
Copyright 2015. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 9, No. 3, September 2015, pp. 155-162

User Mobility Model Based Computation Offloading Decision
for Mobile Cloud

Kilho Lee and Insik Shin*

School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Korea

khlee@cps.kaist.ac.kr, insik.shin@cs.kaist.ac.kr

Abstract
The last decade has seen a rapid growth in the use of mobile devices all over the world. With an increasing use of mobile

devices, mobile applications are becoming more diverse and complex, demanding more computational resources. How-

ever, mobile devices are typically resource-limited (i.e., a slower-speed CPU, a smaller memory) due to a variety of rea-

sons. Mobile users will be capable of running applications with heavy computation if they can offload some of their

computations to other places, such as a desktop or server machines. However, mobile users are typically subject to

dynamically changing network environments, particularly, due to user mobility. This makes it hard to choose good off-

loading decisions in mobile environments. In general, users’ mobility can provide some hints for upcoming changes to

network environments. Motivated by this, we propose a mobility model of each individual user taking advantage of the

regularity of his/her mobility pattern, and develop an offloading decision-making technique based on the mobility model.

We evaluate our technique through trace-based simulation with real log data traces from 14 Android users. Our evalua-

tion results show that the proposed technique can help boost the performance of mobile devices in terms of response time

and energy consumption, when users are highly mobile.

Category: Embedded computing

Keywords: Mobile cloud; Computation offloading; Mobility; Cyber physical systems

I. INTRODUCTION

Cyber-physical systems (CPS) are next-generation embed-

ded systems featuring a tight integration of computing and

physical elements. Emerging applications of CPS include

avionics, automobiles, medical devices, robotics, and

consumer electronics. Many of them are mobile in nature.

For instance, passengers ride cars for the convenience of

moving, patients carry implanted medical devices for

health, and people bear mobile phones for a variety of

purposes. As such, user mobility is one of the key compo-

nents of mobile systems that actually move the systems.

Thereby, it often entails a good understanding of user

mobility in addressing many problems of mobile systems.

Many mobile devices are typically subject to limited

resources, such as low computing power, unstable wire-

less communication systems, and scarce energy capaci-

ties. In spite of such limitations, mobile CPS applications

are becoming more diverse and complex, requiring heavy

computation and network communication. As an exam-

ple, the Google Glass project [1] proposes next-genera-

tion Augment-Reality (AR) based services that combine

virtual information with real world images.

Imagine the following scenario. Alice is on the trip to

Received 03 September 2015; Accepted 08 September 2015

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2015.9.3.155 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 9, No. 3, September 2015, pp. 155-162

http://dx.doi.org/10.5626/JCSE.2015.9.3.155 156 Kilho Lee and Insik Shin

Europe, and wants to find a nearby fabulous restaurant.

She decides to run an AR-based recommendation, then

she looks around with wearing the Google Glass. The

glasses will show a combination of recommendation

information and real restaurant images around her. Since

the application involves heavy computation, she finds the

application continuously runs on her Google Glass, longer

than several tens of seconds, which is unacceptable. So

she decides to utilize a new mobile cloud service, the

ability for computation offloading. With this new service

on, she runs the application again, and OS automatically

determines whether or not to offload the major computa-

tion of the application (see Fig. 1). If she is in a situation

favorable towards computation offloading (i.e., at a hotel

with WiFi connection), OS chooses to do it and she can

benefit from offloading to get the recommendation

quickly. On the other hand, if she were in an unfavorable

situation for offloading (i.e., in a bus or in driving), OS

would not choose it because offloading could make it even

longer to complete the recommendation service compared

to no offloading.

The above is a fictional scenario, however, representa-

tive of the proposed functionality of mobile clouds, which

is dynamic computation offloading. Such dynamic com-

putation offloading essentially raises many technical chal-

lenges. It especially entails a mobile computation platform

which provides an offloading mechanism and offloading

decision-making policy for dynamic computation off-

loading. Existing studies [2-4] are focusing on offloading

mechanisms, providing a technical basis for computation

offloading, such as programming models, run-time envi-

ronments, and program structure analysis techniques.

Beyond those offloading mechanisms, offloading a deci-

sion-making policy is important to provide beneficial

computation offloading.

Mobile network environments have a great influence

on the performance of computation offloading. For exam-

ple, if a mobile device has a stable network connectivity

and plenty of network bandwidth, then computation off-

loading will result in better performance in terms of both

response time and energy consumption. However, mobile

users are typically subject to dynamically changing envi-

ronments due to their mobility. Thus, a high-quality deci-

sion requires a good understanding of network condition

changes and taking near-future network conditions into

account to make a decision, whereas user mobility makes

it hard to predict. Thereby, this paper aims to have a good

understanding of user mobility and to incorporate it into

good offloading decision-making. Then it proposes an off-

loading decision-making technique based on users’ mobil-

ity model.

II. BACKGROUND

A. Related Work

Mobile cloud. Recently, a few studies [2-4] have been

reported for development of computation offloading

frameworks in mobile environments, focusing on off-

loading mechanisms. For example, MAUI [2] proposes a

dynamic offloading framework with its own run-time

mechanism. It first requires explicit user annotation spec-

ifying which methods can be offloaded. For instance,

methods should not be marked for offloading if they

make use of native function calls, such as device-specific

function calls. It then profiles the execution time of off-

load-able methods, both when they run on a mobile

device and on cloud, respectively. MAUI makes offloading

decision offline through integer linear programming (ILP)

optimization based on the profiled execution time and

measured network quality. Similar to MAUI, CloneCloud

[3] proposes its own computation offloading framework.

The main difference between them is that CloneCloud

considers migrating an entire virtual machine, while

MAUI considers offloading a unit of computation (i.e.,

function/method). CloneCloud thereby proposes a modi-

fied Dalvik VM [5] as a run-time, and it does not need

explicit annotation for distinguishing offload-able com-

putation. Odessa [4] aims to support applications which

Fig. 1. Overview of dynamic computation offloading.

User Mobility Model Based Computation Offloading Decision for Mobile Cloud

Kilho Lee and Insik Shin 157 http://jcse.kiise.org

have dependencies between data flows, and it supports to

offload a portion of parallel executions to maximize par-

allelism.

User mobility. Mobility modeling technique has been

widely used to predict changing environments of mobile

systems. In order to measure and to improve the perfor-

mance, wireless ad-hoc network systems use the mobility

model. A few works [6-8] focus on building a mobility

model based on the distribution of users (nodes), and pre-

dicting future distribution of the users. Another work [9]

focuses on building a mobility model of a certain user,

and predicting the user’s location. The previous works

cover how to predict the location of the users.

B. Computation Offloading

In our system, both a mobile machine and a remote

machine (i.e., a server in the cloud) have the same pro-

gram logic, but the modules on the remote are faster.

When the mobile machine wants to offload a computation,

it transfers input data to a remote machine, triggering the

execution of a corresponding module on the remote

machine, and then receives the resulting data back. We

define such a sequence of operations as an offloaded

computation. In contrast, when the mobile machine exe-

cutes a module on the machine itself, we define it as a

local computation. Under the above definition, the

response time of an offloaded computation is defined as

the sum of input/result data transmission time and the

execution time of a method running on a remote machine.

This paper does not focus on how to estimate an exact

execution time of each method on local or remote

machines. We assume that the decision maker can apply

the state of the art [2, 3] profiling techniques to get those

parameters.

C. Problem Statement

The main goal of this work is to develop a good policy

for offloading decision-making. An offloading decision is

considered as good if an offloaded computation runs

faster than a local computation. In order to meet the goal,

the technique should address the following challenges,

making high-quality decisions under dynamically chang-

ing mobile network conditions, in an energy efficient way.

III. MOBILITY-AWARE OFFLOADING DECISION-
MAKING

We propose a mobility-aware offloading decision maker,

named Mob-aware, which takes into account near-future

network changes based on the user's mobility. The Mob-

aware decision maker gathers previous user movements

and network changes corresponding to the movements,

builds mobility model with gathered data, and then makes

offloading decisions.

A. Mobility Modeling

We propose a mobility model, which reflects a certain

user’s mobility patterns. By using the mobility model,

Mob-aware decision maker predicts near-future network

condition changes. User mobility often has some regular-

ity [8, 9], and this can provide some hints for what kind

of changes can occur to the network in the near future.

This motivates modeling of user’s mobility patterns.

In our technique, user’s mobility is characterized by a

sequence of networks to which users are connected. For

example, if a user is connected to WiFi, the location of

the user is specified by its WiFi access point (AP) ID,

then the trajectory of a user is represented as a sequence

of WiFi access point IDs. Based on such data, a 2nd-

order Markov model was built as a mobility model (see

Fig. 2) and trained with mobility patterns of a certain

user. The model represents the probability of visiting cer-

tain APs in the near future subject to the currently associ-

ated AP, an expected network quality under each AP, and

an expected staying time under each AP. Each user shows

distinct mobility patterns, thus every user has an individ-

ually trained mobility model. Fig. 2 shows an instance of

the mobility model. Each vertex represents each state,

modeled by WiFi APs. Each edge represents hand-over

between APs, and a weight of an edge means a probabil-

ity of moving to a certain AP from the current AP. In each

state si, bwi and sti represent average network bandwidth

and average staying time under a certain AP, respectively.

B. Prediction Engine

With the mobility model trained individually, the Mob-

aware decision maker can predict how a user moves from

Fig. 2. Mobility model. sti and bwi indicate staying time and
bandwidth on a state si, respectively. An edge weight represents
a probability of moving to a certain access point (AP) from the
current AP.

Journal of Computing Science and Engineering, Vol. 9, No. 3, September 2015, pp. 155-162

http://dx.doi.org/10.5626/JCSE.2015.9.3.155 158 Kilho Lee and Insik Shin

the current location. We propose a prediction engine,

which predicts near-future network condition based on

the mobility model, and calculates an expected response

time of a computation. The prediction engine estimates

expected response time of an offloaded computation and

a local computation, respectively. An offloaded computa-

tion especially involves data transmission, where the engine

has to estimate the data transmission time based on pre-

dictions of near-future network conditions. The predic-

tion engine explores every possible path in the mobility

model. For each possible path, the engine calculates a

response time of the computation based on expected net-

work throughput, bwi, and expected staying time on each

AP, sti, in the model. Then the engine calculates probabil-

ities of the user taking each possible path. Based on these

calculations, it estimates expected response time consid-

ering every possible path. Fig. 3 depicts the prediction

engine. Let Qi be a possible path (a plausible sequence of

APs), and sk be a state of model. The probability of taking

a path Qi (denoted by P(Qi)) can be derived by Eq. (1)

based on the Markov assumption [10].

(1)

(2)

The prediction engine estimates expected response time

of the offloaded computation, R, through Eq. (2); where

P(Qi) is a possibility of that the user takes Qi as his/her

future trajectory, and Ri is the response time of the off-

loaded computation on the trajectory Qi. Since each Qi

consists of a sequence of states sk, the engine can calcu-

late response time Ri of an offloaded computation on the

path Qi by using stk, bwk, du, and dr. The prediction engine

starts with a sequence only containing the current AP state.

It checks whether offloaded computation can be finished

by Σk stk in a sequence of states. If not, the engine extends

the sequence by adding a next reachable AP state. In the

mobility model, typically an AP state has multiple next

states. Therefore, the engine makes multiple extended

sequences. The engine repeatedly conducts completion

checking and sequence extending, and finds every possi-

ble Qi. It then calculates expected response times of the

offloaded computation, R, with possible paths Qi and

response times on the path Ri.

Path Pruning. If the offloaded computation cannot be

finished on a certain state sequence, the engine extends

the sequence with the next reachable APs in the model.

As a consequence, the number of state sequences increases

exponentially. It incurs severe computation overheads.

The engine restricts the length of each possible state

sequence, to avoid the state explosion problem. Since

P(Qi) is defined as multiplication of state transition prob-

ability (<1.0), where the longer Qi has the smaller weight

P(Qi). If the length of a certain state sequence reaches a

pruning threshold, the engine changes staying time of the

last state in the state sequence to infinite, so that the

length of each state sequence is restricted.

C. Adaptive Decision-Making

After calculating R, the prediction engine compares R

with the response time of the local computation. Finally, it

chooses the faster one as an offloading decision. After the

prediction engine makes an offloading decision, either an

offloaded or a local computation runs. While a computa-

tion is running, an unexpected move of a user or rapid

network condition changes can occur. For example, when

a WiFi connection is suddenly disconnected, an offloaded

computation will suffer severe performance degradation.

In order to alleviate such a problem, our decision maker

adaptively responds to dynamic network changes, period-

ically identifying any changes to network quality, an

associated AP, and the portion of completed computation.

IV. EVALUATION

We collect usage logs of smartphones from 14 users.

We then implement a trace-based simulator to evaluate

proposed mobility-aware offloading decision-making tech-

niques. This section presents experiment environments,

evaluation tools, and evaluation results.

A. Experiment Environments

Baselines. We propose Mob-aware decision maker,

which takes network changes into account with mobility

model. In order to show an effect on the performance of

the Mob-aware decision maker, we consider other deci-

sion makers, Net-aware and Dual decision makers, as

baselines. Net-aware decision maker takes advantage of

the current network conditions, under the assumption that

the current network conditions would not change much in

P Qi() P s0, s1, s2, ..., sn() P
k 2=

n

∏ sk sk 1– , sk 2–()= =

R P Qi() Ri Qi, du, dr()×
i

∑=

Fig. 3. Prediction engine. Qi indicates each possible path, P(Qi)
represents the probability of taking a path Qi. It calculates
expected response time of an offloaded computation considering
every possible path.

User Mobility Model Based Computation Offloading Decision for Mobile Cloud

Kilho Lee and Insik Shin 159 http://jcse.kiise.org

the near future. It estimates the data transmission time of

an offloaded computation by using current network

throughput. Dual decision maker allows a computation to

run on local and remote simultaneously. It takes the off-

loaded computation only when it finishes faster than the

local computation. Thus, it always makes an optimal

decision in terms of response time. In this evaluation sec-

tion, we present comparison between those different deci-

sion-making policies according to the response time and

energy consumption.

Trace collecting. In order to gather real user mobility

data, we implement an Android logger application that

collects log data traces. The traces of each user are used

for building an individual mobility model, and those are

used for evaluating the performance of decision-making

policies. The logger periodically collects log data, which

includes a time stamp, network connectivity, GPS coordi-

nates, WiFi status and network throughput. The logger

was deployed for 14 users (6 undergraduate students and

8 graduate students), and data traces were collected for at

least 3 weeks per user. They consist of 3,770 hours of

traces, as well as about 4 million log records.

Trace-driven simulation. Our technique is evaluated

through trace-driven simulation. We gathered user data

traces including user locations and network conditions.

The simulator then builds a mobility model of each user

for Mob-aware decision maker with gathered data. Upon

the traces and the models, the simulator repeatedly carries

out the following steps:

1) the simulator chooses a time instant in data traces

randomly;

2) at the chosen time instant, each decision maker

makes an offloading decision for a given computation;

3) according to each decision at step 2, the simulator

calculates the response times of the computation.

B. Simulator Implementation

We implement a simulator, which consists of a deci-

sion maker and a response time calculator. The decision

maker in the simulator reads data traces and builds a

mobility model for each user. After that, it can make a

decision based on the mobility model. The response time

calculator also reads data traces, especially network

throughput changes over time. It then calculates the

response time when a given computation follows the

decision made by the decision maker.

For a certain moment on data traces, the simulator

makes an offloading decision for a computation and cal-

culates the response time of the computation. Thus it can

evaluate the performance of the decision-making tech-

nique. Clearly, the offloading decision is considered good

when the decision maker makes an offload decision and

the response time of the offloaded computation is shorter

than the response time of the local computation.

The simulator can calculate response times, and can

also calculate energy consumption based on a power

model. Table 1 describes the power model according to

machine states. The state of a machine depends on usage

of CPU, WiFi, and 3G, and is measured by a Monsoon

power monitor [11] with actual power consumption of

Samsung Nexus S [12].

C. Simulation Results

A case study. Mob-aware decision maker comes up

with better decisions than others, especially, when a user

is moving around and the network condition is thereby

changing rapidly. For example, when WiFi hand-over

occurs, the network throughput rapidly decreases. Fig. 4

is a piece of collected traces, which depicts such a hand-

over case. It shows network throughput changes over

time. At 5 seconds, the mobile network suddenly loses its

connectivity due to WiFi hand-over.

We perform a simulation on this case with a dummy

computation, which has 30 Mbits and 10 Mbits of input

and output data sizes, 1 second of remote execution time,

and 10 seconds of local execution time.

At t0, each decision maker calculates the expected

response time of an offloaded computation, and decides

whether or not to offload the computation. At t0, Mob-

aware and Net-aware predict 23.4 seconds and 7.8 sec-

onds as the response times of the offloaded computation,

respectively. Thus, Mob-aware decides not to offload, but

Table 1. Power model

CPU : Idle (mW) CPU : Active (mW)

WiFi 1788 2415

3G 1377 2473

No network 554 1629

Fig. 4. Decision making with WiFi handover. It shows throughput
changes and timing instants corresponding to decision makings.
Upon this given trace, Mob-aware finishes given computation at
t2, while Net-aware finishes the computation at t3.

Journal of Computing Science and Engineering, Vol. 9, No. 3, September 2015, pp. 155-162

http://dx.doi.org/10.5626/JCSE.2015.9.3.155 160 Kilho Lee and Insik Shin

Net-aware decides to offload the computation. Even

though the current network condition is good enough to

offload, Mob-aware considers that it is possible to lose

network connectivity based on a mobility model of the

user. At t1, both decision makers conduct adaptive deci-

sion-making. Since the network condition is getting

worse, Mob-aware maintains its local decision, but Net-

aware changes its offload decision into local. Therefore,

Mob-aware and Net-aware have 10 and 15 seconds of

response times, respectively.

As shown in Fig. 4, Mob-aware decision maker can

reach a better decision, especially when network condi-

tions rapidly change due to user mobility. In order to

evaluate the performance of Mob-aware policy more

extensively, we conduct large scale simulations over mil-

lions of real user log records.

Various workloads. Within traces of each user, the

simulator chooses time instants for an offloading decision

in a way that it selects 3 time instants randomly within

each interval of a single WiFi AP association. Finally,

23,637 time instants are selected. In order to evaluate the

performance of each decision-making policy under vari-

ous workload setup, we conduct simulations on selected

time instants while changing the computation workload.

We use a dummy computation specified by input size,

output size, remote execution time and local execution

time. We changed the input size from 1 MB to 10 MB.

The output size and the remote execution time are

changed depending on the input size. The range of the

output size is set from 0.33 MB to 3.3 MB (one third of

input size), and the range of the remote execution time is

set from 0.25 to 2.5 seconds (4 MB/s). The local execu-

tion time is fixed to 10 seconds. Therefore, the higher

input size brings the longer response time of offloaded

computation, and makes it difficult to benefit from the

offloaded computation.

Fig. 5 shows the average response times while the

input size changes. The x-axis represents input sizes of

the dummy computation. As aforementioned, output sizes

and remote execution times are changed depending on

input size changes. Each plotted point represents an aver-

age response time of each decision-making policy on 23

K selected time instants. In the result, Mob-aware results

better average response times than Net-aware. Since Mob-

aware makes decisions based on mobility predictions, it

can produce more proper offloading decision than Net-

aware.

Fig. 6 shows average energy consumptions while the

input size changes. The x-axis represents input sizes, and

each plotted point represents an average energy con-

sumption of each decision-making policy. In the result,

Mob-aware is slightly better than Net-aware. Dual con-

sumes twice more energy than Mob-aware and Net-aware,

since it runs offloaded and local computations concur-

rently. Although Dual makes optimal performances in

terms of response time, the result confirms that Dual is an

inefficient policy in terms of energy savings.

Various network conditions. We perform another

experiment to show effectiveness of our approach when

network condition is highly dynamic. We select 23,637 time

instants identical to the previous experiment. We perform

the simulations with the computation that has 30 Mbits of

input data size, 10 Mbits of result data size, 1 second of

remote execution time, and 10 seconds of local execution.

We also use adaptive decision-making techniques with

5 seconds periods. At every time instant selected, the

simulator makes offloading decisions with three different

policies: Mob-aware, Net-aware, and Dual. It then calcu-

lates the response time of the computation according to

each decision.

In order to characterize the degree of mobility of each

experiment case, results are broadly classified into a cou-

ple of categories according to the number of WiFi hand-

over occurrences during each computation run. User

mobility is considered as high if it experiences more hand-

overs. In general, when user mobility becomes higher, the

network condition goes less stable and it makes it more

difficult to make a good offloading decision.

Fig. 6. Average energy consumption on various workloads.
Although Dual results optimal response time, Dual uses energy
twice as much as Mob-aware and Net-aware use.

Fig. 5. Average response time on various workloads. Mob-aware
results better response time than Net-aware, and Dual results
optimal response time.

User Mobility Model Based Computation Offloading Decision for Mobile Cloud

Kilho Lee and Insik Shin 161 http://jcse.kiise.org

Fig. 7 depicts the performance of different decision-

making policies in terms of the response time of computa-

tion. The x-axis represents the number of hand-over occur-

rences, and the y-axis represents the average response

time. The figure shows that Mob-aware and Net-aware

provide the average response times comparable to each

other when user mobility is low. However, Mob-aware

significantly outperforms Net-aware by around 20%, when

user mobility is high. It indicates that the network condi-

tion becomes unstable when user mobility is high and

Mob-aware makes better decisions than Net-aware in this

case. This result implies it is thereby important to con-

sider mobility to make a proper offloading decision in

mobile environments.

Fig. 8 plots the average energy consumption of a given

computation for different decision-making policies. The

x-axis indicates the degree of user mobility in terms of

the number of hand-overs, and the y-axis represents the

average energy consumption of a given computation. The

figure shows that Dual consumes more energy than Mob-

aware and Net-aware. This is because Dual always

employs both local and offloaded computations simulta-

neously, while Mob-aware and Net-aware have either a

local or an offloaded computation at a time. The figure

also shows Mob-aware consumes 7.7%–12.6% less energy

than Net-aware when user mobility is high. This is inter-

esting because Mob-aware provides even smaller response

times than Net-aware in the same cases. This is because

Net-aware changes its decisions more frequently than

Mob-aware when network conditions are unstable with

high user mobility.

V. CONCLUSION

This paper proposes a mobile computation offloading

technique, focusing on user mobility-aware decision-mak-

ing, which can predict near-future network condition

through user mobility models. Our evaluation results show

that our technique can be particularly beneficial when

users are moving around, causing fluctuations in network

quality. In this paper, we consider only the trajectory as

users’ mobility. However, other factors in users’ mobility,

such as moving speed, may also affect offloading perfor-

mance. Furthermore, computation offloading can show

different behavior depending on context of user’s loca-

tion. Thereby, we plan to extend our technique by consid-

ering such factors, for example, developing a location-

aware decision-making framework.

REFERENCES

1. “Google glass project,” http://www.google.com/glass/start/.

2. E. Cuervo, A. Balasubramanian, D. K. Cho, A. Wolman, S.

Saroiu, R. Chandra, and P. Bahl, “MAUI: making smart-

phones last longer with code offload,” in Proceedings of the

8th International Conference on Mobile Systems, Applica-

tions, and Services, San Francisco, CA, 2010, pp. 49-62.

3. B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,

“Clonecloud: elastic execution between mobile device and

cloud,” in Proceedings of the 6th Conference on Computer

Systems, Salzburg, Austria, 2011, pp. 301-314.

4. M. R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall,

and R. Govindan, “Odessa: enabling interactive perception

applications on mobile devices,” in Proceedings of the 9th

International Conference on Mobile Systems, Applications,

and Services, Bethesda, MD, pp. 43-56.

5. D. Bornstein, “Dalvik VM internals,” http://sites.google.com/

site/io/dalvik-vm-internals.

6. D. Bhattacharjee, A. Rao, C. Shah, M. Shah, and A. Helmy,

“Empirical modeling of campus-wide pedestrian mobility

observations on the USC campus,” in Proceedings of 2004

IEEE 60th Vehicular Technology Conference (VTC2004-

Fall), Los Angeles, CA, 2004, pp. 2887-2891.

7. T. Camp, J. Boleng, and V. Davies, “A survey of mobility

models for ad hoc network research,” Wireless Communica-

tions and Mobile Computing, vol. 2, no. 5, pp. 483-502, 2002.

8. W. Su, S. J. Lee, and M. Gerla, “Mobility prediction in wire-

Fig. 8. Average energy consumption. The figure shows that
Mob-aware is able to save 7%-12% more energy than Net-aware
when user mobility is high.

Fig. 7. Average response time. It compares different decision
making policies in terms of response time. When user mobility
becomes higher (going through more than three WiFi APs), Mob-
aware shows around 20% better performance than Net-aware.

Journal of Computing Science and Engineering, Vol. 9, No. 3, September 2015, pp. 155-162

http://dx.doi.org/10.5626/JCSE.2015.9.3.155 162 Kilho Lee and Insik Shin

less networks,” in 21st Century Military Communications

Conference Proceedings (MILCOM2000), Los Angeles, CA,

2000, pp. 491-495.

9. T. Liu, P. Bahl, and I. Chlamtac, “Mobility modeling, loca-

tion tracking, and trajectory prediction in wireless ATM net-

works,” IEEE Journal on Selected Areas in Communications,

vol. 16, no. 6, pp. 922-936, 1998.

10. B. Everitt, The Cambridge Dictionary of Statistics, 2nd ed.

Cambridge, UK: Cambridge University Press Cambridge,

2002.

11. “Monsoon power monitor,” http://www.msoon.com.

12. Samsung, “Meet the Nexus S with Android 2.3,” http://

www.samsung.com/uk/discover/meet-the-nexus-s-with-android-

2-3.

Kilho Lee

Kilho Lee is a Ph.D. student in School of Computing at KAIST, South Korea. He received a B.S. in Information
and Computer Engineering from Ajou University, South Korea in 2010, and an M.S. in Computer Science
from KAIST, South Korea in 2012. His research interests lie in mobile computing and mobile networking
systems

Insik Shin

Insik Shin is an associate professor in School of Computing at KAIST, where he joined in 2008. He received a
B.S. from Korea University, an M.S. from Stanford University, and a Ph.D. from University of Pennsylvania all in
Computer Science in 1994, 1998, and 2006, respectively. He has been a post-doctoral research fellow at
Malardalen University, Sweden, and a visiting scholar at University of Illinois, Urbana-Champaign until 2008.
His research interests lie in mobile computing, real-time embedded systems, and cyber-physical systems. He
has served various program committees in real-time embedded systems, including RTSS, RTAS, ECRTS, and
EMSOFT. He received best paper awards, including the Best Paper awards from RTSS in 2003 and 2012, the
Best Student Paper Award from RTAS in 2011, the Best Paper award from CPSNA in 2014, and Best Paper
runner-ups at RTSS and ECRTS in 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

