and converges to the global optimum rapidly during

the first 0.0125 seconds. Both PSO and GA require

significantly more time to explore these circular peaks

and valleys.

D. Schwefel Problem

The Schwefel function is complex, with many local

minima that almost mix up the global optimum. The plot

of Fig. 4(d) shows the two-dimensional form of the func-

tion. The function is usually evaluated on the square xi ∈

Fig. 4. Function distribution of benchmark functions: (a) Ackley problem, (b) Eggholder problem, (c) Schaffer problem, and (d) Schwefer
problem.
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[−500, 500], for all i = 1, 2 as shown in Table 1. The opti-

mum solution of this problem is the vector X =

[420.9687, 420.9687] with f(X) = 0. It is almost a type of

marginal optimum that is more difficult to discover.

Fig. 5(d) compares the results of FGO with the other

two methods on the benchmark function of Schwefel.

Although PSO and GA start from a better situation, FGO

discovers the global dominant area first and exploits it

quickly during the first 0.00125 seconds. This result

reveals that FGO will carry out exploitation very

efficiently once it explores a new dominant area, which

indicates that FGO’s agents can quickly respond to the

complex environment and adjust exploration-exploitation

adaptively and rapidly.

E. Sensitivity Analysis

Sensitivity analysis of FGO is very important for the

application of the algorithm in practice. When we use a

specific algorithm to solve a particular problem, the main

problem is to select the set of parameters that will achieve

the best effect. This is because most algorithms are sensi-

tive to certain parameters to some extent in the process of

optimization, especially for populations. Without atten-

tion, this will affect its performance during the optimiz-

ing and affect its ability to perform correctly. If one

algorithm is less sensitive to a certain parameter, it will

be more convenient to set an appropriate parameter to

make the algorithm obtain the required effectiveness and

efficiency, and vice versa. The following sensitivity anal-

ysis is carried out considering the effect of population

size and learning factor on FGO across the Schwefel

benchmark function.

The evolution curves shown on the left in Fig. 6 dem-

onstrate that FGO is not sensitive to initialization popula-

tion size between 10 × 10 and 70 × 70. The upper and

lower bounds are set as 3 × 3 and 100 × 100, respectively.

When the population size is set as 5 × 5, FGO will require

more time to exit local minima because of the fewer

exploring agents. However, it will improve considerably

when we choose 10 × 10 agents as the initialization

swarm. When the population size increases to 70 × 70,

the evolution speed will be somewhat affected. This is

because the increased number of agents will mean that

the FGO operators will require more time in processing

the sampling information. Thus, the initialization popula-

Fig. 5. Processes of evolution across benchmark functions. (a) Ackley function, (b) Eggholder function, (c) Schaffer function, and (d)
Schwefer function. FG: flexible grid, PSO: particle swarm optimization, GA: genetic algorithm.
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tion size has a relatively wide interval for the user to

select, as long as the setting number is not too small.

The evolution curves shown on the right in Fig. 6 indi-

cate that FGO is also not sensitive to the initialization

learning factor in a large interval between 0.2 and 0.8.

The initialization population size is set as 20 × 20, which

is the same as the choice interval mentioned above in this

experimental comparison. We should note that these

results do not suggest that the learning factor has no use

for FGO because the initialization population almost

meets the requirement of this problem. The learning fac-

tor plays an important role in adjusting the number of

agents when the population does not meet the require-

ment of the exploration/exploitation situation. The effect

of the learning factor can be clearly reflected when the

initialization population size cannot satisfy the require-

ment to a significant degree. The evolution curves shown

in Fig. 7 support the above views and reveal that the

unreliability resulting from an overly small initialization

population size can be avoided by adjusting the number

of agents dynamically and adaptively with different learn-

ing factors in FGO.

IV. APPLICATION EXAMPLE

FGO is evaluated by applying it to the parameter deci-

sion in LS-SVM to verify its practical competence in this

section. The fitness function is constructed with the sum

of squares of the difference between the predicted values

and actual values on some special aspects, such as zeros,

bounds, monotony, and period in special parts of the

function domain. In fact, most engineering problems con-

tain some special state points or properties that have

already been identified. We can use this identified infor-

mation to construct the contrast trial, which will be more

convincing. The identified information used in the fol-

lowing case includes some special zeros and the result

shows that these special zeros can guide FGO effectively

to find parameters that are more appropriate for LS-SVM.

Fig. 6. Sensitivity analysis for flexible grid optimization. (a) Sensitivity analysis on initialization population size and (b) sensitivity analysis
on initialization learning factor.

Fig. 7. Sensitivity analysis for flexible grid optimization with fewer agents. (a) Sensitivity analysis with agent of 10×10 and (b) sensitivity
analysis with agent of 5×5.
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Only six zeros, X = [0; π; 2π; 3π; 4π; 5π], are used here

to construct the fitness function for LS-SVM with FGO.

The fitness function is given as follows:

, (6)

where Yr refers to the regressed values at the six zeros, X,

by using the parameters of current γ, σ2; Yt refers to the

real values at the six zeros, where Yt= [0; 0; 0; 0; 0; 0].

The parameters setting of FGO are given as follows:

α = 0.618, DivNumMin = [10; 10], DivNumMax = [20; 20],

LoopNumA = 10, LoopNumB = 10.

The test function plotted as in Fig. 8(a) is given first as a

reference. Disturbance is added to the primitive function

to simulate the real engineering condition, which is

shown in Fig. 8(b). The asterisks in both Fig. 8(c) and

8(d) represent the same group of samples taken from Fig.

8(b). The regression curve shown in Fig. 8(c) is acquired

by using LS-SVM with experiential parameters of γ = 10

and σ2 = 0.2, while the other regression curve shown in

Fig. 8(d) is acquired by using LS-SVM with FGO.

Apparently, the optimal parameters found by FGO can

guide LS-SVM to perform better and acquire excellent

results that are closer to the real value. This result also

provides support for the effectiveness of identified

information in constructing a fitness function.

V. CONCLUSION

This paper presented a novel optimization algorithm,

FGO, which consists of a flexible grid and is able to

provide an adaptive trade-off between exploration and

exploitation across complex objective functions. By

examining the performance of FGO on four benchmark

functions, the uniform agents array with adaptive scale

has been demonstrated to be helpful to increase the speed

of the calculation. In addition, the subregion division

strategies guided by DC and FC have been demonstrated

to be effective in enhancing evolutionary diversity and

convergence rate. We also discussed the sensitivity of

FGO’s parameters and found that the parameter selection

space is very wide for FGO to be able to take advantage

of its own superiority, which indicates that this algorithm

has good generalization ability. The application example

of LS-SVM with FGO shows an excellent regression,

which verifies, as expected, that FGO is practical. 

f γ, σ
2

( ) Yr Yt–=

Fig. 8. Parameter optimization in least squares support vector machine (LS-SVM) with flexible grid optimization. (a) Primitive function,
(b) primitive function with interference, (c) experiential regression, and (d) optimal regression.



An Optimization Algorithm with Novel Flexible Grid: Applications to Parameter Decision in LS-SVM

Weishang Gao et al. 49 http://jcse.kiise.org

ACKNOWLEDGMENTS

The paper is supported by the State High-Technology

Development Project of China with Grant No.

2014AA041802-2.

REFERENCES

1. A. W. Mohamed and H. Z. Sabry, “Constrained optimization

based on modified differential evolution algorithm,”

Information Sciences, vol. 194, pp. 171-208, 2012.

2. M. Pelikan, D. E. Goldberg, and F. G. Lobo, “A survey of

optimization by building and using probabilistic models,”

Computational Optimization and Applications, vol. 21, no. 1,

pp. 5-20, 2002.

3. C. von Lcken, B. Barn, and C. Brizuela, “A survey on

multi-objective evolutionary algorithms for many-objective

problems,” Computational Optimization and Applications,

vol. 53, no. 3, pp. 707-756, 2014.

4. D. V. Arnold and H. G. Beyer, “A comparison of evolution

strategies with other direct search methods in the presence of

noise,” Computational Optimization and Applications, vol.

24, no. 1, pp. 135-159, 2003.

5. S. Saha and S. Bandyopadhyay, “A new point symmetry

based fuzzy genetic clustering technique for automatic

evolution of clusters,” Information Sciences, vol. 179, no.

19, pp. 3230-3246, 2009.

6. Y. Tominaga, Y. Okamoto, S. Wakao, and S. Sato, “Binary-

based topology optimization of magnetostatic shielding by a

hybrid evolutionary algorithm combining genetic algorithm

and extended compact genetic algorithm,” IEEE Transactions

on Magnetics, vol. 49, no. 5, pp. 2093-2096, 2013.

7. K. Deb and S. Srivastava, “A genetic algorithm based

augmented Lagrangian method for constrained optimization,”

Computational Optimization and Applications, vol. 53, no. 3,

pp. 869-902, 2012.

8. C. C. Lin, “Dynamic router node placement in wireless

mesh networks: a PSO approach with constriction coefficient

and its convergence analysis,” Information Sciences, vol.

232, p. 294-308, 2013.

9. J. Fernandez-Martinez and E. Garcia-Gonzalo, “Stochastic

stability analysis of the linear continuous and discrete PSO

models,” IEEE Transactions on Evolutionary Computation,

vol. 15, no. 3, pp. 405-423, 2011.

10. H. Mabed, A. Caminada, and J. K. Hao, “Genetic tabu

search for robust fixed channel assignment under dynamic

traffic data,” Computational Optimization and Applications,

vol. 50, no. 3, pp. 483-506, 2011.

11. B. A. Sawyerr, M. M. Ali, and A. O. Adewumi, “A

comparative study of some real-coded genetic algorithms for

unconstrained global optimization,” Optimization Methods

and Software, vol. 26, no. 6, pp. 945-970, 2011.

12. M. K. Dhadwal, S. N. Jung, and C. J. Kim, “Advanced

particle swarm assisted genetic algorithm for constrained

optimization problems,” Computational Optimization and

Applications, vol. 58, no. 3, pp. 781-806, 2014.

13. Y. J. Wang, “Improving particle swarm optimization

performance with local search for high-dimensional function

optimization,” Optimization Methods and Software, vol. 25,

no. 5, pp. 781-795, 2010.

14. C. Luo, S. L. Zhang, and B. Yu, “Some modifications of

low-dimensional simplex evolution and their convergence,”

Optimization Methods and Software, vol. 28, no. 1, pp. 54-

81, 2013.

15. T. Aittokoski and K. Miettinen, “Efficient evolutionary

approach to approximate the Pareto-optimal set in

multiobjective optimization, UPS-EMOA,” Optimization

Methods and Software, vol. 25, no. 6, pp. 841-858, 2010.

16. M. H. Lim, Y. Yuan, and S. Omatu, “Efficient genetic

algorithms using simple genes exchange local search policy

for the quadratic assignment problem,” Computational

Optimization and Applications, vol. 15, no. 3, pp. 249-268,

2000.

17. A. El Dor, M. Clerc, and P. Siarry, “A multi-swarm PSO

using charged particles in a partitioned search space for

continuous optimization,” Computational Optimization and

Applications, vol. 53, no. 1, pp. 271-295, 2012.

18. Y. Tang, Z. Wang, and J. A. Fang, “Controller design for

synchronization of an array of delayed neural networks using

a controllable probabilistic PSO,” Information Sciences, vol.

181, no. 20, pp. 4715-4732, 2011.

19. S. Y. Yuen and C. K. Chow, “A genetic algorithm that

adaptively mutates and never revisits,” IEEE Transactions

on Evolutionary Computation, vol. 13, no. 2, pp. 454-472,

2009.

20. J. Sadeghi, S. Sadeghi, and S. T. A. Niaki, “Optimizing a

hybrid vendor-managed inventory and transportation problem

with fuzzy demand: an improved particle swarm optimization

algorithm,” Information Sciences, vol. 272, pp. 126-144,

2014.

21. S. Wang and J. Watada, “A hybrid modified PSO approach

to VaR-based facility location problems with variable

capacity in fuzzy random uncertainty,” Information Sciences,

vol. 192, pp. 3-18, 2012.

22. C. W. Ahn, J. An, and J. C. Yoo, “Estimation of particle

swarm distribution algorithms combining the benefits of

PSO and EDAs,” Information Sciences, vol. 192, pp. 109-

119, 2012.

23. W. P. Lee and Y. T. Hsiao, “Inferring gene regulatory

networks using a hybrid GA-PSO approach with numerical

constraints and network decomposition,” Information Sciences,

vol. 188, pp. 80-99, 2012.

24. Y. Hung and W. Wang, “Accelerating parallel particle swarm

optimization via GPU,” Optimization Methods and Software,

vol. 27, no. 1, pp. 33-51, 2012.

25. L. N. Xing, Y. W. Chen, and K. W. Yang, “Multi-population

interactive coevolutionary algorithm for flexible job shop

scheduling problems,” Computational Optimization and

Applications, vol. 48, no. 1, pp. 139-155, 2011.

26. Y. Yang and X. Yu, “Cooperative coevolutionary genetic

algorithm for digital IIR filter design,” IEEE Transactions on

Industrial Electronics, vol. 54, no. 3, pp. 1311-1318, 2007.

27. M. Baz, B. Hunsaker, and O. Prokopyev, “How much do we

pay for using default parameters?,” Computational Optimization

and Applications, vol. 48, no. 1, pp. 91-108, 2011.

28. A. Cassioli, M. Locatelli, and F. Schoen, “Dissimilarity



Journal of Computing Science and Engineering, Vol. 9, No. 2, June 2015, pp. 39-50

http://dx.doi.org/10.5626/JCSE.2015.9.2.39 50 Weishang Gao et al.

measures for population-based global optimization algorithms,”

Computational Optimization and Applications, vol. 45, no. 2,

pp. 257-281, 2010.

29. W. S. Gao, C. Shao, and Q. Gao, “Pseudo-collision in swarm

optimization algorithm and solution-rain forest algorithm,”

Acta Physica Sinica, vol. 62, no. 19, article id. 190202,

2013.

30. W. Gao, C. Shao, and Y. An, “Bidirectional dynamic diversity

evolutionary algorithm for constrained optimization,”

Mathematical Problems in Engineering, vol. 2013, article id.

762372, 2013.

31. W. W. Hager and H. Zhang, “Self-adaptive inexact proximal

point methods,” Computational Optimization and Applications,

vol. 39, no. 2, pp. 161-181, 2008.

32. M. Al-Baali and H. Khalfan, “A combined class of self-

scaling and modified quasi-newton methods,” Computational

Optimization and Applications, vol. 52, no. 2, pp. 393-408,

2012.

33. C. Audet, J. E. Dennis Jr, and S. Le Digabel, “Globalization

strategies for mesh adaptive direct search,” Computational

Optimization and Applications, vol. 46, no. 2, pp. 193-215,

2010.

34. A. Nahapetyan and P. Pardalos, “Adaptive dynamic cost

updating procedure for solving fixed charge network flow

problems,” Computational Optimization and Applications,

vol. 39, no. 1, pp. 37-50, 2008.

Weishang Gao

Weishang Gao received his Ph.D. degree and M.E. degree from the School of Control Science and
Engineering, Dalian University of Technology, Dalian, China in 2009 and 2015, respectively. His research
interests include evolutionary computation, swarm intelligence optimization, and intelligent control. He is
the corresponding author of the paper.

Chen Shao

Chen Shao is currently a professor at the Institute of Advanced Control, Dalian University of Technology,
Dalian, China. His research interests include modeling and control of complex industrial processes,
integrated optimization control of continuous industrial processes, robust adaptive control of nonlinear
systems, multiobjective optimization control technology, and intelligent control theory and method.

Qin Gao

Qin Gao is currently pursuing her Ph.D. degree in Control Science and Engineering from Dalian University of
Technology, Dalian, China. She received her B.S. degree in automation from North China University of Water
Conservancy and Hydropower, Zhengzhou, China in 2007. Her research interests include bio-inspired
robotics, locomotion control, and models of snake-like robots.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 900
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


