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Abstract
Time predictability is crucial in hard real-time and safety-critical systems. Cache memories, while useful for improving

the average-case memory performance, are not time predictable, especially when they are shared in multicore processors.

To achieve time predictability while minimizing the impact on performance, this paper explores several time-predictable

scratch-pad memory (SPM) based architectures for multicore processors. To support these architectures, we propose the

dynamic memory objects allocation based partition, the static allocation based partition, and the static allocation based

priority L2 SPM strategy to retain the characteristic of time predictability while attempting to maximize the performance

and energy efficiency. The SPM based multicore architectural design and the related allocation methods thus form a

comprehensive solution to hard real-time multicore based computing. Our experimental results indicate the strengths and

weaknesses of each proposed architecture and the allocation method, which offers interesting on-chip memory design

options to enable multicore platforms for hard real-time systems.

Category: Embedded computing

Keywords: Scratch-pad memory (SPM); Hard real-time system; Worst-case execution time (WCET); Multicore

processors

I. INTRODUCTION

Time predictability is a crucial design consideration

for hard real-time and safety critical systems such as air-

craft and automotive control systems (e.g., x-by-wire),

and medical systems (e.g., heart pacemakers, telesur-

gery). In these applications, missing deadlines of comput-

ing tasks may endanger human lives or lead to other

catastrophic outcomes. To ensure safety and reliability

for hard real-time and safety-critical systems, it is impor-

tant to perform worst-case execution time (WCET) anal-

ysis to obtain a tight upper bound of the execution time,

which can provide the basis for real-time schedulability

analysis. The WCET, however, is not only determined by

the application itself, but also heavily dependent on the

target processor on which the application is running.

With the scaling of technology and the advancement of

the design of computer architecture, modern micropro-

cessors have become increasingly complex and unpre-

dictable in timing behaviors. Historically, computer

architecture research has concentrated on innovations to

improve the average-case performance (and recently,

energy efficiency), which are often harmful to the time

predictability of computing. For example, modern fea-

tures, such as superscalar pipelines, out-of-order execu-

tion, dynamic branch prediction, speculative execution,

and caches, make it very difficult to accurately estimate

the worst-case performance. 
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In particular, cache memories have been widely used

in modern processors to shorten the gap between the pro-

cessor speed and memory access time. Unfortunately,

cache memories are generally not time-predictable, as the

execution time is highly dependent on the history of

memory accesses, which can vary significantly for differ-

ent inputs and cache states. This problem is aggravated

by multicore architectures. In a multicore platform, the

shared L2 cache architecture is widely used for multiple

cooperative threads to efficiently share instructions, data,

and the precious memory bandwidth for maximizing per-

formance. In a multicore processor with a shared cache,

different threads running on different cores can interfere

in the shared cache, making it even more difficult and

complex to predict the worst-case execution time.

Scratch-pad memories (SPMs) are memory arrays with

decoding and column circuitry logic. An SPM is designed

considering that the memory objects are mapped to the

SPM in the last state of the compiler. The assumption

here is that the SPMs occupy one distinct part of the

memory address space with the remaining space occu-

pied by main memory. Thus, unlike caches, we do not

need to check the availability of the data/instruction in

the SPM, which reduces the comparator and the signal

miss/hit acknowledging circuitry compared to the caches.

This contributes to the energy as well as area reduction

[1]. Therefore, as an alternative technique to hardware

controlled caches, SPMs offer the characteristics of time

predictability and reasonable performance [2-5]. Industries

have already employed SPMs in both single-core proces-

sors such as Freescale M-Core [6] and ARM7TDMI [7],

and multicore processors such as IBM Cell [8], Tilera

Tile64 [9], and NVIDIA Fermi GPU [10]. For example,

NVIDIA’s latest Fermi GPU has an SPM called shared

memory, which can be partitioned into cache and SPM at

configuration points 1:3 or 3:1, with SPM and L1 cache

sitting on top of the L2 cache [11]. Similarly, the local

store in IBM Cell broadband can be managed as a combi-

nation of direct buffers to store accesses with regular pat-

terns and a software-controlled cache [12]. However, to

the best of our knowledge, no prior work has performed a

systematic design and evaluation of different SPM based

architectures on multicore processors with the capability

of full time-predictability.

In this paper, we study several different SPM based

architectures on multicore processors with full time pre-

dictability. To understand the strengths and weaknesses

of these proposed architectures, we evaluate them in

terms of both execution time and energy consumption. It

should be noted that the work of this paper has been pub-

lished in the IEEE 30th International Conference on

Computer Design (2012 ICCD) [13]. In this current jour-

nal version, we include the worst-case energy consump-

tion [14] in the evaluation, which could provide a

comprehensive result, as the energy consumption is also

an important design consideration for real-time systems.

Also, we add a new experiment to evaluate the impact of

different bus band widths to the performance comparison

between the SPM based and cache based architecture.

Furthermore, since we have more space for this journal

paper, we can provide more important details to better

describe the proposed architectures and algorithms.

To efficiently exploit SPMs, it is crucial to determine

the memory objects assignment to SPMs. Memory objects

are chunks of data or instructions, such as basic blocks,

global data, etc. Early studies on this topic mostly focus

on compilation time algorithms to statically allocate

hotspots of programs to SPMs [3, 4]. Later, researchers

also studied dynamical allocation of memory objects,

including software managed [15-18] and hardware assisted

replacement methods [19-21]. Among these methods,

both the static and software managed dynamic allocation

methods can ensure full time predictability, since the

SPM allocation is performed at the compiler stage. While

[22] is the first paper to propose a set of optimal strate-

gies to reduce the energy consumption of applications by

sharing the SPM among multiple processes, it is based on

a simple SPM architecture for energy saving. In this

paper, we will extend both the static and dynamic alloca-

tion method for different SPM based architectures on

multicore processors. Particularly, in order to support the

shared L2 SPM, we propose a dynamic allocation based

partition L2 SPM strategy, a static allocation based parti-

tion L2 SPM strategy, and a static allocation based prior-

ity L2 SPM strategy. In order to provide the 100% time

predictability required by hard real-time systems, all

these algorithms avoid any inter-core conflicts, which can

greatly simplify the WCET analysis for multicore proces-

sors.

Our experimental results provide some interesting mem-

ory design options to enable real-time multicore computing.

First, the performance of the two-level SPM architecture

is superior to that of the one-level SPM architecture,

while the latter is simpler in design and implementation.

Second, the separated L1 instruction and data SPMs bet-

ter fit the data-intensive real-time applications. Third, the

dynamic allocation based partition method achieves the

best performance on each core because of its flexibility

for memory object allocation. However, the increased

complexity and computation time may limit its applica-

bility to large applications. Fourth, the WCET and worst-

case energy consumption (WCEC) of the SPM-based

multicore architectures are superior to the cache-based

and hybrid architectures, while achieving time predict-

ability.

II. RELATED WORK

In this section, we review related work on the WCET

analysis of caches, time-predictable cache design, and SPM

allocation for both single-core and multicore processors.
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A. Related Work on Cache Timing Analysis

For real-time systems, especially hard real-time sys-

tems, it is crucial to obtain the WCET of each real-time

task, which provides the basis for schedulability analysis.

Missing deadlines in these systems may lead to serious

consequences. In light of this, many research efforts have

been made in the past two decades on WCET analysis

focusing on cache based architectures [23]. Arnold et al.

[24] proposed a static analysis method called the static

cache simulation to bound worst-case instruction cache

performance through classifying instruction cache accesses

into first misses, always misses, first hits, and always hits.

This technique was further summarized and extended in

[11] and [12]. Li and Malik [25] and Li et al. [26] pro-

posed to estimate worst case cache performance by using

integer linear programming (ILP). Alt et al. [27] described

an approach to predicting cache timing behavior based on

abstract interpretation. Sebek and Gustafsson [28] pro-

posed a static approach to determining the worst-case

instruction cache miss ratio. Liu and Zhang [29, 30] uti-

lized stack distance to predict cache misses, including

instruction and data caches. Recently, several studies [31-

34] have been carried out to examine the WCET estima-

tion on shared L2 caches of multicore processors. These

static analysis approaches, however, still have very high

complexity and overestimation, which in general may not

be scalable to a larger number of cores or larger bench-

marks.

B. Related Work on Time-Predictable 
Microprocessor Architecture

Meanwhile, a number of researchers have attempted to

exploit time-predictable caches to mitigate the complex-

ity problem of static WCET analysis. Cache locking

mechanism is a common solution that trades performance

for predictability. Vera et al. [35] introduced a method

that combines static cache analysis and cache locking in

order to achieve both predictability and good perfor-

mance. However, their work only focuses on data caches,

which makes the method only a partial solution to real-

time systems. Paolieri et al. [36] explored partitioned

caches to improve cache time predictability, which how-

ever leads to performance degradation. Also, Plazar et al.

[37] proposed a WCET-aware optimization technique for

static I-cache locking which improves a program’s per-

formance and predictability.

Yan et al. [38] studied several time-predictable cache

based multicore architectures, including prioritized and

prioritized-partitioned caches to guarantee time predict-

ability for real-time threads without significantly impact-

ing the performance. Their work, however, only provided

the solution and evaluation for dual-core systems. More-

over, its applicability was limited to the execution model

where one core runs a real-time application while another

core runs a non-real-time application, which may limit its

use in real-time systems. Cullmann et al. [39] argue that

some architectural features make timing analysis on mul-

ticore very difficult, but also show that smart configura-

tions of existing complex architectures can alleviate this

problem. Also, they point out that disjoint instruction and

data caches, as well as private caches impair the precision

of timing analysis and lead to a more complex analysis.

C. Related Work on SPM Allocation

An alternative to the cache is to use the SPM to

achieve time predictability. Steinke et al. [3] first pro-

posed an ILP based method in the compiler stage to stati-

cally allocate hot spots of programs into SPMs to save

energy consumption maximally. Avissar et al. [4] also

worked on the allocation of the static memory objects in

the compiler stage, with a particular focus on the data

objects, including global and stack data. Later, Suhendra

et al. [40] exploited the ILP based method in the compiler

stage, but their objective was to minimize a task’s WCET

by designing a heuristic search to achieve near-optimal

allocations. These three works have a commonality

whereby the memory objects allocated to SPMs are fixed

during the run time. In addition, Marwedel et al. [41]

described a comprehensive set of algorithms applied in

the design time to maximally exploit SPMs.

Researchers have also attempted to dynamically allo-

cate the memory objects to SPMs to improve the perfor-

mance. Whitham and Audsley [21] designed a specific

hardware named SPM management unit to provide

OPEN and CLOSE operations for implementing dynamic

allocation. Li et al. [18] split the live ranges of arrays to

create potential data transfer statements between the SPM

and off-chip memory, and finally adapted an existing

graph-coloring algorithm for register allocation to achieve

dynamic allocation. Furthermore, an inter-procedural

heuristic for identifying hot instruction traces to insert in

the SPMs was proposed by Ravindran et al. [17]. Verma

and Marwedel [16] first proposed an ILP based method to

solve the dynamic allocation problem in the compiler

stage and Deverge and Puaut [15] later utilized the same

ILP based method to improve the performance on the

worst-case performance path. It should be noted that

compiler stage based methods can offer full time predict-

ability regardless of whether it is static or dynamic.

Although these works contributed to the significant

progress of SPM allocation to attain time predictability,

the target SPM architectures are very simple and are far

behind the requirements of multicore computing.

However, all of the studies mentioned above target

SPMs for traditional single-core processors. These allo-

cation algorithms [3, 4, 15-18, 21, 40, 41] focus on maxi-

mizing performance, energy efficiency, or WCET for a

single thread. In a multicore environment, since multiple

threads run concurrently, the allocation algorithms that
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concentrate on optimizing each single thread may not

lead to a global optimal result. Moreover, a local SPM for

each core is unlikely to be efficient for multicore proces-

sors; thus, the SPM architecture for multicore processors

is likely to differ from that for single-core processors. For

example, for multicore processors with shared SPM, a

thread with many frequently used instructions or data can

easily use most shared SPM spaces if not managed prop-

erly. This can cause other concurrent threads that are not

able to use the SPM space, and hence degrade their per-

formance or even miss their deadlines. Besides address-

ing the inter-core conflicting problem, this paper also

studies a two-level SPM to replace the one-level SPM in

order to boost the performance of SPM based architec-

tures. For the two-level SPM, the allocator must be aware

of the instructions/data that have already been allocated

to the level-1 SPM, and the allocation must be aware of

the different latencies to access different levels of SPMs,

none of which are considered in traditional SPM alloca-

tion for single-core processors.

Kandemir et al. [42] studied a compiler strategy to

optimize data accesses in regular array-intensive applica-

tions running on embedded multiprocessors with a virtu-

ally shared scratch-pad memory (VS-SPM). Their SPM

allocation algorithm can increase the application-wide

reuse of data that resides in SPMs of processors and thus

reduce the extra off-chip memory accesses caused by

inter-processor communication. This approach [42], how-

ever, does not consider the worst-case path, and thus can-

not guarantee optimization of the WCET.

While SPMs based architectures can provide time pre-

dictability for real-time systems, this may come at the

cost of performance if the SPM space cannot be used effi-

ciently. Consequently, evaluation of the performance

compared to the cache based system is important.

Banakar et al. [43] carried out a comprehensive evalua-

tion between SPM and cache memories. However, their

work focused on a single level shared SPM and cache

memory, which is not a representative architecture used

in modern high-performance microprocessors. Liu and

Zhang [5] studied the two-level SPM based architecture,

which can result in better performance and energy results.

Moreover, a two-level SPM, resembling a two-level (or

multi-level in general) cache architecture that is typical

for multicore processors, allows us to make a fair com-

parison between the SPMs and the caches based architec-

tures. Therefore, in this paper, we focus on studying a two-

level SPM cache architecture for multicore processors.

III. SPM ARCHITECTURES FOR MULTICORE
PROCESSORS

A. Proposed SPM Based Architectures

Most modern high-performance multicore computer

systems typically employ a two-level (or generally multi-

level) cache based architecture. The level 1 cache is the

fastest form of memory, and is built onto the chip but has

a limited size. Also, two separated L1 caches are nor-

mally used to store instructions and data, respectively. A

typical cache-based multicore architecture is shown in

Fig. 1.

Compared to caches, SPMs can achieve both time pre-

dictability and low energy consumption. Based on the

characteristics of SPMs and the typical architectures of

modern multicore processors, we design several SPM

based memory architectures on multicore processors.

First, a one-level SPM based architecture (called OLS-

arch) is proposed, in which different cores share the same

one-level SPM, as shown in Fig. 2. The obvious advan-

tage of this architecture is its simplicity of design and

implementation. Second, we propose a two-level SPM

based architecture (called TLS-arch) with a unified L1

SPM on each core and a L2 SPM shared by all cores, as

depicted in Fig. 3. The two-level architecture can trade-

off between the speeds and sizes of different SPMs.

Third, we propose another two-level SPM based architec-

ture, of which the L1 SPMs are separated for each core as

the L1 instruction and data SPMs (called TLSL1S-arch),

as demonstrated in Fig. 4. In all these SPM based archi-

tectures, the L1 SPM is the fastest static random access

memory (SRAM) with a small size, while the L2 SPM is

a slower SRAM with a larger size.

Fig. 1. Two-level cache based architecture for dual-core processors
with separated L1 instruction and data cache of each core.

Fig. 2. One-level SPM based architecture (OLS-arch) for dual-
core processors. SPM: scratch-pad memory.
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To quantitatively understand the strengths and weak-

nesses of these SPM-based architectures on multicore

processors, we quantitatively evaluate these architectures

in terms of both performance and energy efficiency

through extensive simulation. We also compare the SPM-

based multicore architecture with a similar cache based-

architecture and a hybrid architecture. The hybrid archi-

tecture utilizes both SPMs and caches, as depicted in

Fig. 5. In this architecture, the memory objects not allo-

cated to any SPM will pass through the caches instead of

being fetched from the main memory directly.

B. Timing Performance Models

Besides time predictability, all the proposed SPM-

based architectures on multicore processors clearly share

two advantages in terms of performance. First, the cache-

based architecture needs to fetch the size of an L1 cache

line from an L2 cache for an L1 cache miss (i.e., an L1

cache load), and the size of an L2 cache line from the

main memory for an L2 cache miss (i.e., an L2 cache

load). In contrast, the SPM-based architecture only needs

to fetch the size of one instruction or data object (i.e.,

char, int, float, double, etc.) from any level of SPM or

memory directly. Second, any fetch from the main mem-

ory requires the upper levels of memories to be updated

in the cache-based architecture, while no such updating is

needed in the SPM-based architecture due to the direct

connection between the processor and the SPMs.

We assume that both the SPM and the corresponding

cache memories have the same capacity and use the same

types of hardware with the same device response time for

unit data operations. This is why the same latency is

selected for memories regardless of whether their type is

cache or SPM. We use Eqs. (1), (2), and (3) to compute

the latency of any memory operation in the L1 instruc-

tion, L1 data, L2 shared SPM, and the main memory in

our architecture.

We assume that the smallest unit of memory operation

allowed on the bus is one word. It should be noted that

setting the memory bandwidth to be one word is the com-

mon assumption in the SPM related research. The work

in [20, 21] was based on a 1 word memory bandwidth

(defined as data size per unit time) to evaluate the SPM

performance. Ravindran et al. [17] utilized 2 bytes mem-

ory bandwidth in their research. Li et al. [18] even used 1

byte memory bandwidth to study their SPM management

algorithm. To understand the impact of higher bandwidth

on the proposed SPM architectures and allocation algo-

rithms, in Section VIII-C3, we also provide the evalua-

tion results based on different bandwidths.

We use inclusive caches in our evaluation. While

inclusive caches may waste some space and bandwidth in

order to enforce the inclusion property compared to

exclusive caches, inclusive caches are highly desirable

for multicore processors because they facilitate memory

controller and processor design by limiting the effects of

cache coherency messages to higher levels in the memory

hierarchy [44]. We plan to compare the SPM-based archi-

tectures with exclusive caches in our future work.

We adopt the performance model described in [43] and

formalize the timing relation between the SPMs and the

caches in the following equations. In Eq. (1), Ts1 and Tc1

are the latencies of the first-level SPM and cache, respec-

tively. In Eq. (2), Ts2 and Tc2 are the latencies of the sec-

ond-level SPM and cache, respectively, Sc1 is the size of a

cache line in an L1 cache, Sinst is the size of one instruc-

tion, and Sdata is the size of any data type. In Eq. (3), Tsm

Fig. 5. Two-level hybrid architecture for dual-core processors.
SPM: scratch-pad memory.

Fig. 3. Two-level SPM based architecture (TLS-arch) for dual-
core processors with the unified L1 SPM of each core. SPM:
scratch-pad memory.

Fig. 4. Two-level SPM based architecture (TLSL1S-arch) for dual-
core processors with separated inst. and data L1 SPM of each
core. SPM: scratch-pad memory.
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and Tcm are the latencies of the main memory in the SPM-

based and the cache-based architectures respectively and

Sc2 is the size of a cache line of an L2 cache. We need to

reduce double latencies of the L2 cache operation

because any L2 cache miss needs to write data from the

main memory into the L2 cache and then read data from

the L2 cache in the cache-based architecture. We have the

same consideration for the L1 cache miss.

Ts1 = Tc1, for instruction/data objects (1)

(2)

(3)

Note that we do not include the shared bus and other

factors in the timing models as our first multicore SPM

related work. A major reason is that the very long instruc-

tion word (VLIW) compiler and simulator tool (i.e., Tri-

maran [45]) we used cannot support bus simulation and is

difficult to extend, but Trimaran is currently the best tool

for VLIW related research. Refer to Section VII for

detailed information on the way we extend Trimaran for

the evaluation work. 

C. Energy Performance Models

The main components in a cache include the decoder,

the tag memory array, the tag column multiplexers, the

tag sense amplifiers, the tag comparators, the tag output

drivers, the data memory array, the data column multi-

plexers, the data sense amplifiers, and the data output

drivers, while the SPM only needs the decoding and the

column circuitry logic. Thus, the SPM is essentially more

energy efficient than the cache.

Based on the cache components, Kamble and Ghose

[46] proposed an analytical energy dissipation model for

the low power cache, which has been widely used in the

research of cache energy estimation. In Eq. (4), the total

amount of energy dissipated by a cache can be expressed

as the sum of four components, including bit-line dissipa-

tions, word-line dissipations, dissipations in output lines,

and dissipations in input lines [46]. First, the bit-line dis-

sipations are due to precharging, readout, and writes of

bit-line transitions. Second, word-line dissipations include

the energy expended in driving the gate of the row driver.

Third, output line dissipations are the energy dissipated

when driving interconnects lines external to the cache

towards the CPU side or the memory side. Last, the input

line dissipations are energy expended in the input gates of

the row decoder. The energy model of an SPM can

largely reuse this equation but needs to remove the con-

sideration of tag bits in the calculation of Ebit and Eword.

Also, the SPM energy estimation does not need to con-

sider the address output in the calculation of Eoutput due to

the direct connection between the SPMs and the proces-

sor. In practice, we adapted the energy consumption eval-

uation tool EPIC-Explorer [47] to conduct the performance

evaluation, and the development of EPIC-Explorer is

based on CACTI [48].

Edissipation = Ebit + Eword + Eoutput + Einput (4)

IV. MEMORY OBJECTS ALLOCATION DESIGN
CONSIDERATION

The memory objects assignment algorithms used to

offer the full-time predictability should avoid both intra-

core and inter-core conflicts. In the related work section,

we mentioned that the ILP based method can avoid intra-

core conflicts for either the static based method [43] or

the dynamic based method [15, 16] (called the baseline

methods). Consequently, it is attractive to extend the

static and dynamic based ILP methods to support the pro-

posed SPM based multicore architectures to maintain

time predictability while maximizing performance/energy.

Specifically, we extended the static based method in [43]

and the dynamic based method in [16] to support the

multi-level multicore SPM architectures proposed in this

paper. The work in [15] is also based on [16], but its goal

is to optimize the performance on the worst-case path,

which differs from ours. Our design consideration and

architectural extension are explained as follows.

The decision of memory allocation is made in the com-

piler stage, which is common to both the static and

dynamic allocation methods. The difference is that the

static allocation does not relocate the memory objects in

the run-time. In other words, the memory objects are

loaded to SPMs and the main memory prior to the run-

time and remain there during the entire running time.

Thus, the static allocation does not need any control flow

graph (CFG) information. On the contrary, dynamic allo-

cation permits the possible memory objects to copy

(called Spill Actions) among different memories at the

run-time, but the copying actions have been determined

in each edge of the CFG during the compiler stage, not

the running stage. The motivation to use the dynamic

approach is that the memory objects only need to stay in

SPMs during their live range. Thus, the dynamic

approach requests a liveness analysis on the CFG, and the

SPMs could then be reused for different memory objects

during the run-time. 

Besides avoiding the intra-core conflicts, we also need

to avoid the inter-core instruction/data access conflicts

that are specific to multicore processors. This is because

Ts2

Tc2 2 Tc1×–( ) Sc1 Sinst,     for inst.,×⁄
Tc2 2 Tc1×–( ) Sc1 Sdata     for data ×⁄⎩

⎨
⎧

=

Tsm

Tcm 2 Tc2×– 2 Tc1×–( ) Sc2 Sinst,     for inst.,×⁄
Tcm 2 Tc2×– 2 Tc1×–( ) Sc2 Sdata     for data ×⁄⎩

⎨
⎧

=
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accurate prediction of the worst-case run-time inter-core

conflicts is very complex, if not impossible, especially

for large programs running on a large number of cores.

Naturally, partitioning is the best way to avoid any

conflict. It can either be manually performed by the users

or automatically performed by the system. In this paper,

we have three methods, which will be proposed in the

following sections. Dynamic partition and static partition

depend on users to manually partition the shared L2

SPM. The other static method is called static priority,

which involves the partition automatically based on the

demand of applications on different cores. The memory

objects allocated to the shared L2 SPM by different cores

are interwoven for the static based priority method, but

they are not overlapped. In other words, we do not have a

separated space for each core. On the contrary, both the

dynamic based and static based partition methods have

separated space for each core in the L2 SPM. We will

quantitatively compare and analyze these methods in

order to understand their respective strengths and weak-

nesses.

Table 1 shows a summary of the extension of the ILP

methods used in this paper (called the extended methods)

compared to the baseline methods. Also, the detailed

design of the dynamic memory object allocation is

described in Section V, and the static allocation is

described in Section VI.

V. MULTICORE DYNAMIC MEMORY OBJECT
ALLOCATION

Generally, the dynamic allocation method needs to

depend on the CFG information of each core. Unfortu-

nately, one cannot simply merge the CFGs of programs

running on different cores because the programs on dif-

ferent cores have totally independent codes, which are

not guaranteed to execute synchronously. Therefore, the

partitioned L2 SPM is a viable solution to utilize the

dynamic allocation for the SPM based architectures on

multicore processors, of which the L2 SPM is shared by

all cores. Accordingly, we call this dynamic allocation

based L2 SPM sharing strategy the Dynamic allocation

based Partition L2 SPM strategy (called DPaL2). Fig. 6

demonstrates this strategy.

It is worth clarifying the reason why we cannot use the

priority based strategy for the dynamic allocation

method. First, the priority based approach also needs to

partition the L2 SPM for different cores. The difference

between these approaches is that the priority based

approach involves partitioning the L2 SPM based solu-

tion on the demand of each core through the ILP method,

while in the partition based approach, the L2 SPM needs

to be partitioned before setting up ILP. Second, as it is

impossible to merge the CFGs of different cores, we can-

not set unique ILP objects and constraints for the

dynamic based method. This is because the programs

running on different cores cannot be guaranteed to exe-

cute synchronously. In other words, one program may

start earlier or later than other programs. The static allo-

cation has no run-time copying actions so that it does not

care about this asynchronous concern, which is why the

priority method fits for the static allocation rather than

the dynamic allocation. Therefore, to use the dynamic

approach, we need to partition the L2 SPM in advance,

and set up the ILP objects and constraints for each core

separately.

Table 1. Comparison between baseline methods and extended methods

Item Baseline method Extended method

Level Only support one level SPM Support multiple levels of SPMs

Type Only support one mixed data and instruction SPM Support separated the data and instruction SPMs

Core Only support single core architecture Support multicore architectures by different ways of 

partitioning the shared L2 SPM

Target Optimize the WCET performance [15] or improve 

the performance [16]

Keep the full time predictability on different multicore platforms

Evaluation Only provide limited quantitative analysis results Provide performance impact of different architectures, 

complexity performance analysis, etc.

SPM: scratch-pad memory, WCET: worst-case execution time.

Fig. 6. Dynamic allocation based partition L2 SPM strategy. C1:
core 1, C2: core 2, SPM: scratch-pad memory.
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A. Overview

Dynamic allocation permits the possible memory

objects copying (called Spill Actions) among different

memories at the run-time, which makes the decision of

memory objects allocation in each edge of the CFG. It is

motivated by the observation that if the liveness of two

hotspots in a program does not overlap, we can reuse the

space of SPMs to boost the performance. We make the

optimal allocation of memory objects to SPMs on each

edge of the global CFG, and the candidates of memory

objects are only within those that are alive in the destina-

tion basic block of a specific edge. The global CFG is

derived from merging the CFGs of all functions of the

program running on a core into one unique CFG. In other

words, we do not merge CFGs of programs running on

different cores. The liveness analysis can be conducted

for each memory object on the CFG to determine its live-

ness range. In addition, the ILP-based method can be

used in our two-level SPM dynamic allocation to deter-

mine the optimal allocation solution. Spill Actions

include Spill Load (i.e., moving memory objects to a spe-

cific SPM from the main memory or another SPM) and

Spill Store (i.e., moving a memory object from a specific

SPM to the main memory or another SPM).

It should be noted that when memory objects are cop-

ied into SPM, their addresses change. This can change

the behavior of a program unless all pointers to the mem-

ory objects are updated. Usually, the SPM MMU is

designed to avoid these problems, which implements

address transparency. An object can be relocated to SPM

without changing its logical address. Therefore, reloca-

tion does not invalidate any pointers and causes no issues

related to pointer aliasing. Also, we assume that a SPM

MMU can deal with the fragmentation perfectly. The SPM

MMU may further partition the memory objects to the

optimal size of the region to mitigate the effect of frag-

mentation, although this is beyond the scope of this paper.

B. Memory Objects and Liveness Analysis

1) Memory objects: The memory objects covered in

our work include instruction objects and data objects.

The instruction objects consist of basic blocks and func-

tions, and our data objects consist of global scalars, non-

scalar variables, and stack data.

In order to support the liveness analysis requested

below, we need to analyze the Static Attributes of mem-

ory objects based on the basic concept of a DEF-USE

chain. A reference to a memory object can be classified

as a DEF, MOD, USE or CONT as the static attribute

[16]. If a reference assigns a value to all the elements of a

memory object, then it is classified as a DEF. If only

some elements but not all are assigned, then the reference

is assumed to be a MOD. Any reference reading a value

of the elements of a memory object is assumed to be a

USE [16]. In the liveness analysis, if a memory object is

alive in a basic block but does not have any reference to

the basic block, its attribute is regarded as CONT.

2) Liveness analysis: Liveness analysis relies on the

global CFG and the static attributes for memory objects

classified above. Specifically, we create the DEF

attributes in the root node (the first basic block) of the

global CFG for all the instruction memory objects. We

also need to create the DEF attributes in the root node for

some data objects, in which the elements are only par-

tially set values in the whole program. 

The memory assignment problem is formulated such

that the memory objects are assigned to SPMs on the

edges rather than at the nodes in the CFG [16]. Conse-

quently, we need to derive the static attributes of memory

objects on the edges from their attributes in the basic

blocks. In this work, a DEF, CONT, MOD or USE

attribute of a memory object is defined on every in-edge

of a basic block with the DEF, CONT, MOD or USE

attribute of that memory object reference. Note that the

in-edges of a basic block are the edges following which

the control flow enters this basic block. To ensure all

basic blocks have in-edges, a virtual in-edge needs to be

set up for the first basic block of the program to satisfy

the requirements of this definition.

If more than one static attribute for a memory object

can be assigned to an edge, the following priority is used

to determine the appropriate attribute: DEF > MOD >

USE > CONT [16]. The technique used to compute the

live range of memory objects is changed to obtain the

CONT attribute of these memory objects on each basic

block of the global CFG. Finally, we use the DEF-USE

chain based live-in/live-out sets computing algorithm to

achieve this goal.

3) Consideration of stack data: Actually, the alloca-

tion of stack data to different memories (e.g., SPM, main

memory) is used to address the research question of dis-

tributing stacks for heterogeneous memory units. A feasi-

ble solution is to combine the stack data into a single

aggregated data object of each function. This is because

if the stack data in the same function is allocated to dif-

ferent memory units, multiple stack registers instead of

single stack registers are needed to track them, which

violates the processor’s internal architecture (normally

there is only one stack register). The handling of the

aggregated stack data object is the same as the normal

data object, which is the benefit of this solution.

In practice, we can further improve this solution to the

stack data by separating the aggregated stack data object

into several smaller data objects. Otherwise, the size of

the aggregated stack data object of each function may be

too large to be allocated to any SPM. In compilers, the

area on the stack devoted to the local variables, parame-

ters, return address, and other temporaries for a function
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is called the function’s activation record or stack frame.

Specifically, in the Trimaran framework [45] used in our

experiments, the stack frame is divided into four areas,

including the Swap Area (aka, Register Spill Area), Local

Variables Area, Outgoing Parameters Area, and Frame

Make Area, and each area boundary can be tracked by the

macro registers set in the Trimaran simulated VLIW

architecture. Each area in this framework can be treated

as a separated stack data object in our methods.

C. ILP-Based Algorithm

1) Binary variables: At the beginning, we define some

binary variables used in the ILP formulas to attain the

optimal SPM dynamic allocation results. These variables

include , , , , , ,

 and . The notations used in these vari-

ables are explained in Table 2.

Based on the definition of the above binary variables,

we can conclude the following SPM allocation results.

For example, if an instruction memory object is allocated

to an L1 instruction SPM on the ith edge,  = 1, and

 = 0. Also, setting the spill action related binary

variable as 1 means we enable this spill action. For exam-

ple,  = 1 means copying this instruction memory

object from the main memory to an L1 instruction SPM

on the ith edge of the global CFG, and vice versa.

2) Objective function and constraints: The objective

function is to achieve the shortest execution time on the

two-level SPM memory architecture based on the dynamic

allocation method. Eq. (5) is the ILP objective function.

In this equation,  is the profit if a memory object is

allocated to the SPM s1, where s1 belongs to the set of L1I,

L1D, and L2. The profit is defined as the saved number of

clock cycles if we allocate the memory object to a spe-

cific SPM instead of the main memory.  is the cost of

transferring the load/store of the memory object to/from a

specific SPM, where s2 belongs to the set of L1IM, L1DM,

L2M, L1IL2, and L1DL2. The cost is defined as the sum of

reading and writing cycles, and an extra overhead cycle

to move a memory object between two different memo-

ries. Particularly, Eq. (6a) is the sum of the profits of spill

actions. Eq. (6b) is the sum of the costs of spill load actions

between SPMs and main memory. Eq. (6c) is the sum of

costs of spill load actions between L1 and L2 SPMs.

Eq. (6d) is the sum of the costs of spill store actions

between SPMs and main memory. Eq. (6e) is the sum of

costs of spill store actions between L1 and L2 SPMs.

max(6a) − (6b) − (6c) − (6d) − (6e) (5)
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Table 2. Notations used in the ILP variables for the dynamic allocation method

Notation Explain

MO The memory object

T The time latency

j1 The static attribute, which is in the set of static attributes (DEF, CONT, USE, MOD)

j2 The spill action attributes, which is in the set of spill action attributes (LOAD, STORE)

i i
th edge in the CFG

k1 The instruction memory object, which is in the set of instruction memory objects

k2 The data memory object, which is in the set of data memory objects

k The memory objects, which is in the union of set k1 and k2

L1I The L1 instruction SPM

L1D The L1 data SPM

L2 The L2 SPM

L1I M The spill action between the L1 instruction SPM and memory

L1D M The spill action between the L1 data SPM and memory

L1I L2 The spill action between the L1 instruction SPM and L2 SPM

L1D L2 The spill action between the L1 data SPM and L2 SPM

L2 M The spill action between the L2 SPM and memory

ILP: integer linear programming, SPM: scratch-pad memory, CFG: control flow graph.
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(6c)

(6d)

(6e)

To ensure that the allocation results match the liveness

analysis, the flow information of global CFG, the sizes of

SPMs, and the consistency of the SPM spilling actions, the

following ILP constraints formulas need to be modeled.

SPM Spill Load Constraint: This constraint ensures

that if we allocate a memory object to a specific SPM on

an edge (also called the current edge), this memory object

should be either allocated in the same SPM on the incom-

ing edge or spill loaded to this SPM on the current edge.

Eqs. (7)–(11) represent such constraint formulas, and

Fig. 7(a) is utilized to illustrate these formulas. In Eq. (7),

if the memory object is allocated to the L1 instruction

SPM on the jth edge (the current edge), it should be

already allocated to the L1 instruction SPM on the ith edge

(the incoming edge), or spill loaded from the memory/L2

SPM to the L1 instruction SPM on the jth edge (the cur-

rent edge). Eqs. (8) and (9) can be explained in a similar

way. Also, Eqs. (10) and (11) are used to guarantee that

the memory object should be already allocated to an L2

SPM on the ith edge (the incoming edge), if it is loaded to

one of the L1 SPMs on the jth edge (the current edge).

(7)

(8)

(9)

(10)

(11)

SPM Spill Store Constraint: This constraint ensures

that if we allocate a memory object to a specific SPM on

an edge (the current edge), this memory object should be

either still allocated in the same SPM on the next edge or

spill stored from a specific SPM on the current edge.

Fig. 7(b) is utilized to illustrate the SPM Spill Store Con-

straint.

Although the Spill Store seems to give more flexibility

to the dynamic allocation algorithm, it has a negative

impact if we use the SPM Spill Store Constraint together

with the SPM Spill Load Constraint. Fig. 7(c) illustrates

the ‘deadlock’ symptom between these two constraints,

and we take the L2 SPM allocation as an example.

Assume that  is not allocated to the L2 SPM on the

ith edge; thus, it is 0. Then, both  and  must

be 0. If  is 0, it will result in  as 0, which

means that the Spill Loading this memory object cannot

occur. However, it is possible we can Spill Load this

memory on the jth edge to improve the performance. In

our opinion, there are two solutions to address this ‘dead-

lock’ problem. The first solution involves using these two

constraints on the same edge pairs concurrently. How-

ever, it is impossible for us to determine which edge pair

uses the SPM Spill Load Constraint and which one

implements the Spill Store Constraint to achieve the opti-

mal allocation. The second solution involves using the

SPM Spill Load Constraint, which means we will not

Spill Store any memory object in its live range. Actually,

this solution follows the general solution to register an

allocation that we will not spill the data from a register to

the memory during the live range of this data. In our

work, we utilize the second solution.

Merge Constraint: This constraint ensures that if a

memory object with DEF, MOD, USE or CONT static

attribute is allocated to one specific SPM on an edge, it

should be also allocated to the same SPM in other edges

merging to the same basic block, which are presented in

Eqs. (12), (13), and (14) for the L1 instruction, L1 data,

and L2 SPM, respectively. Fig. 7(d) illustrates Merge

Constraint.
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Fig. 7. SPM spill operations constraints of dynamic allocation (note that the simplified notations are used in this figure). (a) LOAD
constraint, (b) STORE constraint, (c) 'deadlock', and (d) Merge constraint.
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 =  = ... (12)

 =  = ... (13)

 =  = ... (14)

Other Constraints: First, the SPM size constraint

ensures the aggregate size of all memory objects allo-

cated to the same SPM on an edge does not exceed the

size of that SPM. Second, the SPM level constraint

ensures that a memory object will not be allocated to the

L1 SPM and L2 SPM at the same time. Third, the

Instruction Object Parent Relation Constraint ensures that

a basic block instruction object will not be allocated with

its parent function instruction object to the SPMs at the

same time. The parent function of a basic block is the

function that includes this basic block.

D. An Example

In this section, we use a simple example, as shown in

Fig. 8, to illustrate how to generate the ILP formulas. The

example is extracted from a typical C code with an if-else

statement inside a for loop. Due to the limited space, we

use the memory object bb2 on some edges to present the

ILP formulas. Other memory objects can be used in the

same way to generate the ILP formulas. Also, we only

demonstrate the objective function, spill load, and merge

constraint (other constraints are straightforward). The

memory object bb2 has USE attribute on the in-edges e1_2

and e5_2, and CONT attribute on other in-edges according

to the liveness analysis.

First, we use the memory object bb2 on the in-edge e1_2

to show the objective function in Eq. (15). The profit of

allocating a one word memory object to the L1 and the

L2 SPM is 10 and 7 cycles, respectively. The cost of

moving a one word memory object between the L1 SPM

and the memory is 11 cycles, that between the L2 SPM

and the memory is 14 cycles, and that between the L1 and

the L2 SPMs is 4 cycles. The cost/profit per word is com-

puted based on the equations in Section III-B and the def-

initions of profit and cost in Section V-C2. The edge

weight values are based on profiling. Suppose the size of

bb2 is 5 words, and the weight of in-edge e1_2 is 1; the

objective function for bb2 can thus be computed by

Eq. (15).

(15)

Second, we use the memory object bb2 on the in-edge

e1_2 and e2_3 to show the spill load constraint in Eqs. (16)–

(18). Take the L1 instruction SPM as an example, if bb2 is

allocated in this SPM on the in-edge e2_3, it should be

either loaded from the memory or the L2 SPM on the in-

edge e2_3 or already allocated in the L1 instruction SPM

on the in-edge e1_2.

(16)

(17)

(18)

Third, we use the memory object bb2 on the in-edge

e1_2 and e5_2 to show the merge constraints in Equations 19

and 20. In-edges e1_2 and e5_2 flow into the same basic

block. If bb2 is allocated to the L1 instruction/L2 SPM on

the in-edge e1_2, it should also be allocated to the same

SPM on the in-edge e5_2.

(19)

(20)

VI. MULTICORE STATIC MEMORY OBJECTS
ALLOCATION

In the static allocation method, the objective formula

maximally saves the execution time, while the constraint

formula ensures the sum of the size of the selected mem-

ory objects does not exceed the sizes of SPMs. With

static allocation, un-allocated memory objects for the L1

SPMs of all cores can be considered as candidates for the

shared L2 SPM. We can choose the best memory objects

among all cores for the L2 SPM. In other words, we use

the static allocation to improve the overall performance

(i.e., the combined total execution time of all threads) of
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Fig. 8. Example illustrating the ILP formulas for dynamic
allocation (the edge weight is marked beside the edge). ILP:
integer linear programming.
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all cores instead of considering each core separately,

while the complexity of static allocation is considerably

less than the dynamic allocation. Since the core with

more significant hotspots will take more space in the

shared L2 cache, this core has higher priority in nature.

Actually, the priority strategy is to partition the L2 SPM

according to the demand of the program running on each

core. Consequently, we call this a static allocation based

L2 SPM sharing strategy as the Static allocation based

Priority L2 SPM strategy (called SPrL2). Fig. 9 demon-

strates this strategy. Obviously, besides the priority strat-

egy, the static allocation can also be used as the Static

allocation based Partition L2 SPM strategy (called

SPaL2). This strategy partitions the shared L2 SPM for

each core, and uses the static allocation for each core

under its L1 SPMs and partitioned L2 SPM.

The static allocation algorithms in our paper can better

support programs running on different cores to share

memory objects, since the memory objects of programs

running on different cores are considered together. The

dynamic allocation algorithms are also able to support

programs sharing some memory objects, but it may have

duplicated copies of the shared memory objects in the

SPMs because the ILP equations of different programs

are constructed independently for dynamic allocation

algorithms.

An example is offered in Fig. 10 to illustrate the basic

method of constructing ILP for the static based algo-

rithms, and shows the difference between the SPrL2 and

the SPaL2 strategies. We have two programs running on

two cores separately. In this example, each program has

three basic blocks and two data objects, and they share

one data object. Notations used in the static allocation

methods are shown in Table 3.

Eq. (21) is used for both the SPrL2 and the SPaL2

strategies. For this example, the range of i is 1 to 2. k1 is

set as the BBc11, BBc12, and BBc13 from the program run-

ning on core 1, and BBc21, BBc22, and BBc23 from the

program running on core 2. Also, k2 is the set of DATAc11

and DATAc12 from the program running on core 1, and

DATAc21 and DATAc22 from the program running on core

2. The shared DATA3 can only be added once in these

equations. In other words, there is no difference for the

L1 SPM between the SPrL2 and the SPaL2 strategies.

After the ILP equations for the L1 SPM are solved, we

obtain the memory objects selected for the L1 SPMs. In

detail, Eq. (21a) is the objective function for core 1, and

Eq. (21b) is the L1 SPM size constraint of core 1. Also,

Eq. (21c) is the objective function for core 2 and Eq.

(21d) is the L1 SPM size constraint of core 2. 

(21a)

(21b)
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Fig. 9. Static allocation based priority L2 SPM strategy. HC: high
priority core, LC: low priority core, SPM: scratch-pad memory.

Fig. 10. Example illustrating the static based algorithms. SPM:
scratch-pad memory.

Table 3. Notations used in the ILP variables for the static allocation method

Notation Explain

MO The memory object

k1 Forall memory objects in the set of instruction memory objects

k2 Forall memory objects in the set of data memory objects

i Forall cores in the set of cores

j1 Forall memory objects in the set of instruction memory objects but not selected for the L1 SPM

j2 Forall memory objects in the set of data memory objects but not selected for the L1 SPM

ILP: integer linear programming, SPM: scratch-pad memory.
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(21c)

(21d)

Assume BBc11, BBc12, BBc21, and DATA3 are allo-

cated to the L1 SPMs. The elements of the j1 and j2 set are

those of the k1 and k2 set, minus these four memory

objects selected for the L1 SPMs. The SPrL2 strategy

considers all candidates of memory objects for the L2

SPM together, which is shown in Eq. (22). In detail, Eq.

(22a) is the objective equation for all cores, and Eq. (22b)

is the L2 SPM size constraint for all cores.

(22a)

(22b)

On the contrary, the SPaL2 strategy addresses the sepa-

rated cache for each core under the separated size of L2

SPM for each core, which is illustrated in Eq. (23). In

detail, Eq. (23a) is the objective equation for core 1, and

Eq. (23b) is the separated L2 SPM size constraint for core

1. Also, Eq. (23c) is the objective equation for core 2, and

Eq. (23d) is the separated L2 SPM size constraint for core 2.

(23a)

(23b)

(23c)

(23d)

VII. EVALUATION METHODOLOGY

We study the proposed SPM based architectures under

the Trimaran compiler/simulator infrastructure [45],

which is extended to evaluate the timing performance of

the target VLIW based multicore processor. Meanwhile,

the energy performance evaluation is based on our

extended EPIC-Explorer, a parameterized VLIW-based

platform framework for design space exploration [47].

To comparatively evaluate our proposed SPM based

architectures on multicore processors and compare them

to the cache based and hybrid architecture targeting real-

time systems, we select four real-time benchmarks [49]

as the small size benchmark group and four Powerstone

benchmarks [50] as the relatively large size benchmark

group, the salient characteristics of which are given in

Table 4. These benchmarks are divided into four groups

to perform the dual-core experiments and two groups to

perform the four-core experiments. The detailed grouping

information is also shown in Table 4. Both the real-time

and Powerstone benchmarks are commonly used in the

SPMs related publications [15, 19, 51, 52].

All benchmarks are compiled by the Trimaran com-

piler under a gcc setting of optimization 0 (i.e., set gcc -O

option as 0), closing gcc inline feature, and using Critical

Path Scheduling. We set gcc at optimization 0 because if

we enable gcc optimization, the size of the basic blocks

of the real-time benchmarks is very small. Most hot spots

can easily fit the higher level SPM, which will give us a

very optimistic evaluation result for the SPM based archi-

tecture compared to the cache architecture. Turning off

the -O optimization could offer a fair size of memory

objects used to perform this evaluation. Also, we

attempted several different inputs to determine the worst-

case inputs for these benchmarks with variable execution

max Tprofit

BBc
2

k
1

MOBBc
2

k
1

×{ }
k
1

∑ Tprofit

DATAc
2

k
2

MODATAc
2

k
2

×{ }
k
2

∑+⎝ ⎠
⎛ ⎞

SIZEBBc
2

k
1

{ }
k
1

∑ SIZEDATAc
2

k
2

{ }
k
2

∑+ SIZEL
1

SPM of Core2<

max Tprofit

BBc
i 

j
1

MOBBc
i 

j
1

×{ }
j
1

∑
i

∑ Tprofit

DATAc
i 

j
2

MODATAc
i 

j
2

×{ }
j
2

∑
i

∑+⎝ ⎠
⎛ ⎞

SIZEBBc
i 

j
1

{ }
j
1

∑
i
∑ SIZEDATAc

i 
j
2

{ }
j
2

∑
i
∑+ SIZEL

2
SPM<

max Tprofit

BBc
2 

j
1

MOBBc
2 

j
1

×{ }
j
1

∑ Tprofit

DATAc
2 

j
2

MODATAc
2 

j
2

×{ }
j
2

∑+⎝ ⎠
⎛ ⎞

SIZEBBc
2 

j
1

{ }
j
1

∑ SIZEDATAc
2 

j
2

{ }
j
2

∑+ SIZEL
1

SPM Seperated for Core1<

max Tprofit

BBc
2 

j
1

MOBBc
2 

j
1

×{ }
j
1

∑ Tprofit

DATAc
2 

j
2

MODATAc
2 

j
2

×{ }
j
2

∑+⎝ ⎠
⎛ ⎞

SIZEBBc
2 

j
1

{ }
j
1

∑ SIZEDATAc
2 

j
2

{ }
j
2

∑+ SIZEL
2

SPM Seperated for Core2<

Table 4. Salient characteristics of selected real-time (upper four benchmarks) and Powerstone benchmarks (latter four benchmarks)

Benchmark Description
Compute 

cycles

Static 

inst. (#)

Global 

data

Local 

data
2-Core 4-Core

compress A demonstration for data compression program 5551 484 1871 0 Group 1 Group 1

lms An least mean square adaptive signal enhancement 540626 748 1240 0 Group 1 Group 1

ludcmp Simultaneous linear equations by LU decomposition 3603 362 20816 800 Group 2 Group 1

minver Matrix inversion for 3x3 floating point matrix 2246 562 448 2000 Group 2 Group 1

adpcm Adaptive DPCM voice compression algorithm 103690 1929 3028 16 Group 3 Group 2

jpeg Joint photographic experts group algorithm 1017892 1395 79749 264 Group 4 Group 2

pocsag An asynchronous protocol used to transmit paper data 65780 1082 1442 0 Group 4 Group 2

pscomp Power station demonstration of compression algorithm 75963 1723 33533 24 Group 3 Group 2
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times, based on which we obtained the observed WCET.

For the simulation based on the dual-core architectures,

these eight benchmarks are classified into four groups,

while they are categorized into two groups for the four-

core simulation, which are shown in Table 4.

For a fair evaluation among the different architectures,

by default, we fix the aggregated size of all memories to

2K bytes for the small size benchmark group, and 8K

bytes for the large size benchmark group. In different

architectures, this number is changed for different memo-

ries, as shown in Table 5. For the cache and hybrid based

architecture, the L1 cache line size is 16 bytes, and 32

bytes for the L2 cache. Note that the evaluation of small

size SPMs is useful since SPMs of such size are the real

applications in the embedded systems. For example, the

Maxim ultra-high speed flash controller includes the

8051 processor core and 1K SPM [53]. Also, note that

both of our small and large size SPM settings are the

focus of SPM related publications [2, 15, 19].

In addition, we evaluate caches with associativity

varying from direct-mapped, 2-way associative to 4-way

associative and fully associative. We choose the best per-

formance cache among these four types in order to ensure

a fair comparison to the SPMs. The replacement policy of

set-associative caches is least recently used (LRU), and

all caches are inclusive.

VIII. EXPERIMENTAL RESULTS

In our experiments, we first focus on the simulation of

the dual-core processors to understand the strengths and

weaknesses of our different proposed architectures and

memory objects allocation methods from the point of

view of both WCET and WCEC. Then, we extend some

of our experiments on the four-core processors to exam-

ine the sensitivity of our designs on further cores. Our

timing performance evaluation results consist of compu-

tation cycles, an instruction cache stall, and use stall

cycles. Also, our energy consumption evaluation results

consist of caches/SPMs energy consumption, the main

memory energy consumption, and the processor energy

consumption.

We notice that, normally, similar evaluation results are

observed for WCET and WCEC in the following experi-

mental results. In the WCET evaluation, the dominating

difference is due to memory architecture latency. Also, as

the WCET becomes longer, the lower level memories

(SPMs/caches/main memory) are visited more frequently.

The lower level SPM/cache visit consumes more energy

than the higher level SPM/cache visit based on our

energy consumption model. Thus, normally, as the WCET

becomes longer, the WCEC becomes larger.

A. Evaluation among SPM based Architectures
on Multicore Processors

Three different SPM based architectures on multicore

processors are evaluated in this section. The dynamic

based partition L2 SPM strategy is utilized for all of these

architectures to guarantee a fair comparison among them.

By default, the total L2 SPM space is equally partitioned

between both cores.

One-level vs. Two-level: The WCET and WCEC com-

parison results between the OLS-arch (Fig. 2) and TLS-arch

(Fig. 3) for dual-core processors are shown in Figs. 11

and 12, respectively.

We observe the obvious performance improvement on

the two-level architecture in terms of both WCET and

WCEC. However, we also notice that the performance of

the benchmark jpeg drops slightly. This is because jpeg

has a very large and heavily weighted basic block as its

Table 5. Default configuration of memory size for dual-core simulation on different architectures (the left small value is for the small size
benchmark group, while the right large value is for the large size benchmark group)

Architecture Memory information

One-level SPM based 2048/8192 bytes shared SPM by two cores

Two-level SPM based 512/1024 bytes unified L1 SPM for each core

Two-level with unified L1 SPMs 1024/4096 bytes shared L2 SPM by two cores

Two-level SPM based 256/1024 bytes L1 inst. SPM and 256/1024 bytes data SPM for each core

Two-level with separated L1 SPMs 1024/4096 bytes shared L2 SPM by two cores

Cache based 256/1024 bytes L1 inst. cache and 256/1024 bytes data cache for each core

Cache with separated L1 caches 1024/4096 bytes shared L2 cache by two cores

Hybrid based (1) 128/512 bytes L1 inst. SPM and 128/512 bytes data SPM for each core 512/1024

bytes shared L2 SPM by two cores

(2) 128/512 bytes L1 inst. cache and 128/512 bytes data cache for each core 512/2048

bytes shared L2 cache by two cores

SPM: scratch-pad memory.
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hotspot. It cannot be allocated into any SPM in the two-

level architecture as its size exceeds that of the SPMs. On

the contrary, it can fit into the SPM in the one-level archi-

tecture. Accordingly, this type of situation limits the per-

formance improvement for the TLS-arch. In sum, this

scenario implies that the sequential focused program (like

jpeg), rather than the condition focused program, best fits

the one level SPM architecture.

Unified L1 vs. Separated L1: The WCET and WCEC

comparison results between the TLS-arch (refer to Fig. 3)

and TLSL1S-arch (refer to Fig. 4) are shown in Figs. 13

and 14, respectively.

Interestingly, we observe that the performance of the

two-level architecture with the separated L1 SPMs for

each core reduces compared to that of the unified L1

SPMs for each core in terms of both WCET and WCEC.

Usually, a data object offers less performance boost com-

pared to an instruction object of the same size, if it is allo-

cated to the SPM. This is because the data object usually

cannot ensure that all of its elements are visited, while the

instruction object is fully visited. Also, the data stall

latency is mitigated by the use-stall model so that the

benefit of allocating data objects into SPMs may be less

than that of instruction objects. However, most Power-

stone benchmarks (such as jpeg and pocsag) can still

achieve very close performance on the TLSL1S-arch

compared to the performance on the TLS-arch, since they

have some very heavily weighted data objects. Therefore,

the two-level architecture with the separated L1 SPMs is

still a good design choice for data-intensive benchmarks.

B. Evaluation among Different Allocation
Strategies to Share the L2 SPM

In this section, we compare the DPaL2 (Section V),

SPaL2, and SPrL2 strategies (Section VI) in terms of

both WCET and WCEC. For a fair comparison, all of

these strategies are utilized on the TLSL1S-arch (Fig. 4).

Dynamic Allocation Based Partition vs. Static Allo-

cation Based Partition L2 SPM Strategy: This experi-

ment evaluates the performance promotion of dynamic

allocation. Figs. 15 and 16 present the WCET and WCEC

Fig. 11. WCET comparison between the OLS-arch and TLS-arch
for dual-core processors (TLS-arch performance is normalized to
that of OLS-arch, and the same normalization is performed for all
subsequent performance evaluations). WCET: worst-case execution
time.

Fig. 12. WCEC comparison between the OLS-arch and TLS-arch
for dual-core processors. WCEC: worst-case energy consumption.

Fig. 13. WCET comparison between the two-level SPM based
dual-core architecture with the unified L1 SPM for each core and
that with the separated L1 SPMs for each core. WCET: worst-case
execution time, SPM: scratch-pad memory.

Fig. 14. WCEC comparison between the two-level SPM based
dual-core architecture with the unified L1 SPM for each core and
that with the separated L1 SPMs for each core. WCEC: worst-case
energy consumption, SPM: scratch-pad memory.
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comparison results between these two allocation meth-

ods, respectively.

We can observe that the performance of dynamic allo-

cation is superior to that of static allocation on all the

benchmarks (some benchmarks have a slight perfor-

mance boost, making them difficult to distinguish from

the figures), and the average improvement rate is 31% on

our selected benchmarks. As we discussed in Section IV,

the dynamic allocation performs liveness analysis on the

CFG and permits possible memory objects copying

among different memories at the run-time. Consequently,

more memory objects have the opportunity to be copied

into SPMs through the dynamic allocation, and the better

performance of dynamic allocation than the static alloca-

tion is then expected. In particular, the pscomp bench-

mark includes a large number of heavily weighted

hotspots so that it best fits the dynamic allocation and

then takes good performance promotion.

However, this performance improvement is not free.

The complexity of the dynamic allocation algorithm is

greatly increased, since it needs to consider each edge in

the CFG of the program. Table 6 demonstrates the ILP

solving time for both the dynamic and static allocation.

The average ILP solving time for the dynamic allocation

is 53.71 seconds, while it is only 0.02 seconds for the

static allocation. Also, we observe that the average ILP

solving time of the large size benchmark group increases

to 2.8 times that of the small size benchmark group for

the dynamic allocation, while it only increases 1.8 times

for the static allocation.

However, more constraints might reduce the size of the

solution space for searching. We find that the ILP solver

needs more solving time than the static allocation. The

key is that the dynamic allocation method needs to obtain

a solution for each edge in the CFG of the program, and

there might be hundreds of edges. Meanwhile, the static

allocation method only needs to find one solution for the

whole program. Although one solution is more rapidly

solved in the dynamic allocation, hundreds of solutions

require significantly more work of the ILP solver.

In addition, Udayakumaran et al. [54] show a good

comparison between the ILP and heuristic based meth-

ods. The ILP based method offers an optimistic solution,

but a significantly large solving time is needed by the ILP

solver, and the commercial ILP solver brings an extra

cost. Meanwhile, the heuristic based method is more

complex, but does not involve any extra solving time or

cost. In the past decade, after Udayakumaran’s publica-

tion, a large number of open source ILP solvers such as

Coin_OR [55] and lp_solve [56] have been developed

with good performance, and the computing power has

greatly improved. Thus, the disadvantages of the ILP

based method summarized in Udayakumaran’s paper

have been significantly alleviated.

Moreover, we can take the benchmark pscomp in

Fig. 15 as an example to show the impact of the code

size. The benchmark pscomp achieves the best perfor-

mance on the dynamic algorithm compared to that of the

static allocation, since it has the most spill actions among

all benchmarks. Within one specific date set, there are

156 instruction objects spill actions and 36 data objects

Fig. 15. WCET comparison of each benchmark between the
DPaL2 and the SPaL2 strategies. WCET: worst-case execution
time.

Fig. 16. WCEC comparison of each benchmark between the
DPaL2 and the SPaL2 strategies. WCEC: worst-case energy
consumption.

Table 6. ILP solving time for the dynamic and static allocation
(unit: seconds)

Benchmark Dynamic allocation Static allocation

compress 60.71 0.01

lms 45.74 0.02

ludcmp 2.14 0.01

minver 3.63 0.01

adpcm 43.01 0.02

jpeg 3.92 0.01

pocsag 66.13 0.03

pscomp 204.42 0.03

ILP: integer linear programming
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spill actions among the edges of CFG. We can assume

one instruction is needed to support the spill action on a

memory object. Thus, 192 extra instructions are needed.

In Table 4, we can see that the benchmark pscomp has

1723 static instructions. Consequently, the dynamic algo-

rithm could result in an 11% code size boot. However, if

the addresses of some memory objects are consecutive,

we do not need 192 extra instructions. Therefore, the

actual code size increase rate is greater than 11%. Never-

theless, around a 10% code size change can be accepted

based on the improved performance we achieve.

Static Allocation Based Partition vs. Static Alloca-

tion Based Priority L2 SPM Strategy: This experiment

evaluates the performance change of the SPrL2 strategy.

Figs. 17 and 18 present the WCET and WCEC compari-

son results between these two strategies, respectively.

As we expect, we can observe that one benchmark

achieves performance improvement, while its peer

benchmark suffers performance loss in each benchmark

group. The benchmark with performance boost is the

high priority benchmark, which occupies more L2 SPM

space. On the contrary, the other benchmark with perfor-

mance loss is named the low priority benchmark, which

takes less L2 SPM space. The static based priority strat-

egy will naturally allow the core with higher demand to

take more space in the shared L2 SPM (Section VI).

Dynamic Allocation Based Partition vs. Static Allo-

cation Based Priority L2 SPM Strategy: Figs. 19 and

20 compare the WCET and WCEC results. We can observe

that the performance of most benchmarks under the DPaL2

strategy is still better than that under the SPrL2 strategy,

except for the jpeg benchmark. Generally, the relative

performance of the static based priority strategy compared

to that of the dynamic based partition strategy is affected

by two factors: the performance drop through using the

static allocation instead of the dynamic allocation as the

SPM space cannot be reused at run-time, and the perfor-

mance enhancement by occupying more L2 SPM space

due to the high priority core. If the second factor domi-

nates the first factor, we can improve performance on the

high priority core (such as that of the jpeg benchmark),

although we use the static allocation. If the first factor

dominates the second factor, the dynamic allocation still

performs better (as for the other seven benchmarks).

Fig. 17. WCET comparison of each benchmark between the
SPaL2 and the SPrL2 strategies. WCET: worst-case execution
time.

Fig. 18. WCEC comparison of each benchmark between the
SPaL2 and the SPrL2 strategies. WCEC: worst-case energy
consumption.

Fig. 19. WCET comparison of each benchmark between the
DPaL2 and the SPrL2 strategies. WCET: worst-case execution
time.

Fig. 20. WCEC comparison of each benchmark between the
DPaL2 and the SPrL2 strategies. WCEC: worst-case energy
consumption.
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C. Four-Core Experiments

Our four-core experiments focus on comparing the two

proposed strategies (i.e., the DPaL2 and the SPrL2 strate-

gies) on the shared L2 SPM, and comparing the perfor-

mance between SPM based and cache based architecture

in terms of both WCET and WCEC. Our purpose is to

examine the sensitivity of the larger shared L2 SPM/

cache with work load from four cores instead of two

cores. The strengths and weaknesses of our different pro-

posed SPM architectures have been fully evaluated in the

dual-core experiments. Also, the hybrid architecture is

proved to be obviously inferior to SPM and the cache

based architecture, so that we do not need to perform

repeated experiments on the four-core processor. The

default size setting for the SPM and cache based architec-

ture is shown in Table 7. The L1 cache line size is 16

bytes, while that for the L2 cache is 32 bytes. Also, the

aggregated size of SPMs is 4K for the small size bench-

mark group, and 16K for the large size benchmark group.

1) Evaluation between the Dynamic Allocation Based

Partition and Static Allocation Based Priority L2 SPM

Strategy for Four-core Processors: The evaluation

results of each benchmark are shown in Figs. 21 and 22.

In benchmark group 1, the lms benchmark leads to a sig-

nificant drop in the performance of all other benchmarks.

This is because the hotspots of lms still dominate the

shared L2 SPM, since the weight of hotspots of other

benchmarks is too small compared to that in lms. In

benchmark group 2, the jpeg and adpcm benchmarks

obtain more space in the shared L2 SPM and achieve per-

formance improvement compared to the SPaL2 strategy,

while the other two benchmarks in this group suffer from

some performance drop. Therefore, these results indicate

the same strengths and weaknesses of these two strategies

on dual-core processors (refer to the detailed summary in

Section VIII-B).

2) Results on 4-Core Processors: Similar to the exper-

iments on dual-core processors, here we use the DPaL2

strategy on the SPM based architecture. Also, the asso-

ciativity of cache memories used in the cache based and

hybrid architectures is set as direct-mapped, 2-way, 4-

way, and fully-associative, respectively. The best perfor-

mance results between these four associativity settings

are chosen to compare with the SPM based architecture

in order to be generous to cache memories. In addition,

the metric Weighed Performance is utilized in the com-

parison. The comparison results are shown in Figs. 23

and 24. From these figures, we can observe that the

weighted performance of cache based architecture com-

pared to the SPM based architecture on four-core proces-

sors improves compared to performance on dual-core

processors. On the four-core processors, only 62.5% of

the benchmarks perform better on the SPM based archi-

tecture, while the percentage is 87.5% on dual-core pro-

Fig. 21. WCET comparison of each benchmark between the
DPaL2 and the SPrL2 strategies on four-core processors. WCET:
worst-case execution time.

Table 7. Default configuration of memory size for four-core simulation of different architectures

Architecture Memory information

Two-Level SPM based 256/1024 bytes L1 inst. SPM and 256/1024 bytes data SPM for each core

Two-level with separated L1 SPMs 2048/8192 bytes shared L2 SPM by four cores

Cache based 256/1024 bytes L1 inst. cache and 256/1024 bytes data cache for each core

Cache with separated L1 caches 2048/8192 bytes shared L2 cache by four cores

SPM: scratch-pad memory.

Fig. 22. WCEC comparison of each benchmark between the
DPaL2 and the SPrL2 strategies on four-core processors. WCEC:
worst-case energy consumption.
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cessors. This is because we double the size of L2

memory, accomplishing double the number of cores. The

larger L2 cache has more cache sets, which mitigates the

interference among cores and then increases the cache

performance.

3) Evaluation the Sensitivity to the Bus Bandwidth

Change: As aforementioned in Section III-B, we design

the experiment in this section to evaluate the performance

influence of the memory bandwidth change. The increas-

ing memory bandwidth should offer better performance

for both caches and SPMs; however, the objective of this

experiment is to evaluate the relative performance boost

we can achieve on SPMs compared to caches under dif-

ferent bandwidths. Therefore, we fix the latency of

caches under different bandwidths to calculate the rela-

tive latency of SPMs. We set the memory bandwidth as 1

word, 2 words, and 4 words, respectively, and still use

Eqs. (1)–(3) to compute the latency of SPM operations

based on the same cache latency setting. Consequently,

the latency of accessing SPMs increases as the memory

bandwidth increases. Figs. 25 and 26 show the WCET and

WCEC change, respectively, under these three memory

bandwidth settings, based on the TLSL1S-arch, which

are normalized to the WCET and WCEC with 1 word

memory bandwidth, respectively. Clearly, we observe

that both the WCET and WCEC increase with the

increase of the memory bandwidth. These results indicate

that with larger memory bandwidth, the SPM’s perfor-

mance and energy advantages over caches are reduced.

IX. CONCLUSIONS

Traditional cache-based multicore processors can pro-

vide high performance, but are harmful to time predict-

ability. In this paper, we studied three time-predictable

SPM based architectures to provide time predictability

with good performance for multicore processors. We

explore multi-level SPM hierarchies and propose the

DPaL2, SPaL2, and SPrL2 strategies for the L2 SPM

shared by all cores. Our experimental results indicate the

strengths and weaknesses of each architecture and the

associated allocation strategy as follows.

Fig. 25. WCET change of each benchmark under different
memory bandwidth settings (bandwidth 1: 1 word, bandwidth 2:
2 words, and bandwidth 3: 4 words). WCET: worst-case execution
time.

Fig. 23. Weighted WCET comparison between the SPM based
and the cache based architectures for four-core processors.
WCET: worst-case execution time, SPM: scratch-pad memory.

Fig. 24. Weighed WCEC comparison between the SPM based
and the cache based architectures for four-core processors.
WCEC: worst-case energy consumption, SPM: scratch-pad
memory.

Fig. 26. WCEC change of each benchmark under different
memory bandwidth settings (bandwidth 1: 1 word, bandwidth 2:
2 words, and bandwidth 3: 4 words). WCEC: worst-case energy
consumption.
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First, the performance of the TLS-arch is superior to

that of the OLS-arch, while the latter is simpler in design

and implementation. The strength of the TLS-arch is that

it provides better performance on the real-time applica-

tions without excessive data accessing, while the weak-

ness is that the instruction and data cannot be accessed

concurrently based on this architecture. On the contrary,

the TLSL1S-arch better fits data-intensive real-time

applications, which not only maintains good performance

but also achieves a higher bandwidth by accessing both

instruction and data SPMs at the same time.

Second, the DPaL2 strategy achieves the best perfor-

mance on each core because of its flexibility of memory

object allocation. However, the increased complexity and

computation time may limit its applicability to large

applications. In contrast, the strength of the static alloca-

tion based approaches is their low complexity, but the

performance is usually less than that of the dynamic allo-

cation.

In addition, our evaluation indicates that among the

SPM based, cache based, and hybrid architectures, the

SPM based architecture performs the best in terms of

both WCET and WCEC, while attaining time predictabil-

ity. We believe that the proposed SPM based architec-

tures can provide interesting memory design options to

enable real-time multicore computing.

In our future work, we plan to include more cache pol-

icies such as an exclusive cache to perform the evalua-

tion. Also, we would like to extend our analysis and

evaluation to include the timing effects of the shared bus.

Moreover, we plan to extend our research framework to

evaluate the scalability and effectiveness of the proposed

SPM architectures and allocation strategies for larger

benchmarks and larger SPMs, particularly targeting their

use in smartphones and tablets, etc.
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