
Copyright 2015. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 9, No. 4, December 2015, pp. 177-189

Exploiting Static Non-Uniform Cache Architectures for Hard
Real-Time Computing

Yiqiang Ding and Wei Zhang*

Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA

dingy4@vcu.edu, wzhang4@vcu.edu

Abstract
High-performance processors using Non-Uniform Cache Architecture (NUCA) are increasingly used to deal with the

growing wire delays in multicore/manycore processors. Due to the convergence of high-performance computing with

embedded computing, NUCA caches are expected to benefit high-end embedded systems as well. However, for real-time

systems that use multicore processors with NUCA caches, it is crucial to bound worst-case execution time (WCET)

accurately and safely. In this paper, we developed a WCET analysis approach by considering the effect of static NUCA

caches on WCET. We compared the WCET in real-time applications with different topologies of static NUCA caches.

Our experimental results demonstrated that the static NUCA cache could improve the worst-case performance of real-

time applications using multicore processor compared to the cache with uniform access time.

Category: Embedded computing

Keywords: Non-Uniform Cache Architecture; Worst-case execution time; Real-time systems; Multicore

processors

I. INTRODUCTION

Following the trend in servers and desktops, multicore

processors such as ARM Cortex and Intel Atom have

been increasingly used in embedded computing systems.

Although multicore processors can potentially benefit

real-time systems with better energy efficiency, the per-

formance of real-time systems could be affected by

increased global wire delays as more cores are put onto

the same die in modern multicore processors. Specifi-

cally, large on-chip caches with uniform access time are

undesirable because the last-level cache will be shared

among all cores in multicore processors due to increased

global wire delays. These traditional caches are physi-

cally partitioned into sub-banks. The uniform access time

is determined by the access time to the furthest sub-bank.

Therefore, the uniform access time of data throughout the

cache can become longer when the global wire delays are

increased. However, the access time of large on-chip

caches varies with the physical locations of cache blocks.

More specifically, the data residing in the part close to the

core can be accessed much faster than the data residing

physically further from the core because the access time

involves not only the bank access time, but also the time

to route to and from the bank.

Non-Uniform Cache Access (NUCA) architecture [1]

is proved to be efficient in dealing with the non-uniform

access latencies due to the growing wire delay. The

NUCA cache is partitioned into multiple banks connected

by a communication infrastructure. It is characterized by

Received 14 September 2015; Revised 30 October 2015; Accepted 19 November 2015

*Corresponding Author

This is an extended paper based on the prior conference paper entitled “WCET Analysis of Static NUCA Cache” that was published by the 33rd IEEE
International Performance Computing and Communications Conference (IPCCC), December 2014.

Open Access http://dx.doi.org/10.5626/JCSE.2015.9.4.177 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 177-189

http://dx.doi.org/10.5626/JCSE.2015.9.4.177 178 Yiqiang Ding and Wei Zhang

non-uniform access time. The NUCA cache has the fol-

lowing two important characteristics: 1) the mapping pol-

icy determines the number of addressable banks contained

in the cache and how cache blocks should be mapped into

those banks and 2) the movement policy. If a cache block

always stays in the same bank, it is called static NUCA.

However, if cache block migration is allowed, it is called

dynamic NUCA. Since cache block migration can signif-

icantly affect the time predictability that is bad for real-

time systems, dynamic NUCA was not considered in this

paper.

In a multicore processor, NUCA cache is typically

used as the last-level cache shared among all cores (e.g.,

the shared L2 or L3 cache). As the cache is usually

shaped in a 2-dimensional die, all cores can be physically

distributed along any side of the cache. A cache bank that

is physically close to one core cannot be physically close

to the others. Even if the same application runs on differ-

ent cores, its total cache access latency may be different.

Therefore, the system topology of a multicore processor

can also affect the performance and WCET of the appli-

cations if NUCA cache is used.

In the past few years, WCET analysis of multicore pro-

cessors has received much attention by the real-time sys-

tem community. A number of techniques have been

proposed to conduct timing analysis of multicore proces-

sors by considering interferences from shared compo-

nents such as caches and buses. For example, Yan et al.

[2] have proposed a control flow based analysis approach

to calculate the WCET of multicore processors with

shared instruction caches. Li et al. [3] have estimated the

potential conflicts and WCET in shared caches of multi-

core processors by considering lifetime estimates for the

co-running tasks. Lv et al. [4] have proposed to combine

abstract interpretation with model checking to estimate

the timing bounds of programs running on multicore pro-

cessors. Recent studies on multicore timing analysis have

also considered the impact of bus contention [5] and uni-

fied data analysis, instruction, and caches [6]. However,

all these prior research efforts only aimed at caches with

uniform cache architecture (UCA), which could not be

applied safely to NUCA caches with non-uniform cache

access latencies. This paper is an extended work based on

NUCA cache timing analysis presented in [7]. However,

the work in [7] was primarily focused on dual-cores. This

paper studied the NUCA cache timing analysis for quad-

cores with different NUCA cache topologies. Our results

indicated that the best topology for achieving the lowest

WCET was different when different benchmarks were

used, indicating that the topology for hard real-time

applications could customized.

In this work, we performed WCET analysis for real-

time applications running on multicore processors with

static NUCA shared caches. The major contributions of

this work include the following. First, we extended the

CCCG-based approach [8, 9] to support the WCET anal-

ysis on shared static NUCA caches in multi-core proces-

sors. The extended approach calculated the access

latency to each bank in the shared cache according to the

physical distance between the bank and the core. The

latencies were represented in the objective function to

safely and accurately derive the WCET. Second, we com-

pared the effect of different system topologies on WCET

on multicore processors.

II. ARCHITECTURE AND ASSUMPTIONS

Without losing generality, we studied memory hierar-

chy consisting of three layers: L1 caches (including the

L1 instruction and data caches), L2 cache, and main

memory as shown in Fig. 1. The L1 cache was a UCA

cache private to each processor. The L2 cache was a

static NUCA to solve the problem of increasing global

wire delays across the chip. This NUCA L2 cache con-

sisted of multiple banks. All banks were connected within

a 2D mesh network to remove most wires resulting from

per-bank channels. The mesh network was comprised of

the address bus, the data bus, and the switch. The latency

to fetch the data from a bank included routing delay of

the data and address on the buses, time to access the

bank, and contention delay on the buses and the bank.

The L2 cache was unified for both data and instructions.

It was shared by all cores in a multicore processor.

In order to focus on the effect of static NUCA L2

cache on WCET, we made the following assumptions:
● The access latency to the L1 cache was constant.
● The effect of the L2 cache contention on the buses

and the banks was not considered because routing

delays in the NUCA cache were significant. In addi-

tion, the contention is less of a problem at small tech-

Fig. 1. Memory hierarchy and structure of NUCA-based L2
cache.

Exploiting Static Non-Uniform Cache Architectures for Hard Real-Time Computing

Yiqiang Ding and Wei Zhang 179 http://jcse.kiise.org

nologies [1]. Therefore the access latency to the L2

cache was proportional to the distance between the

cache controller and the bank where the data resided.
● The access latency to the main memory was constant.
● The effect of bus contention between L2 cache and the

main memory or the effect of contention on the main

memory was not considered.

It should be noted that the cost to implement static

NUCAs is not unacceptable. According to a study by

Kim et al. [1], there are two different ways to implement

the static NUCA caches, i.e., private channels and switched

channels. In private channel based static NUCAs, each

bank has private channels. Therefore, each bank can be

accessed independently to achieve maximum speed. How-

ever, in switched channels, numerous per-bank channels

are added to the array, which can constrain the number of

banks. Nevertheless, the overhead of larger and slower

banks is less than the delays that would be caused by the

extra wires required for more numerous smaller banks.

The switched channel based static NUCAs can remove

most of those large numbers of wires resulting from per-

bank channels. Experiments performed in [1] have revealed

that channel overhead is only 5.9% of the total area of the

banks.

III. CCCG-BASED APPROACH

The CCCG-based approach [8, 9] is based on implicit

path enumeration technique (IPET) proposed by Li and

Malik [10] and Li et al. [11]. It extends the cache conflict

graph (CCG) in the IPET into a combined cache conflict

graph (CCCG) in order to bound the worst-case cache

interferences onto shared caches in multicore processors.

A CCG is basically a projection of a control flow graph

of a given thread on a cache set. It contains a set of nodes

and edges. In a CCG, each node corresponds to a cache

set while each edge represents a legal path in the CFG

between two nodes. More details about CCG can be

found in [10, 12].

In a CCCG, each vertex is denoted by a tuple t(r : c),

which is a combination of tuples r and c. The left side of

this tuple records the last access from each thread while

the right side of the tuple represents the current cache line

state. The CCCG makes it possible to model concurrent

cache accesses from threads running simultaneously on

different cores, thus supporting WCET analysis of shared

caches in multicore processors [8, 9]. However, the origi-

nal CCCG-based approach is not aware of non-uniform

cache access latencies. Thus, it cannot be directly applied

to accurately estimate WCET for NUCA caches.

A. IPET

The IPET calculates the WCET by solving ILP prob-

lem. In the IPET, the WCET of a thread is represented by

an objective function subjected to structural constraints,

functionality constraints, and micro architectural con-

straints. The structural constraints show the constraints

from the control flow of the program. The functionality

constraints specify the loop bounds and other path infor-

mation. The micro-architectural constraints represent the

timing impact of micro-architectural components such as

cache memories. All constraints are represented as equa-

tions or inequalities to bound the objective function in the

ILP problem.

B. Constraints for Computing the WCET in
Multicore Processors with Shared L2 Caches

The WCET of a thread running on a multicore proces-

sor with a shared L2 cache can be described as the objec-

tive function as shown in Eq. (1). The WCET is defined

as the sum of the timing cost of each basic block and the

timing cost of the access to each cache line block. The

timing cost of a basic block equals to its execution

latency timed by its execution count. The timing cost of

the access to a cache line block equals to the cost of cache

with miss and hit timed by the number of access to this

cache line block. All symbols used in this paper are

explained in Table 1.

(1)

The structural constraints are described in Eq. (2). It

can derived from the control flow graph of a program.

(2)

Eq. (3) represents the functionality constraint. The

upper bound of the execution count of a loop header

block equals to the execution count of the pre-header

block of this loop timed by the weight of this loop.

(3)

Eq. (4) describes the relationship between basic block

Bi and L1 cache line block Li contained in Bi.

(4)

The cache constraints are demonstrated in Eqs. (5)–(9),

where lj and lp are execution counts of cache line blocks

on L1 cache and L2 cache, respectively. Eq. (5) states the

fact that the number of misses and hits of an L1 cache

line block should be equal to the total execution count of

this line block. Eqs. (6) and (9) are for the upper bound of

the number of misses for a cache line block. It can be

derived from the CCCG explained in Section III-C.

WCET ci xi×∑=

+ ci
l1_hit

li
l1_hit

ci
l1_miss

li
l1_miss

×+×()∑
+ cj

l2_hit
lj
l2_hit

cj
l2_miss

lj
l2_miss

×+×()∑

din∑ dout∑ xi= =

xi
header

loop_weight xj
pre_header

×≤

xi li=

Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 177-189

http://dx.doi.org/10.5626/JCSE.2015.9.4.177 180 Yiqiang Ding and Wei Zhang

(5)

(6)

(7)

(8)

(9)

C. Combined Cache Conflict Graph

The CCG is created for each cache set in IPET. Verti-

ces in a CCG are line blocks mapped into the same cache

set. Edges can be used to describe the valid transitions

between the line blocks complying with the control flow

of the thread analyzed. However, the CCG can only rep-

resent the cache states and related transitions caused by

line blocks from one thread. It must be enhanced in the

following three aspects so that it can represent the behav-

ior of shared cache caused by line blocks from all co-run-

ning threads in a multicore processor. First, it should be

able to memorize historical cache accestses from all

threads. Second, it should represent change in cache state

caused by a cache access from any thread. Third, it

should be able to derive cache states without violating the

control flow or program semantics of any thread.

In a CCCG, each vertex represents a comprehensive

cache state. It is denoted by a tuple t(r : c) consisting of

two sub tuples r and c. The sub tuple r(l1, l2, ..., lm)

records the most recent cache access from each thread,

where li is the most recent cache access from the thread

Ti. The sub tuple c(x1, x2, .., xn) represents a cache state,

where xi represents the line blocks located in cache. Both

i and n are associativity of the cache being modeled. To

build the CCCG for a cache set, we first construct the

CCG of this cache set for each of the concurrent threads.

The first state in the CCCG is initialized as t(s1, s2, sm : φ1,

φ2, ..., φn), where si is the starting node in the CCG of the

thread Ti while φi in the ith way of the cache set is blank.

Other cache states are derived by traversing all paths

from the start vertex to the end vertex of all CCGs. For a

cache state tcurr already existing in the CCCG, if the cur-

rent cache access li,j of a thread Ti has an outgoing edge di
that leads to another cache access li,k in its CCG, a new

cache state tnext is created by updating both sub tuples r

and c in tcurr with li,k. For example, if tcurr is represented as

t(l
1
, ...li,j, ...lm : x1, ..., xi,j, ... xn), tnext can be represented as

lj lj
l1_hit

lj
l1_miss

+=

lj
l1_miss

tj
miss

∑≤

lj
l1_miss

∑ lp=

lp lp
l2_hit

lp
l2_miss

+=

lp
l2_miss

tp
miss

∑≤

Table 1. Symbols used in this paper

Symbol Description

Bi Basic block i

Li Line block i

Ci Timing cost of a basic block or a line block

Xi Execution count of basic block i

Li Execution count of line block i

ti Execution count of tuple i in CCCG

l1_hit L1 cache hit

l1_miss L1 cache miss

l2_hit L2 cache hit

l2_miss L2 cache miss

din Execution count of an edge going into a basic block

dout Execution count of an edge coming out of a basic block

ein Execution count of an edge going into a tuple in CCCG

eout Execution count of an edge coming out of a tuple in CCCG

eentry Execution count of an edge going into the starting tuple in CCCG

ehit Execution count of an edge leading to a cache hit for a tuple in CCCG

Tc Computation time (by assuming a perfect memory)

Tl1 L1 cache access latency

Tmem Main memory access latency

Exploiting Static Non-Uniform Cache Architectures for Hard Real-Time Computing

Yiqiang Ding and Wei Zhang 181 http://jcse.kiise.org

t(l1, ...li,k, ...lm : x1,..., xi,k, ...xn). The update of sub tuple c

can be implemented with different cache replacement

policies such as FIFO and LRU. In addition, an edge is

added from tcurr to tnext to indicate the transition. It should

be mentioned that the upper-level cache state in case of

an L2 cache should be checked before the creation of tnext.

If the transition leads to an L1 cache hit, tnext can be just

simply inherited from tcurr.

Since the CCCG describes the cache behavior on a

shared cache caused by cache accesses from all co-run-

ning threads, it can produce constraints to bound the

worst-case cache access latency for a given thread con-

sidering that the inter-thread cache can interfere with

other threads. The sum of all entry edges of the CCCG

should equal to 1 (Eq. (10)). The structural constraint and

the functionality constraint of the CCCG are shown in

Eq. (11) and Inequality (13), respectively. The constraints

of the relationship between the tuple in the CCCG and the

line blocks involved in this tuple are described in Eqs.

(12) and (6) as well as Eq. (9) mentioned in Section III-B.

In addition, the constraints that bound the cache hit of the

tuple in the CCCG are represented in Eqs. (14) and (15).

More details of the CCCG can be found in [8, 9].

(10)

(11)

(12)

(13)

(14)

(15)

IV. AN EXAMPLE OF USING CCCGs

An example to illustrate how to apply the CCCG to

WCET analysis [9] is illustrated in Fig. 2. For simplicity,

it was assumed that there were two threads: an RT and an

NRT (It should be noted that the CCCG can be applied to

multiple RTs as well). While the RT has only one instruc-

tion a, the NRT has two instructions: b and c. Assuming

that the cache is 2-way set-associative with one set, a, b,

and c should be mapped to the same cache line. In addi-

tion, we assumed that the cache hit latency was 1 cycle

and the cache miss latency was 100 cycles. The CFGs for

the RT and NRT are shown in Fig. 2(a). CCGs for the RT

and NRT are depicted in Fig. 2(b). CCCG constructed

automatically by applying Algorithm 1 to the CFGs and

CCGs of both threads is shown in Fig. 2(c).

A. Objective Function

The following objective function is derived from Eq. (1).

WCET = 100 × amiss + ahit (16)

eentry∑ 1=

ein∑ eout∑ ti= =

ti∑ lk=

ti loop_weight ein∑×≤

ti
hit

ehit∑≤

ti ti
hit

ti
miss

+=

Fig. 2. An example of applying CCCGs to estimate the WCET [10].

Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 177-189

http://dx.doi.org/10.5626/JCSE.2015.9.4.177 182 Yiqiang Ding and Wei Zhang

B. Structural Constraints

Structural constraints were derived from Eq. (2). First,

we constructed the structural constraints for the RT. In the

following equations, d represents an edge, and ds_a

means that the edge starts from the beginning point (i.e.,

s) to an instruction a. Similarly, da_e means that the edge

starts from the instruction a to the end of the program

(i.e., e).

a – ds_a – da_a = 0 (17)

a – da_a – da_e = 0 (18)

In addition, we could construct structural constraints

for NRT using the following equations:

b – ds_b = 0 (19)

b – db_c = 0 (20)

c – db_c = 0 (21)

c – dc_e = 0 (22)

C. Functionality Constraints

For each thread, we assumed that each of them could

execute only once.

ds_a = 1 (23)

ds_b = 1 (24)

We also assumed that the loop in the RT thread could

execute no more than 10 iterations based on Eq. (3).

a − 10ds_a <= 0 (25)

D. Cache Constraints

Cache constraints were obtained from Fig. 2(c).

1) Connection Constraints: The following equation

describes the constraints, i.e., the sum of instruction a’s

different states equals to the execution counts of instruc-

tion a. This is derived from Eq. (15).

a – amiss – ahit = 0 (26)

2) CCCG Entry Edge Constraints: The RT thread was

executed only once. Therefore, we generated the follow-

ing equation based on Eq. (10).

el + e6 + e15 + e28 = 1 (27)

Similarly, the NRT thread was executed only once,

leading to the following equation:

e2 + e5 + e8 = 1 (28)

3) CCCG Node Constraints: The sum of all nodes that

execute instruction a must be equal to the execution

counts of instruction a. Therefore, we have the following

equation derived from Eq. (12).

n2 + n8 + n15 + n20 – a = 0 (29)

Similarly, the sum of all nodes that executed instruction

b also should be equal to the execution counts of instruc-

tion b. Hence, we could derive the following equation:

n4 + n5 + n6 – b = 0 (30)

The sum of all the nodes that execute instruction c

must also be equal to the execution counts of instruction

c. Therefore, we have the following equation:

n7 + n9 + n11 + n12 + n18 – c = 0 (31)

4) Hit Edge Constraints: The following equations are

derived from Eq. (13):

n2 – 10e1 <= 0 (32)

n8 – 10e9 - 10e6 <= 0 (33)

n15 – 10e18 – 10e15 – 10e22 <=0 (34)

n20 – 10e30 – 10e27 – 10e28 – 10e33 <=0 (35)

5) CCCG Hit Bound: The total cache hits of instruction

a should be equal to the sum of all the edges that lead to a

possible cache hit for instruction a. Thus, we can derive

the following equation based on Eq. (14) for the bound

number of cache hits:

ahit – e3 – e9 – e12 – e22 – e25 – e27 – e33 – e36 >=0

(36)

6) Put Them All Together: The WCET path for a given

example is shown in Fig. 3. The final result from ILP

(i.e., the WCET) was 208 which could be derived from

Eq. (37).

(37)

V. TIMING ANALYSIS OF NUCA CACHES

To enable the multicore WCET analysis of static NUCA

cache, the CCCG-based approach was extended in two

aspects. First, the extended approach needed to calculate

100 a
miss

a
hit

+× 100 2 8+× 208= =

Exploiting Static Non-Uniform Cache Architectures for Hard Real-Time Computing

Yiqiang Ding and Wei Zhang 183 http://jcse.kiise.org

the access latency to each bank of the cache from each

core according to the physical distance between them.

Second, the objective function to compute the WCET

needed to be modified by replacing the uniform access

latency to all L2 cache blocks with a specific access

latency for each cache block according to the bank where

the cache block was mapped into.

As mentioned in Section II, the NUCA-based L2 cache

consisted of multiple banks connected to a 2D mesh net-

work. Each bank Bi could be viewed as a node in a matrix

with m rows and n columns that could be represented by a

tuple < rowi, coli >, where rowi was the row id and coli
was the column id of bank Bi. The delay between two

adjacent nodes could be defined as a constant d. As the

cache controller between the L1 cache and the L2 cache

was connected to a switch in the mesh network, the cache

controller could be represented by a tuple < rowc, colc >.

If the transfer between two adjacent nodes was defined as

a hop, the distance between a bank and a cache controller

could be represented by the number of hops on the route

between them. The access latency Li to a bank Bi in the

L2 cache from a core could be described in Eq. (38),

where abs(rowi – rowc) + abs(coli – colc) was the number

of hops of the route from the cache controller to the bank

Bi. The latency of transferring through the cache control-

ler was assumed to be a constant d.

Li = (abs(rowi – rowc) + abs(coli − colc) + 1) × d (38)

To calculate the access latency of each L2 cache block,

it is necessary to map the id of the cache block to the id of

the bank where the data reside. The mapping relation is

described in Eq. (39), where Banki represents the bank id

while CBj represents the cache block id. Thus, the access

latency to the data residing in the cache block CBj can be

defined by Eq. (40), which is equal to the access latency

to the bank that the cache block is assigned to.

Banki = CBj%(blocks per bank) (39)

Dj = Li (40)

The objective function representing the WCET in the

CCCG-based approach could be modeled by Eq. (41),

where A_CBj was the number of accesses to the cache

block CBj and Dj was the access latency to this cache

block as described in Eq. (40).

(41)

VI. SYSTEM TOPOLOGY

As shown in Fig. 1, the shared L2 cache is usually in a

shape of a square. The access latency to a bank in the L2

cache from a core varies if the core is connected to differ-

ent sides of the L2 cache physically because the physical

distance between the core and a bank changes with differ-

ent layouts of multicore processor.

Typically, there are four types of system topology in a

multicore processor with shared L2 caches: (a) all cores

are connected to the same side of the L2 cache; (b) all

cores are connected to two neighboring sides of the L2

cache symmetrically; (c) all cores are connected to two

opposite sides of the L2 cache symmetrically; (d) all pro-

cessors are connected to four sides of the L2 cache sym-

metrically. An example of four different topologies in

case of a 4-core processor with a shared L2 cache is

shown in Fig. 4.

VII. EVALUATION METHODOLOGY

A. Experimental Framework and Benchmarks

The experimental framework of our multicore WCET

analysis approach consisted of three main components: a

front end, a back end, and an ILP solver. The front end

WCET Tc Tl1∑ A_CBj∑ Dj Tmem∑+×+ +=

Fig. 3. The worst-case path for a given example [10].

Fig. 4. Different topologies in a 4-core processor with a shared
L2 cache.

Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 177-189

http://dx.doi.org/10.5626/JCSE.2015.9.4.177 184 Yiqiang Ding and Wei Zhang

was based on a Trimaran compiler that could compile the

benchmarks into COFF format binary code. The global

control flow graph (CFG) and related information of the

instructions were then constructed by disassembling the

binary code generated by the compiler. The back end

could perform static cache analysis [13] on intermediate

representation (IR) of each benchmark, supporting the

extended CCCG-based approach. A commercial ILP

solver-CPLEX [14] was used to solve the ILP problem to

compute the WCET. In addition, we extended the simula-

tor of the Trimaran infrastructure to simulate multicore

processors and report the execution cycle results.

In the simulated multicore processor, the L2 cache was

shared. Each core had its own L1 instruction cache and

L1 data cache. The L1 instruction cache was directed and

mapped. Its total size and cache block size were 512 bytes

and 8 bytes, respectively (Note that it is not uncommon to

use small caches for WCET analysis research. This is

because the size of the WCET benchmarks is mostly very

small. Thus a regular cache, for example a 16 kB cache,

can easily hold all the instructions of a benchmark, mak-

ing it impossible to study cache misses that typically

occur in real-life applications). The L1 data cache was

assumed to be perfect as our work focused on the timing

analysis of instruction caches. The impact of data cache

accesses will be studied in our future work. The shared

L2 cache was a 2-way set-associative cache with a total

size of 2048 bytes. Its block size was 16 bytes.

The timing characteristics of each level of the memory

hierarchy in our study are defined in Table 2. The L1

cache was a UCA cache and the uniform access latency

was defined as 1 cycle. In order to analyze the effect of

NUCA cache on WCET, the L2 cache was implemented

with NUCA or UCA cache. The NUCA-based L2 cache

was partitioned into 16 banks, with the unit delay between

two adjacent switches in the communication network

defined as 1 cycle. Comparatively, the uniform access

latency of the UCA-based L2 cache was defined as 7

cycles, which was the delay of the longest route between

two switches in the communication network of NUCA-

based L2 cache (refer to Fig. 1). The uniform access

latency to the main memory was defined as 100 cycles.

Malardalen WCET benchmarks [15] were used. The

description and characteristics of each benchmark are

listed in Table 3, including the number of instructions, the

number of L2 cache accesses, and simulated WCET on a

single-core processor. Some benchmarks were selected

for each experiment. Each benchmark was used as an

independent thread running on one core of the multicore

processor.

B. Topologies of NUCA Caches Evaluated

To define the system topology of the multicore proces-

sor with a shared L2 cache, the four sides of the shared

L2 cache were labeled as Up, Right, Down, or Left, start-

ing from the top side in a clockwise order.

We executed the experiments on both 2-core processor

and 4-core processor. For the 2-core processor, one core

was fixed on the Up side of the shared L2 cache while the

other core was positioned to one of the four sides of the

shared L2 cache for different topologies.

For the 4-core processor, experiments were run on

NUCA caches with four different topologies as shown in

the following:
● Up&Up&Up&Up (UUUU): all cores were connected

to the Up side of the shared L2 cache.
● Up&Up&Right&Right (UURR): two cores were

connected to the Up side of the shared L2 cache while

the other two cores were positioned to the Right side.
● Up&Up&Down&Down (UUDD): two cores were

Table 2. Timing characteristics of the memory hierarchy

Level Access latency

L1 cache 1 cycle

L2 cache

NUCA 16 bank, 1 cycle per hop

UCA 7 cycles

Main memory 100 cycles

Table 3. Benchmark description and its characteristics

Benchmark Description No. of insts L1 accesses L2 accesses Simulated WCET

Cover Multiple path testing 64 798 16 2086

Expint Computing an exponential integer function 130 11391 21 28985

Insertsort Insertion sort on a reverse array 62 200 16 1510

Jfdctint Discrete-cosine transformation 279 459 72 5488

Ludcmp Read ten values, output half to LCD 259 819 85 5846

Minver Inversion of floating point matrix 341 666 100 5940

Qsort Non-recursive quick sort algorithm 148 590 57 3787

Select Select the Nth largest number 124 1109 31 4633

Exploiting Static Non-Uniform Cache Architectures for Hard Real-Time Computing

Yiqiang Ding and Wei Zhang 185 http://jcse.kiise.org

connected to the Up side of the shared L2 cache while

the other two cores were positioned to the Down side.
● Up&Right&Down&Left (URDL): each core was

positioned to each side of the shared L2 cache.

VIII. EXPERIMENTAL RESULTS

A. Safety and Tightness of Proposed WCET
Analysis for NUCA Caches

Safety and tightness are two desirable goals for any

WCET analysis technique. While safety guarantees that

the estimated WCET is the upper bound of the execution

time, tightness ensures that the estimated WCET is as

close as possible to the actual WCET. Otherwise, the

WCET may be overestimated, thus impacting the effi-

ciency of real-time scheduling. In our experiments, we

first compared the average estimated WCET of each

benchmark with the average observed WCET through

simulation to assess the safety and tightness of the pro-

posed WCET analysis for NUCA caches. The average

estimated/simulated WCET of a benchmark was the aver-

age value of the estimated/simulated WCETs obtained

from different experiments based on four different topol-

ogies. The average estimated and simulated WCETs for a

2-core processor with a static L2 NUCA cache are shown

in Fig. 5. The average estimated WCET was found to be

slightly larger than the average simulated WCET for

every benchmark, indicating that our WCET analysis

could report the upper bound of the execution time. The

gap between the average estimated WCET and the aver-

age simulated WCET ranged from 1.82% to 19.03%,

with an average of approximately 7%.

The average estimated WCET compared to the average

simulated WCET of each benchmark for a 4-core proces-

sor with a static L2 NUCA cache is shown in Fig. 6. The

estimated WCET was found to be always larger than the

simulated WCET, indicating the safeness of our WCET

analysis. The gap between the average estimated WCET

and the average simulated Fig. 6. The WCET ranged

from 3.16% to 18.74% for all benchmarks, with an aver-

age of approximately 9%. Considering the conservative

nature of cache timing analysis, the variation of NUCA

cache access latencies and topologies, we believe that our

WCET analysis of the NUCA caches is reasonably accurate.

B. NUCA vs. UCA Caches

We also compared the estimated and observed WCETs

of NUCA and UCA caches to understand the pros and

cons of using NUCA caches for real-time systems. The

estimated WCET of all the benchmarks in different topol-

ogies of the NUCA cache compared to estimated WCET

of the UCA cache for a 2-core processor is shown in

Table 4. In general, the estimated WCETs of all the

benchmarks of the NUCA cache are smaller than those of

the UCA cache. For example, the estimated WCETs of

the benchmark Jfdctint of the NUCA cache were 2.66%,

5.21%, 3.03%, and 2.18% lower than those of the UCA

cache when the second core was on the Up, Right, Down,

and Left sides of the NUCA cache, respectively. On aver-

age, the estimated WCETs for all benchmarks of the

NUCA cache were 2.67%, 2.17%, 2.01%, and 2.83%

lower than those of the UCA cache when the second core

was on the Up, Right, Down, and Left sides, respectively.

The simulated (or observed) WCET of all the bench-

marks in different topologies of the NUCA cache com-

pared to the estimated WCET of the UCA cache for a 2-

core processor is shown in Table 5. The average simu-

lated WCETs of the NUCA cache for all benchmarks

were found to be 2.89%, 2.27%, 2.14%, and 3.04% lower

than those of the UCA cache when the second core was

on the Up, Right, Down, and Left sides, respectively.

These results indicate that NUCA caches can reduce the

WCET compared to UCA caches. For an NUCA cache,

different benchmarks were found to have their optimal

estimated/simulated WCETs with different topologies

Fig. 5. Average estimated WCET compared to average simulated
WCET for a 2-core processor with a static L2 NUCA cache. The
y-axis represents WCET normalized to average simulated WCET.

Fig. 6. Average estimated WCET compared to average simulated
WCET for a 4-core processor with a static L2 NUCA cache. The
y-axis represents WCET normalized to average simulated WCET.

Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 177-189

http://dx.doi.org/10.5626/JCSE.2015.9.4.177 186 Yiqiang Ding and Wei Zhang

because the locations of their cache references were

dependent on benchmark behavior. For example, bench-

mark Jfdctint had the lowest estimated/simulated WCET

if it was executed on the core connected to the Right side

of the L2 NUCA cache, while benchmark Qsort had the

minimum estimated/simulated WCET when the second core

was connected to the Up side of the L2 NUCA cache.

C. Quad-Core Results

We also compared the estimated and simulated WCETs

between the NUCA and the UCA caches on a 4-core pro-

cessor. The estimated WCET of all the benchmarks in

different topologies of the NUCA cache and the esti-

mated WCET of the UCA cache of a 4-core processor are

listed in Table 6. In these experiments, we formed a

group of benchmarks where each group consisted of 4

benchmarks running concurrently on different cores. The

group number is shown in the first column (i.e., No) of

this table. In general, the estimated WCET of each bench-

mark in any topology of the NUCA cache was smaller

than that of the UCA cache. For example, the estimated

WCET of the benchmark Ud with the topologies of

UUUU, UURR, UUDD, and URLD of the NUCA cache

was 2.29%, 3.63%, 5.22%, and 5.22% lower than that of

the UCA cache, respectively. The average WCETs of the

NUCA cache with the UUUU, UURR, UUDD, and

URLD topologies was 3.33%, 3.02%, 3.60%, and 3.88%

lower than those of the UCA cache, respectively.

The simulated WCETs of all benchmarks of the NUCA

cache with 4 different topologies are less than those of

the UCA cache (Table 7). In this table, the group number

is shown in the first column (i.e., No). These results con-

firmed that the NUCA cache could achieve lower WCET

than the UCA cache with the same size. We also found

that the differences between the estimated WCET and the

simulated WCET were mostly caused by overestimated

cache misses due to the conservative nature and safety

required for WCET analysis.

However, no topology of the NUCA cache could always

achieve the lowest overall WCET than other topologies

in the experiments. For example, the overall estimated

WCET of URLD topology was found to be the lowest in

Experiment 4, while the lowest overall estimated WCET

was achieved in UURR topology in Experiment 5. It is

because a benchmark has different cache access schemes

Table 4. Comparison of the estimated WCET of the NUCA cache with 4 different topologies and the UCA cache in a 2-core processor

Benchmark
Estimated WCET Normalization

UCA Up Right Down Left Up Right Down Left

Cover 2486 2422 2464 2464 2422 0.9743 0.9912 0.9912 0.9743

Expint 29585 29487 29550 29550 29515 0.9967 0.9988 0.9988 0.9976

Insertsort 1810 1746 1794 1794 1746 0.9646 0.9912 0.9912 0.9646

Jfdctint 6609 6433 6265 6409 6465 0.9734 0.9479 0.9697 0.9782

Ludcmp 7260 7035 7038 7090 6837 0.9690 0.9694 0.9766 0.9417

Minver 7075 6897 6793 6669 6865 0.9748 0.9601 0.9426 0.9703

Qsort 5901 5626 5797 5797 5720 0.9534 0.9824 0.9824 0.9693

Select 5333 5228 5257 5263 5212 0.9803 0.9857 0.9869 0.9773

Table 5. Comparison of the simulated WCET of the NUCA cache with 4 different topologies and the UCA cache in a 2-core processor

Benchmark
Simulated WCET Normalization

UCA Up Right Down Left Up Right Down Left

Cover 2386 2322 2364 2364 2322 0.9732 0.9908 0.9908 0.9732

Expint 29285 29187 29250 29250 29215 0.9967 0.9988 0.9988 0.9976

Insertsort 1710 1646 1694 1694 1646 0.9626 0.9906 0.9906 0.9626

Jfdctint 5988 5819 5655 5798 5849 0.9718 0.9444 0.9683 0.9768

Ludcmp 7046 6829 6845 6881 6629 0.9692 0.9715 0.9766 0.9408

Minver 6540 6376 6274 6152 6341 0.9749 0.9593 0.9407 0.9696

Qsort 4587 4321 4490 4487 4411 0.9420 0.9789 0.9782 0.9616

Select 4833 4728 4757 4763 4712 0.9783 0.9843 0.9855 0.9750

Exploiting Static Non-Uniform Cache Architectures for Hard Real-Time Computing

Yiqiang Ding and Wei Zhang 187 http://jcse.kiise.org

when it runs on the cores connected to different sides of

the NUCA cache. In addition, different benchmarks have

different cache access schemes if they run on the core

connected to the same side of the NUCA cache.

IX. CONCLUSION

Growing wire delay has made the traditional caches

with uniform access latencies inefficient for multicore

processors, especially when the number of cores keeps

increasing. As multicore processors are widely used in

real-time systems, it becomes crucial to develop a WCET

analysis method for multicore processors with NUCA

caches.

In this work, we extended the CCCG-based approach

to support the WCET analysis on shared L2 cache imple-

mented with the static NUCA in multicore processors.

Our experimental results showed that the static NUCA

cache could improve the worst-case performance of the

real-time applications in the 2-core and 4-core processors

compared to UCA caches. We also compared the effect of

different topologies of static NUCA cache on WCET for

a 2-core processor. Our evaluation indicated that no

topology could achieve the optimal WCET for all bench-

marks. The best topology to minimize WCET is depen-

Table 6. Comparison of the estimated WCET of the NUCA cache with 4 different topologies and the UCA cache in a 4-core processor

No Benchmark
Estimated WCET Normalization

UCA UUUU UURR UUDD URDL UUUU UURR UUDD URDL

1 Cover 2586 2522 2522 2522 2522 0.9753 0.9753 0.9753 0.9753

Expint 29585 29487 29487 29487 29515 0.9967 0.9967 0.9967 0.9976

Jfdctint 6309 6133 5965 6109 6109 0.9721 0.9455 0.9683 0.9683

Insertsort 1810 1746 1794 1794 1746 0.9646 0.9912 0.9912 0.9646

2 Expint 29485 29387 29387 29387 29387 0.9967 0.9967 0.9967 0.9967

Jfdctint 6909 6733 6733 6733 6565 0.9745 0.9745 0.9745 0.9502

Qsort 4901 4626 4797 4797 4797 0.9439 0.9788 0.9788 0.9788

Select 5333 5228 5257 5263 5212 0.9803 0.9857 0.9869 0.9773

3 Ludcmp 8160 7935 7935 7935 7935 0.9724 0.9724 0.9724 0.9724

Minver 7675 7497 7497 7497 7393 0.9768 0.9768 0.9768 0.9633

select 5333 5228 5257 5263 5263 0.9803 0.9857 0.9869 0.9869

Ud 7300 6991 7151 7177 7139 0.9577 0.9796 0.9832 0.9779

4 Cover 2586 2322 2322 2322 2322 0.8979 0.8979 0.8979 0.8979

Ludcmp 7560 7335 7335 7335 7358 0.9702 0.9702 0.9702 0.9733

Minver 7775 7597 7493 7369 7369 0.9771 0.9637 0.9478 0.9478

Qsort 5501 5226 5397 5397 5320 0.9500 0.9811 0.9811 0.9671

5 Ud 7100 6791 6791 6791 6791 0.9565 0.9565 0.9565 0.9565

select 5433 5328 5328 5328 5357 0.9807 0.9807 0.9807 0.9860

insertsort 1910 1846 1894 1894 1894 0.9665 0.9916 0.9916 0.9916

Jfdctint 7409 7233 7065 7209 7265 0.9762 0.9536 0.9730 0.9806

6 Qsort 5401 5126 5126 5126 5126 0.9491 0.9491 0.9491 0.9491

insertsort 1910 1846 1846 1846 1894 0.9665 0.9665 0.9665 0.9916

Ud 6900 6591 6751 6777 6777 0.9552 0.9784 0.9822 0.9822

Ludcmp 7460 7235 7258 7290 7037 0.9698 0.9729 0.9772 0.9433

7 Minver 7575 7397 7397 7397 7397 0.9765 0.9765 0.9765 0.9765

Ud 7100 6791 6791 6791 6951 0.9565 0.9565 0.9565 0.9790

Expint 29685 29587 29650 29650 29650 0.9967 0.9988 0.9988 0.9988

Cover 2586 2522 2564 2564 2522 0.9753 0.9915 0.9915 0.9753

Journal of Computing Science and Engineering, Vol. 9, No. 4, December 2015, pp. 177-189

http://dx.doi.org/10.5626/JCSE.2015.9.4.177 188 Yiqiang Ding and Wei Zhang

dent on memory access patterns of different applications.

In our future work, we would like to perform WCET

analysis for NUCA caches with more number of cores.

As embedded systems are increasingly using heteroge-

neous multicore as System-on-Chip (SoC), we would

also like to extend our method for timed analysis of

embedded Graphics Processing Units (GPU) caches.

ACKNOWLEDGMENTS

This work was funded in part by NSF grants CCF

1063645 and CNS 1421577.

REFERENCES

1. C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-

uniform cache structure for wire-delay dominated on-chip

caches,” in Proceedings of the 10th International Confer-

ence on Architectural Support for Programming Languages

and Operating Systems (ASPLOS-X), San Jose, CA, 2002,

pp. 211-222.

2. J. Yan and W. Zhang, “WCET analysis for multi-core pro-

cessors with shared L2 instruction caches,” in Proceedings of

14th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS’08), St. Louis, MO, 2008, pp. 80-89.

3. Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roy-

Table 7. Comparison of the simulated WCET of the NUCA cache with 4 different topologies and the UCA cache in a 4-core processor

No Benchmark
Simulated WCET Normalization

UCA UUUU UURR UUDD URDL UUUU UURR UUDD URDL

1 Cover 2486 2422 2422 2422 2422 0.9743 0.9743 0.9743 0.9743

Expint 29485 29387 29387 29387 29450 0.9988 0.9967 0.9967 0.9988

Jfdctint 5888 5719 5555 5698 5698 0.9677 0.9434 0.9677 0.9677

Insertsort 1810 1746 1794 1794 1746 0.9646 0.9912 0.9912 0.9646

2 Expint 29285 29187 29187 29187 29187 0.9967 0.9967 0.9967 0.9967

Jfdctint 6288 6119 6119 6119 5955 0.9731 0.9731 0.9731 0.9470

Qsort 4387 4121 4290 4287 4287 0.9394 0.9779 0.9772 0.9772

Select 5133 5028 5057 5063 5057 0.9795 0.9852 0.9864 0.9852

3 Ludcmp 7346 7129 7129 7129 7129 0.9705 0.9705 0.9705 0.9705

Minver 7140 6976 6976 6976 6874 0.9770 0.9770 0.9770 0.9627

Select 5233 5128 5157 5163 5163 0.9799 0.9855 0.9866 0.9866

Ud 6672 6379 6533 6566 6524 0.9561 0.9792 0.9841 0.9778

4 Cover 2486 2422 2422 2422 2422 0.9743 0.9743 0.9743 0.9743

Ludcmp 6846 6629 6629 6629 6645 0.9683 0.9683 0.9683 0.9706

Minver 7140 6976 6874 6752 6752 0.9770 0.9627 0.9457 0.9457

Qsort 4887 4621 4790 4787 4711 0.9456 0.9802 0.9795 0.9640

5 Ud 6272 5979 5979 5979 5979 0.9533 0.9533 0.9533 0.9533

Select 5233 5128 5128 5128 5157 0.9799 0.9799 0 .9799 0.9855

Insertsort 1910 1846 1894 1894 1894 0.9665 0.9916 0.9916 0.9916

Jfdctint 6488 6319 6155 6298 6349 0.9740 0.9487 0.9707 0.9786

6 Qsort 4687 4421 4421 4421 4421 0.9432 0.9432 0.9432 0.9432

Insertsort 1910 1846 1846 1846 1894 0.9665 0.9665 0.9665 0.9916

Ud 6172 5879 6133 6056 6056 0.9525 0.9937 0.9812 0.9812

Ludcmp 6746 6529 6545 6581 6329 0.9678 0.9702 0.9755 0.9382

7 Minver 6840 6676 6676 6676 6676 0.9760 0.9760 0.9760 0.9760

Ud 6472 6179 6179 6179 6333 0.9547 0.9547 0.9547 0.9785

Expint 29485 29387 29450 29450 29450 0.9967 0.9988 0.9988 0.9988

Cover 2486 2422 2464 2464 2422 0.9743 0.9912 0.9912 0.9743

Exploiting Static Non-Uniform Cache Architectures for Hard Real-Time Computing

Yiqiang Ding and Wei Zhang 189 http://jcse.kiise.org

choudhury, “Timing analysis of concurrent programs run-

ning on shared cache multi-cores,” in Proceedings of 30th

IEEE Real-time System Symposium (RTSS), Washington,

DC, 2009, pp. 57-67.

4. M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract

interpretation with model checking for timing analysis of

multicore software,” in Proceedings of 31st IEEE Interna-

tional Real-Time System Symposium (RTSS), San Diego, CA,

2010, pp. 339-349.

5. T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A.

Roychoudhury, “Bus-aware multicore WCET analysis

through TDMA offset bounds,” in Proceedings of the 23rd

Euromicro Conference on Real-Time Systems (ECRTS),

Porto, Portugal, 2011, pp. 3-12.

6. S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter,

P. Marwedel, and H. Falk, “A unified WCET analysis

framework for multi-core platforms,” in Proceedings of

IEEE 18th Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS), Beijing, China, 2012, pp. 99-

108.

7. Y. Ding and W. Zhang, “WCET analysis of static NUCA

caches,” in Proceedings of the 33rd IEEE International Per-

formance Computing and Communications Conference

(IPCCC), Austin, TX, 2014, pp. 1-6.

8. W. Zhang and J. Yan, “A unified timing analysis approach

for shared caches of multicores,” in Proceedings of the

Work-in-Progress (WIP) session of 17th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS),

Chicago, IL, 2011.

9. W. Zhang and J. Yan, “Static timing analysis of shared

caches for multicore processors,” Journal of Computing Sci-

ence and Engineering, vol. 6, no. 4, pp. 267-278, 2012.

10. Y. S. Li and S. Malik, “Performance analysis of embedded

software using implicit path enumeration,” in Proceedings of

the ACM SIGPLAN 1995 Workshop on Languages, Compil-

ers, & Tools for Real-Time Systems (LCT-RTS 1995), La

Jolla, CA, 1995, pp. 88-98.

11. Y. S. Li, S. Malik, and A. Wolfe, “Performance estimation of

embedded software with instruction cache modeling,” in

Proceedings of IEEE/ACM International Conference on

Computer-Aided Design, San Jose, CA, 1995, pp. 380-387.

12. Y. S. Li, S. Malik, and A. Wolfe, “Cache modeling for real-

time software: beyond direct mapped instruction caches,” in

Proceedings of the 17th IEEE Real-Time Systems Sympo-

sium (RTSS'96), Washington, DC, 1993, pp. 254-263.

13. C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley, and M.

G. Harmon, “Bounding pipeline and instruction cache perfor-

mance,” IEEE Transactions on Computers, vol. 48, no. 1,

pp. 53-70, 1999.

14. Homepage of CPLEX, http://www.ilog.com/products/cplex/.

15. Malardalen WCET Research Group, Malardalen WCET

benchmark suite, http://www.mrtc.mdh.se/projects/wcet.

Yiqiang Ding

Yiqiang Ding is currently a Ph.D. student in Electrical and Computer Engineering at Virginia Commonwealth
University. He received B.S. degree in computer science in 2002 and M.S. degree in computer engineering in
2005 from Beijing University of Posts and Telecommunications, China. He worked in Motorola China Design
Center as a system engineer from 2005 to 2007. His research interests included embedded and real-time
computing systems, computer architecture, and compiler.

Wei Zhang

Wei Zhang is a professor in the Department of Electrical and Computer Engineering at Virginia
Commonwealth University. He received his Ph.D. from Pennsylvania State University in 2003. From August
2003 to July 2010, he worked as an assistant professor and then tenured associate professor at Southern
Illinois University Carbondale. His research interests include embedded computing systems, real-time
computing systems, computer architecture, compiler, and low-power systems. He has received the 2009
Excellence through Commitment Outstanding Scholar Award from College of Engineering at Southern
Illinois University Carbondale and 2007 IBM Real-time Innovation Award. He has received 5 research grants
from National Science Foundation. His research and educational efforts have been supported by leading IT
companies such as IBM, Intel, Motorola, and Altera. He has published more than 120 papers in refereed
journals and conference proceedings. He is a senior member of the IEEE and an associate editor for the
Journal of Computing Science and Engineering. He has served as a member of the organization or program
committees for several IEEE/ACM international conferences and workshops.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

