
Copyright  2015.  The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677   eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 9, No. 2, June 2015, pp. 108-117

Priority-Based Network Interrupt Scheduling for Predictable
Real-Time Support

Minsub Lee, Hyosu Kim, and Insik Shin*

School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Korea

mslee@cps.kaist.ac.kr, hskim@cps.kaist.ac.kr, insik.shin@cps.kaist.ac.kr

Abstract
Interrupt handling is generally separated from process scheduling. This can lead to a scheduling anomaly and priority

inversion. The processor can interrupt a higher priority process that is currently executing, in order to handle a network

packet reception interruption on behalf of its intended lower priority receiver process. We propose a new network inter-

rupt handling scheme that combines interrupt handling with process scheduling and the priority of the process. The pro-

posed scheme employs techniques to identify the intended receiver process of an incoming packet at an earlier phase. We

implement a prototype system of the proposed scheme on Linux 2.6, and our experiment results show that the prototype

system supports the predictable real-time behavior of higher priority processes even when excessive traffic is sent to

lower priority processes.

Category: Embedded computing; Smart and intelligent computing

Keywords: Real-time scheduling; Interrupt handling; Network I/O management; Process-aware resource scheduling

I. INTRODUCTION

Interrupt handling is critical to predictable real-time

services. Hardware interrupts make it possible for external

devices to notify asynchronous events to the processor

efficiently. When the processor receives an interrupt signal,

it invokes an interrupt handler, blocking the currently

executing process. In most operating systems, interrupt

handling is independent of process scheduling, even though

many interrupts are generated and processed on behalf of

user processes. This could lead to scheduling anomalies,

making it more complicated to achieve the predictable

behavior of real-time processes.

Most operating systems prioritize the processing of

interrupts. This can lead to priority inversion [1]. As an

example, let us consider a network interface card (NIC)

signaling an interrupt to notify an incoming network

packet. In response to this network interrupt, the proces-

sor triggers an interrupt handler. This interrupt handler

preempts the process that is currently executing and

which is the intended receiver of the packet. This can

block the execution of a higher priority task until the pro-

cessing of the incoming packet is complete for its lower

priority receiver process.

In this paper, we aim to address such a priority inver-

sion problem when handling interrupts for incoming net-

work packets. We introduce an interrupt handling scheme,

based on network interrupt scheduling with process pri-

ority (NISP), which combines network interrupt handling

and priority-based process scheduling. The proposed

NISP scheme identifies the intended receiver process of

an incoming packet at an earlier phase, and schedules a

network interrupt handler according to the receiver pro-

cess’ priority. This allows network interrupt handling to
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avoid the priority inversion problem.

Experiments show that a prototype system based on

NISP supports the predictable behavior of higher priority

processes even when faced with excessive traffic on

lower priority processes. In comparison, a conventional

Linux system exhibits the unstable behavior of higher

priority processes under high network loads on lower pri-

ority processes.

This paper presents the design and implementation of

process priority-based network interrupt scheduling. This

work makes the following contributions:
● It shows that the NISP scheme provides a more suit-

able environment for real-time tasks, such as periodic

and sporadic tasks, in terms of response time, dead-

line miss ratio, and jitter (the time variation of two

consecutive outputs) with small network throughput

degradation.
● It demonstrates that our NISP scheme works on

existing Linux 2.6 with minimal modifications.

The remainder of this paper is organized as follows:

Section II describes the interrupt handling mechanism on

Linux. Section III introduces the proposed NISP scheme.

Section IV presents details of implementing the NISP,

which is evaluated experimentally in Section V. Related

work is discussed in Section VI. Finally, Section VII con-

tains conclusions and recommendations for future work.

II. INTERRUPT HANDLING ON LINUX

Hardware devices issue an interrupt signal to the pro-

cessor to indicate the need for attention. For example,

when a network card receives an incoming packet off the

network, it signals an interrupt to alert the kernel to its

availability. When the processor detects the signal, it pre-

empts its current execution in order to handle the inter-

rupt immediately. The kernel runs interrupt handler or an

interrupt service routine. Each network card has an asso-

ciated interrupt handler, which is part of its device driver.

In general, the interrupt handler of a network device has a

large amount of work to perform. In addition to the net-

work device acknowledging receipt of the interrupt, the

interrupt handler needs to copy networking packets from

the network device into memory, process them, and push

the packets down to the appropriate protocol stack or

application.

Interrupt handling is generally associated with two

seemingly conflicting goals. It is imperative that an inter-

rupt handler processes interrupt requests immediately in

order to optimize hardware performance. The interrupt

handler disables interrupts in order to avoid potential race

conditions and data corruption due to multiple interrupt

handling. It is important that the interrupt handler fin-

ishes up quickly, to resume execution of the interrupted

code as soon as possible and not to keep interrupts

blocked for long. Because of these conflicting goals, the

processing of interrupts is split into two parts. The top

half is the interrupt handler that executes immediately

upon receipt of the interrupt. It performs time-critical

work, such as acknowledging receipt of the interrupt or

resetting the hardware (packet moving). The top half exe-

cutes with its corresponding interrupts disabled. In order

to facilitate small and fast interrupt handlers, the bottom

half is used to defer as much of the interrupt processing

work as possible away from the top half. The bottom half

handles all of the remaining work that has not been car-

ried out by the top half. This enables other interrupts.

This dichotomy in interrupt handling reduces the time to

disable interrupts, as well as the time to preempt the code

that is currently being executed.

For example, in response to an interrupt from a net-

work card, the kernel executes the network card’s regis-

tered device driver. The device driver uses the top half

interrupt handler to perform time-sensitive, hardware spe-

cific operations. It acknowledges the network card, copies

new networking packets into the main memory, resets a

device register, and makes the network card ready for more

packets. The interrupt handler then defers the rest of the

work to the bottom half. It marks the bottom half, instruct-

ing the kernel to run it later, and subsequently it exits.

Most work for packet processing takes place in the bot-

tom-half interrupt handler. It performs network protocol

stack processing, which corresponds to the network and

transport layers. After addressing protocol-specific issues

and performing demuxing, the bottom half places the

packet into the buffer in the appropriate socket structure.

III. NETWORK INTERRUPT HANDLING

This section describes the design of our proposed inter-

rupt handling scheme, based on network interrupt sched-

uling with process priority (NISP). The NISP scheme

aims to avoid the priority inversion problem involved in

network interrupt handling. Suppose a higher priority

(HP) process is currently executing, while a lower prior-

ity (LP) process is waiting for incoming packets. When a

new incoming packet arrives at NIC destined for the LP

process, it issues an interrupt. The processor can then pre-

empt the HP process immediately, in order to execute the

top half interrupt handler, on behalf of the LP process.

After performing time-critical operations, the handler

defers the remaining work for packet processing to a later

time. When the top half handler finishes, the operating

system resumes the execution of the preempted HP pro-

cess. When a bottom half handler starts its operation on

the incoming packet on behalf of the LP process, the HP

process can be preempted again. Carrying out the bottom

half operations, the bottom half handler finishes, and the

HP process can resume its execution.

Here, the HP process could be blocked by the top half

and the bottom half interrupt handlers on behalf of the LP
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process, incurring priority inversion (Fig. 1(a)).

An intuitive solution to this priority inversion problem

would be to disable low priority interrupts during the exe-

cution of a HP process so that the HP process can execute

free from the interference of such interrupt handling.

However, interrupts and processes have separate priority

spaces in most operating systems, including Linux. That

is, interrupt priorities characterize the relative importance

between various interrupts, while process priorities spec-

ify that importance between different processes. How-

ever, Linux cannot determine which interrupt is more

important than which process.

The NISP scheme proposes a systematic approach to

address the priority inversion problem that the bottom

half network interrupt handling can yield. In terms of

network interrupts for incoming packets, the NISP scheme

executes the top half handler in the same way as it takes

care of the bottom half differently from the original Linux;

it could defer the execution of the bottom half even further,

when a priority inversion problem takes place. The key

idea of NISP is that some incoming packets have their

intended receiver processes. Under NISP, such intended

processes (and their priorities) are identified through

early demux in the top half phase. More specifically, we

can find out a destination port number of an incoming

packet through early demux, and we map the port number

to the corresponding receiver process. NISP then uses

such process priorities in the bottom half scheduling, in

particular, to avoid the priority inversion problem. There-

fore, NISP consists of three major components: early

demux in the top half, port number-to-priority mapping,

and the bottom half scheduling, which are described in

Section III-A, III-B, and III-C, respectively. Section III-D

discusses protocol issues involved in early demux.

A. Early Demuxing

One of the essential operations of NISP is to determine

which process is connected to an incoming network

packet, and associate the corresponding process’ priority

with the packet such that its packet processing can be

handled according to the process priority. In general, such

a connection is revealed out at the last phase of the packet

processing. Hence, early demuxing techniques [2, 3] are

used to acquire such connection information earlier than

the packet processing.

Early demux techniques can be implemented in hard-

ware or by software. Network interface cards can come

with an additional special co-processor that can extract

some protocol information (e.g., a destination port num-

ber) from incoming packets, and pass such information to

operating systems. As this hardware-based approach

imposes an extra cost with the additional co-processor,

we consider a software early demux in the NISP scheme.

Under NISP, the top half handler fetches a network

packet from the NIC’s buffer to the main memory, and it

extracts a destination port number out of the packet. This

can be easily achieved with two lookup operations to the

packet header. The handler first looks up a type of the

packet. If the packet is a Transmission Control Protocol

(TCP) or User Datagram Protocol (UDP) packet, its des-

tination port number is stored in a fixed location in the

packet header. The handler is then able to find it easily

according to its packet header length.

B. Port Number to Process Priority Mapping

We are now subject to how to map a destination port

number to a corresponding process (and its priority). In

Linux 2.6, the operating system scans all available sock-

ets in order to find a socket corresponding to a given des-

tination port number, and upon the discovery of such a

socket, it sends a signal to the socket in order to notify an

associated process of packet availability. This approach,

however, is inappropriate for NISP, as NISP focuses on

finding only the priority of a corresponding process with-

out having to know a corresponding socket; in fact, it

does not have to figure out the corresponding process, as

long as it is able to find its priority directly. In order to

establish fast mapping from a port number directly to a

Fig. 1. Priority inversion with interrupt handling in the original
version of Linux and in the proposed NISP scheme. HP: higher
priority, TH: top half interrupt handler, BH: bottom half interrupt
handler, NISP: network interrupt scheduling with process priority.

Fig. 2. Mapping of the port number to the process priority.
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corresponding process priority (not the corresponding

process), we maintain our own table named port number

to process priority mapping (PPM) (see Fig. 2) that indexes

the port number. Such a table contains only the priority of

a process corresponding to a port number. Each entry of

the table is inserted when a process binds a socket, and

becomes invalid when the process closes the socket. This

PPM table allows its users to obtain a process priority

efficiently, without scanning all sockets.

Hence, at the end of top half under NISP, the handler

extracts a port number through early demux, translates it

into a corresponding process priority from the PPM table,

and stores it into a packet data structure.

C. Process-Aware Bottom Half Scheduling

The main purpose of NISP is to delay the bottom half

of network packet processing when the executing process

is subject to priority inversion. In Linux, ksoftirqd, a ker-

nel thread for handling the bottom half, periodically

checks availability of new incoming network packets. If

available, the kernel thread starts packet handling one by

one until its budget is exhausted. 

In NISP, we assign a corresponding process priority to

each available network packet, so the bottom half scheduler

is able to compare the priority of the executing process

and the priority assigned to the packet (i.e., the priority of

its destination process). When the priority of the packet is

lower than that of the current process, the NISP bottom

half scheduler does not handle the packet, and delays it to

the next bottom half daemon (ksoftirqd) period. This

way, we can avoid the priority inversion problem.

Fig. 1 shows the effect of the NISP bottom half sched-

uling, in comparison to the original Linux case. We can

estimate such an effect as follows. Let TTH and TBH

denote the computation times of the top half and the bot-

tom half handlers, respectively. Suppose n network inter-

rupts happen on behalf of LP processes, while a HP

process is currently executing. Then, in the original Linux,

the current process could be interfered by the top half and

the bottom half handlers n times each. That is, it could be

interfered by n · (TTH + TBH). However, in the NISP

scheme, the current process could be interfered by only

the top half handler, never by the bottom half handler.

Thereby, it could be interfered by n · (TTH + TD), where

TD denotes the computation time to perform early demux

in the top half in NISP. Considering TBH is much larger

than TD, the NISP scheme can effectively support the pre-

dictable real-time execution of a HP process by reducing

the interference from semantically lower priority inter-

rupt handling. 

D. Other Protocols

There are many other protocols than TCP and UDP

packets, such as ARP, RARP, ICMP, and IP packet for-

warding. In Linux, those kinds of packets are handled by

the kernel itself, and do not notify any user processes of

such packets. We consider them as associated with the

kernel, so we assign the highest priority to those packets

during the early demux procedure. For instance, network

switches or routers create ARP control packets to main-

tain routing tables. Improper handling of such control

packets may result in switch/router failure. 

IV. IMPLEMENTATION

To implement the NISP prototype, we make a minimal

modification to the Linux kernel and network device

driver. We patched Linux kernel 2.6.24 as follows.

As shown in Fig. 3, our NISP scheme takes advantage

of the process-related information of networking packets to

integrate network interrupt handling and process scheduling.

In order to extract the process-related information from

packets, we add early demux functionality into the network

device driver. When a network interrupt occurs, the Linux

kernel runs an interrupt service routine immediately,

executing a registered interrupt handler according to its

interrupt request number. Most tasks performed by the

interrupt handler are to fetch an incoming network packet

into the main memory, reset the NIC’s status register, and

invoke a system call, named netif_rx() to insert the
packet into an input packet queue, named input_pkt_
queue in Linux.
Here, just before inserting the network packet into the

input packet queue, we add our routine that finds a port

number of the packet. Our routine first looks up the type

of the packet. If the packet is of interest, then our routine

extracts the port number of the packet.

In order to map a port number to a process priority, we

make some modifications to socket-related system calls.

In Linux, user processes invoke a system call, named

bind(), to associate a local address and a port number

with a socket, and invoke another system call, named

close(), to close the socket. We wrap up those two

system calls in order to manage a process priority table

indexed by a port number. When a process invokes the

bind() system call with a port number, we create an

entry that contains the process priority with an index of

the port number. When the process invokes close()
later, a corresponding entry becomes invalid. This table

makes it easy to look up a corresponding process priority

associated with a port number. Once we find a process

priority associated with a packet, we store the priority

into the packet’s data structure, named priority.

In Linux, every network packet coming from an NIC is

added into the input packet queue in a first-in first-out

(FIFO) fashion. In the proposed NISP scheme, each

packet is equipped with a corresponding process priority

through early demux. Considering that the bottom half

scheduler finds the packets to handle according to their
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priorities, it is preferable to make the input packet queue

as a priority queue, rather than a FIFO queue. In order to

support an insertion sort scheme to the input packet

queue, we add a new insertion sort function, named

__skb_queue_insert_sorted(), to the existing
linked list structure in Linux. Then, we replace the existing

FIFO packet insertion function, named __skb_queue_
tail(), with our new priority insertion function.
Adding a packet into the input packet queue according

to its associated priority, the top half behaves in the same

way as the original Linux does. Specifically, it raises a

software interrupt (softirq) by setting a pending bit to 1 in

a softirq vector array, named softirq_vec, and exits. The

remaining work of packet processing will be performed

in the bottom half.

In Linux, the bottom half becomes activated by a ker-

nel thread, named ksoftirqd. The kernel thread periodi-

cally checks out the softirq vector array looking at pending

bits. When it finds that the network packet reception’s

pending bit is set, ksoftirqd invokes a system call, called

net_rx_action(), to handle packets one by one.
In the proposed NISP scheme, we make modifications

to the net_rx_action() system call so that it handles

packets only if their priorities are no lower than the prior-

ity of the process that is being executed. Since the Linux

kernel maintains a pointer to the executing process,

named current, we can get a priority from its process con-

trol block. Recall that the input packet queue is sorted by

a priority. When our modified packet handler finds a

packet with a priority lower than that of the executing

process, it stops handling incoming packets.

V. EXPERIMENT

This section evaluates the performance of network inter-

rupt handling on the original Linux 2.6.24 (Linux) and its

modified version, patched with our NISP scheme (Linux-

NISP). Specifically, we compare their network interrupt

handling subsystems in terms of their effect on real-time

higher-priority processes in the presence of pending net-

work interrupts of semantically lower-priority.

A. Experiment Setup

Our experimental environment includes two machines

interconnected through a 10/100 MB network switch in a

private network. One machine (M1) has a 2.8-GHz AMD

Phenom CPU, 4 GB main memory, and RTL8111/8168B

PCI Gigabit Ethernet controller. The other machine (M2)

is equipped with a Gumstix Verdex Pro XL6P embedded

board [4]. It comes with a 600-MHz Marvell PXA2700

processor, 128 MB main memory and 10/100 MB SMC911x

Ethernet chipset.

Our experiment involves a pair of processes that per-

forms UDP communication sitting on either of the two

machines. A UDP-sender process runs on the M1 machine,

and a UDP-receiver process executes on the M2 machine.

To make our experiment realistic, the UDP-sender gener-

ates a burst of packets according to a two-state Markov

Modulated Poisson Process (MMPP-2), which generates

a wild fluctuation in the network traffic.

Our experiment aims to measure the effect of network

interrupt handling on a higher priority process, while

such network interrupts are handled on behalf of a lower

priority process. Hence, the M2 machine hosts a process,

which has a higher priority than that of the UDP receiver

process. The higher-priority process is a face detector

process that finds faces in a given image of 128 × 128

pixels. This program is built upon the OPENCV library,

which is the most widely used image-processing library.

This process is highly CPU-intensive, since most of the

Fig. 3. (a) Linux vs. (b) the network interrupt scheduling with process priority (NISP) scheme. NIC: network interface card.
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face detecting mechanism consists of lots of image pro-

cessing and array calculation.

In order to compare the effect of the original Linux and

our patched Linux, the M2 machine is equipped with

Linux and Linux-NISP, respectively.

The bottom half daemon, named ksoftirqd, has a prior-

ity of 15 by default on Linux. We assign the same priority

to ksoftirqd during the experiment. The UDP-receiver

process is given a priority of 18, and the face detector

process is assigned a priority of 17. Notice that a priority

of a smaller number indicates a higher priority.

Our experiment has 20 cases both on Linux and Linux-

NISP. In each experiment, the UDP-sender process runs

on the M1 machine, and the face detector process and the

UDP-receiver process execute on the M2 machine. The

face detector process is a sporadic process with a mini-

mum inter-arrival time of 3 seconds and an estimated

execution time of 1.2 seconds. This sporadic process has

two job release patterns as follows: 1) one case where the

inter-arrival time of two consecutive jobs is exactly 3 sec-

onds, and 2) the other case where the inter-arrival time is

longer than 3 seconds. The former case happens when a

previous job finishes in 3 seconds after its release. The

latter case takes place when the response time of a previ-

ous job is larger than 3 seconds. In the latter case, a next

job is released as soon as the previous job finishes. 

In each experiment, the face detector process executes

1000 consecutive jobs. Hence, each experiment runs for

at least 3000 seconds. Each experiment runs under a dif-

ferent network workload. The network workload is mea-

sured as the average number of packets per second

generated by the UDP-sender process.

B. Experiment Results

This section presents the results of the experiment. We

investigate the performance of network interrupt han-

dling on Linux and Linux-NISP, in supporting the real-

time behavior of a HP process under various network

workloads associated with a LP process. Specifically, we

compare their performance in terms of response time,

deadline miss ratio, and jitter. We then evaluate potential

overheads imposed by Linux-NISP, in comparison to

Linux. In our experiment, the face detector process works

as a HP process. For simplicity, we refer to the face detec-

tor process as HP and call the UDP-receiver process LP.

Response Time. A response time is the duration from

the release time to the finishing time. We measure the

response time of HP, in order to assess how much inter-

ference network interrupt handling affects the execution

of higher priority processes. Fig. 4 shows average response

times of HP on Linux and Linux-NISP under various net-

work workloads. The error bar in the Fig. 4 represents the

standard deviation of each experiment case.

On both Linux and Linux-NISP, the response time of

HP grows as the network workload increases. This is

because network interrupt handling interferes more with

the execution of HP in order to handle more network

packets. However, the response time increases more rap-

idly on Linux than on Linux-NISP since both the top half

and the bottom half interrupt handling interfere with HP

on Linux, while only the top half does so on Linux-NISP.

One interesting aspect shown in Fig. 4 is that the

response time of HP starts increasing sharply from a

certain point. This point corresponds to the network

workload of about 2700 pkt/s; for reference purposes

P2700 will denote this point. This phenomenon can be

explained as follows. As mentioned earlier, the face detector

(HP) process has two job release cases, depending on the

inter-arrival time of two consecutive jobs: 1) one case

where it is exactly 3 seconds, and 2) the other case where

it is strictly greater than 3 seconds. The former case

corresponds to a situation where a previous job finishes

in 3 seconds from its release, and the next job is released

exactly 3 seconds after a previous release. In this case,

there is a gap between the finishing time of the previous

job and the release time of the next job. This gap can be

used to perform network interrupt handling without

imposing any interference on the HP. The latter case

happens when a next job is released as soon as a previous

job finishes 3 seconds after its release. In this case, there

is no such gap to perform interrupt handling that does not

interfere with HP. It is shown in Fig. 4 that the latter case

starts appearing from P2700, and this makes the response

time of HP increase rapidly from that point.

On the other hand, on Linux-NISP, the response time

of HP remains fairly stable, in comparison to Linux, even

though the network traffic increases. This is because only

the top half handler can interfere with the HP process,

and the bottom half handler is delayed in order not to

interfere with the HP process. In particular, the response

time of HP does not start increasing sharply, as that does

in the original Linux case. This is because the bottom half

handlers never interfere with the HP process, and it does

not concern whether or not gaps exist between two con-

Fig. 4. Comparison of response time. NISP: network interrupt
scheduling with process priority.



Journal of Computing Science and Engineering, Vol. 9, No. 2, June 2015, pp. 108-117

http://dx.doi.org/10.5626/JCSE.2015.9.2.108 114 Minsub Lee et al.

secutive jobs. Therefore, NISP particularly supports the

stable execution behavior of real-time tasks, such as peri-

odic and sporadic tasks, even under a high volume of net-

work packets to process on behalf of LP processes.

Deadline Miss Ratio. In order to evaluate the impact

of Linux-NISP, in comparison to Linux, on the real-time

behavior of higher priority processes, we measure the

deadline miss ratio of the HP process. Fig. 5 shows dead-

line miss ratios of the HP processes under different dead-

line values. Its deadline is given as either 1.6 seconds or

3.0 seconds, in order to see the different deadline miss

patterns in two different job release cases of the HP pro-

cess. In the original Linux, as the number of packets to

handle increases, the deadline miss ratio keeps increasing

smoothly when a deadline is 1.6 seconds. It shows a

slightly different phenomenon when the deadline is 3.0

second. The HP process does not experience a deadline

miss until a certain point, but it starts experiencing dead-

line misses rapidly from that point. In our experiments,

the point is P2700, which is the same point from where the

response time starts to rapidly increase on Linux in

Fig. 4. On the other hand, on Linux-NISP, the HP process

is able to meet all the deadlines even under heavy net-

work workloads, because the bottom half handler does

not interfere with it at all. This shows that NISP is effec-

tively supportive of HP processes, ensuring that they

meet their deadlines.

Jitter. A jitter is the time variation of two consecutive

outputs, and it is measured as the time difference between

the finishing time of a job and the finishing time of its

previous job. Jitter is critical to the system stability in

many control systems and to the quality of service of

multimedia applications. In our experiments, the MMPP-

2 traffic model generates a wild packet fluctuation, and

this potentially affects the jitter of the HP process. Figs. 6

and 7 show the jitters of HP under various network work-

loads on Linux and Linux-NISP, respectively. The differ-

Fig. 7. Jitters on Linux-NISP. (a) 1079 pkt/s, (b) 2427 pkt/s, and (c) 3989 pkt/s. NISP: network interrupt scheduling with process priority,
HP: higher priority.

Fig. 5. Comparison of deadline miss ratio. NISP: network interrupt
scheduling with process priority. 

Fig. 6. Jitters on Linux. (a) 1079 pkt/s, (b) 2427 pkt/s, and (c) 3989 pkt/s. HP: higher priority.
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ent network workloads in Figs. 6 and 7 are 1079 pkt/s,

2427 pkt/s, and 3989 pkt/s. The x-axis of the graphs rep-

resents the job number of the HP process. In each case,

1000 jobs of HP execute.

Fig. 6 shows that the jitter becomes more diverging on

Linux as the network workload increases. This is because

interrupt handling takes place irregularly according to the

packet fluctuation generated by the MMPP-2 traffic model,

and such interrupt handling interferes with HP process

irregularly. On the other hand, Fig. 7 shows that the jitter

is relatively constant in Linux-NISP even though the net-

work traffic increases. Even though the traffic establishes

fluctuation, the HP process is little affected by such traf-

fic fluctuation. This is because interrupt handling does

not affect the HP process much, while traffic fluctuation

can affect such interrupt handling. This shows that NISP

is effective in protecting HP processes from irregular

interrupt handling, and it is practically suitable for jitter-

sensitive real-time applications. This is because in reality

most traffic is from variable workloads, rather than con-

stant ones.

Fig. 8 shows average jitters with standard deviations

(with error bars) in various traffic models. In stable sys-

tems, the mean value of jitters is generally 0 (i.e., it is 3s

in our experiment cases), and their standard deviation

represents how jitters are significant, i.e., how diverging

they are. In Fig. 8(a), the average value of jitters remains

as 3s until a certain point, and then it starts increasing.

The certain point is P2700; it is from this point that the

response time and the deadline miss ratio of HP starts

increasing rapidly. From P2700, the average jitter keeps

increasing sharply as the network load increases. Further-

more, its standard deviation also keeps increasing. On the

other hand, Fig. 8(b) shows that the average jitter remains

constantly at 3s regardless of the network loads. We note

that Fig. 8(b) has a different y-axis scale.

Network throughput. Finally, we evaluate the over-

head of Linux-NISP, in terms of network throughput, in

comparison to Linux. Linux-NISP imposes two over-

heads in interrupt handling. One is early demux in the top

half, and the other is the bottom half priority-based

scheduling. We evaluate such overheads by measuring

the throughput of the network connection between two

sender and receiver processes on the M1 and M2

machines. We make use of a commonly used open source

network testing tool on Linux, named iperf [5]. Two iperf

programs execute on M1 and M2, with one on M1 as a

sender and the other on M2 as a receiver. The sender on

M1 sends UDP packets at a constant bandwidth, and the

receiver on M2 receives the packets, and measures the

receiving bandwidth. We note that the face detector pro-

cess is excluded in the experiment. The overhead imposed

by Linux-NISP would increase interrupt handling time,

and thereby decrease the number of packets delivered to

the receiver the iperf program. Fig. 9 shows the receiving

bandwidth on Linux and Linux-NISP. It shows that the

receiving bandwidth goes up to 40 Mbit/s on Linux,

while it goes up to 39 Mbit/s on Linux-NISP. This shows

that the overhead of Linux-NISP could degrade network

performance by 2.5%. This would effectively support the

real-time behavior of HP processes.

Fig. 8. Average jitters under different network workloads. (a) Linux and (b) Linux-NISP. NISP: network interrupt scheduling with process
priority.

Fig. 9. Comparison of network throughput. NISP: network interrupt
scheduling with process priority.
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VI. RELATED WORK

Several research studies propose predictable interrupt

management schemes for real-time systems. Interrupt han-

dling has been traditionally separated from process sched-

uling, with a higher priority placed on interrupt handling.

This can lead to a priority inversion problem, in which

semantically LP interrupt handling can block the execution

of a HP process. Towards addressing this problem in a

real-time context, a couple of studies [1, 6] propose the

integration of interrupt handling and process scheduling

into a single priority space, but in opposite ways. One

approach [1] describes a mechanism to treat interrupt

handlers as threads, and the other one [6] introduces a

platform that manages threads through interrupt handling.

However, these approaches do not consider associating

individual interrupts with their corresponding processes.

A few studies propose another framework to address

the priority inversion problem. This framework aims to

identify the relationship between an individual interrupt

and its corresponding process, and connects individual

interrupting handling with process scheduling according

to the corresponding process' priority. A couple of tech-

niques [2, 7] are introduced to identify such a correspond-

ing process. One is a probabilistic approach [7]. When an

I/O device raises an interrupt, there exists a set of pro-

cesses waiting on the corresponding I/O device, in partic-

ular, in the case for blocking I/O system calls (e.g., blocking

read() requests). This approach employs a prediction

scheme that considers the highest priority process among

the waiting processes as the corresponding process of the

interrupt of interest. This probabilistic approach may not

find an exact corresponding process of an interrupt, but it

could be applied to general I/O device interrupts.

Another approach [2] proposes to identify an exact

corresponding process of an interrupt, in the context of

network interrupt handling. Incoming network packets

generally have certain destination addresses. When a net-

work device issues an interrupt for an incoming packet,

in particular, with a certain destination address, there

exists an intended receiver process waiting on the desti-

nation socket. Early demuxing is employed to identify

such intended receiver processes accurately at an earlier

interrupt phase. Then, the priority of the corresponding

process can be effectively used in making decision on

when the bottom-half interrupt handling takes place. The

lazy receiver processing (LRP) approach [2] is most rele-

vant to our NISP scheme. LRP aims to support stable

overload behavior and fair resource allocation under a

heavy load from the network, but does not consider real-

time aspects much. LRP can successfully achieve system

stability and fairness by scheduling incoming network

traffic at the priority of the corresponding process and

discarding excess traffic early. However, LRP can unnec-

essarily delay the execution of HP processes. Specifically,

LRP performs network packet processing in the context of

user process performing system calls (i.e., receive()).
As indicated in [2], this way can delay the delivery of a

packet to the corresponding process and, thereby, the exe-

cution of the process. On the other hand, our NISP

scheme does not unnecessarily yield such a delay.

A few studies [7, 8] introduce an account of interrupt

handling costs in order to support the predictable real-

time behavior of user processes. Such accounting can be

orthogonally applied to our NISP scheme as well.

RTLinux [9] takes a different approach to the priority

inversion problem. It draws a clear separation between

real-time processes and non-real-time processes to ensure

that interrupt handling on behalf of non-real-time pro-

cesses cannot interrupt the execution of real-time pro-

cesses. However, a priority inversion problem still exists

between HP processes and LP processes by means of

interrupt handling. Our approach can be orthogonally

applied to RTLinux to further address such a problem.

Many protocols have been introduced to address the

priority inversion problem when tasks are accessing criti-

cal sections in a mutually exclusive manner. Such proto-

cols include the Priority Inheritance Protocol (PIP) [10],

the Priority Ceiling Protocol (PCP) [11], and Stack Resource

Policy (SRP) [12]. While these protocols address the pri-

ority inversion problem within the context of process

scheduling, our work considers process scheduling and

interrupt handling together.

VII. CONCLUSION

This paper presents the design and implementation of a

new Linux network interrupt handling scheme (NISP) for

incoming packets. It combines packets with the priorities

of their corresponding receiver processes, and their inter-

rupt handling is performed according to priorities. This

approach prevents the priority inversion problem, in par-

ticular, between the currently executed process and the

receiver process of a packet under interrupt handling.

We demonstrate the effectiveness of the proposed NISP

scheme by implementing it on Linux. Experiments show

that it effectively provides the predictable execution of HP

processes. Specifically, it shows that addressing the prior-

ity inversion problem involved in networking interrupt

handling can effectively support the predictable execution

behavior of HP processes, even when a high volume of

network packets is being sent to a LP process. Even though

the load of network interrupt handling, on behalf of the LP

process, keeps increasing, the execution of the HP pro-

cess remains stable with steady response times and jitters.

This paper only covers UDP packets. Our future work

includes accommodating more sophisticated protocols,

such as TCP. While TCP employs flow control, delaying

interrupt handling can defer TCP acknowledgments, and

may make the TCP communication unstable. We plan to

incorporate TCP packets to address such concerns.
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