Relation Based Bayesian Network for NBNN

Mingyang Sun, YoonSeok Lee, and Sung-eui Yoon*
School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
mingyang.sun@kaist.ac.kr, ys.lee@kaist.ac.kr, sungeui@gmail.com

Abstract

Under the conditional independence assumption among local features, the Naive Bayes Nearest Neighbor (NBNN) classifier has been recently proposed and performs classification without any training or quantization phases. While the original NBNN shows high classification accuracy without adopting an explicit training phase, the conditional independence among local features is against the compositionality of objects indicating that different, but related parts of an object appear together. As a result, the assumption of the conditional independence weakens the accuracy of classification techniques based on NBNN. In this work, we look into this issue, and propose a novel Bayesian network for an NBNN based classification to consider the conditional dependence among features. To achieve our goal, we extract a high-level feature and its corresponding, multiple low-level features for each image patch. We then represent them based on a simple, twolevel layered Bayesian network, and design its classification function considering our Bayesian network. To achieve low memory requirement and fast query-time performance, we further optimize our representation and classification function, named relation-based Bayesian network, by considering and representing the relationship between a high-level feature and its low-level features into a compact relation vector, whose dimensionality is the same as the number of lowlevel features, e.g., four elements in our tests. We have demonstrated the benefits of our method over the original NBNN and its recent improvement, and local NBNN in two different benchmarks. Our method shows improved accuracy, up to 27% against the tested methods. This high accuracy is mainly due to consideration of the conditional dependences between high-level and its corresponding low-level features.

Category: Smart and intelligent computing
Keywords: Naive Bayes nearest neighbor; Classifications; Conditional dependency; Bayesian network

I. INTRODUCTION

Image classification is one of the main research challenges in the field of computer vision. Its goal is to identify a category of a query image based on a classifier. Many classification techniques have been proposed and can be roughly divided into two families. The first one is a learning-based (parametric) method such as SVM [1], which uses a certain model and may require an intensive learning/training phase for optimizing classifier parame-
ters of the model. Another one is a non-parametric method such as nearest neighbor based classifiers that work directly on image data and may not require a learning/ training phase. These two different techniques may have different strengths, but learning based approaches typically achieve higher accuracy over non-parametric approaches, mainly because of their learning phase. Nonetheless, parametric approaches could work poorly when the employed model does not fit well with data under the study [2].

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, Boiman et al. [3] proposed an efficient, yet accurate non-parametric method, the Naive Bayes Nearest Neighbor (NBNN) classifier, for image classification. Its main idea is that given a set of local image descriptors extracted from a query image, NBNN identifies the class of the query image based on simple schemes, such as using the image-to-class distance without quantizing (e.g., bag-of-visual-words) descriptors that can lose original information encoded in the input, unquantized descriptors. In spite of the simplicity and the absence of learning/training phases in NBNN, it has been reported to achieve surprisingly remarkable performance in image classification.

NBNN has drawn attentions from researchers and has generated many follow-up studies. At a high level, recent studies have identified that the original NBNN had a high computation complexity during testing query images, works mainly in balanced datasets, and had an unrealistic assumption of the independence among features. Some of these issues have been addressed by adopting a parametric version of the NBNN with a training step [4], class-toimage distance [5], the NBNN kernel [6], and local NBNN [7]. Nonetheless, the conditional independence assumption has been understudied for the NBNN classification techniques, to the best of our knowledge.

For images, we typically extract various local features (e.g., dense SIFTs [8]) for image classification. For example, Fig. 1 shows the conditional dependence among such local features. The camera object consists of different parts, each of which is represented by multiple features, so-called compositionality of objects [9]. Multiple features located locally can be grouped together to represent one part of the object, and several parts can be merged together to represent the object. As a result, the compositionality of objects can be represented by multiple layers. To consider such conditional dependence of local fea-

Fig. 1. The camera (a) is constructed by several parts (b), whose local image features (c) are correlated with each other. To capture such conditional dependence, we use a two-level layered Bayesian network for the NBNN approach. (c) shows 3 by 3 image regions of a part of the object.
tures, Naive Bayes can be transformed to a Bayesian network, where the Naive Bayes is the simplest form of the Bayesian networks [10]. Unfortunately, extracting the optimal dependence among local descriptors for Bayesian networks is an NP problem [11], and thus has raised significant technical challenges.

To consider the conditional dependence without requiring intractable time complexity, we propose to extend the original NBNN to a simple two-level layered Bayesian network. For considering the conditional dependence, we extract two different types of local features, a single highlevel feature and multiple low-level features for an image patch. We identify conditional dependence between the high-level and low-level features, and represent them in a classification function in a similar spirit to the original NBNN. To achieve a low memory requirement and overcome computational overhead, we optimized our representation by capturing the relationship between the single high-level feature and multiple low-level features in a low-dimensional, relation vector, and reformulate our classification function with the relation vector. One can treat our relation vector as a self-correlation descriptor between the high-level feature and its low-level features.

We have implemented our ideas and demonstrated that our method, relation-based Bayesian network, achieves significantly improved accuracy over the original and local NBNNs. Furthermore, our method has similar computational and memory requirements to that of the original NBNN. These results are achieved mainly because we consider the conditional dependence between highlevel and low-level features based on our classification function with compact, yet effective relation vectors.

II. BACKGROUND AND RELATED WORK

In this section, we review prior techniques directly related to our method.

A. Naive Bayes Nearest Neighbor (NBNN) Classifiers

NBNN techniques $[3,6,7]$ are simple and intuitive for providing accurate classification results. Given a query image, Q, the original NBNN assigns Q to one class, \hat{C}, based on the maximum likelihood (ML) estimation among a possible class set indexed by C :

$$
\begin{equation*}
\hat{C}=\underset{C}{\operatorname{argmax}} P(C \mid Q) . \tag{1}
\end{equation*}
$$

Assuming a uniform prior over all classes and applying Bayes' rule, Eq. (1) can be transformed to:

$$
\begin{equation*}
\hat{C}=\underset{C}{\operatorname{argmax}} \log (P(Q \mid C)) \tag{2}
\end{equation*}
$$

Let $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ denotes all the descriptors extracted

Fig. 2. Naive Bayes Nearest Neighbor (NBNN) classifier. For each class, it identifies the nearest neighbor of each descriptor extracted from the query image, assuming the conditional independence among features.
from the query image Q, which are assumed to be conditionally independent. Under the independence assumption, the ML estimation for NBNN can be transformed as follows:

$$
\begin{align*}
\hat{C} & =\underset{C}{\operatorname{argmax}} \log \left[\prod_{i=1}^{n} P\left(d_{i} \mid C\right)\right] \\
& =\underset{C}{\operatorname{argmax}}\left[\sum_{i=1}^{n} \log P\left(d_{i} \mid C\right)\right] . \tag{3}
\end{align*}
$$

NBNN takes the Parzen Kernel estimator to compute the posterior probability for classifying images. As a result, the classifier is approximated as the following:

$$
\begin{equation*}
\hat{C}=\underset{C}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|d_{i}-N N_{C}\left(d_{i}\right)\right\|^{2}, \tag{4}
\end{equation*}
$$

where $N N_{C}\left(d_{i}\right)$ is the nearest neighbor feature of d_{i} among features extracted from all the images assigned to the class C. Fig. 2 visualizes the NBNN method with its data for each class.

In order to optimize the NBNN classifier for largescale image classification, different techniques have been proposed. McCann and Lowe [7] proposed the local NBNN by searching the nearest neighbors of the query image descriptors among the whole dataset to achieve the result in a much shorter elapsed time. In [4], isotropic kernel bandwidths were introduced to reduce the bias in case of the unbalanced datasets with a training step. Tuytelaars et al. [6] proposed an NBNN kernel that can be combined with other kernels, and Wang et al. [5] proposed a class-to- image distance for multi-labeled image classification. Vitaladevuni et al. [12] applied an NBNN method to image categorization and video event detection.

In this paper, we look into the independence assumption among features, which has not been studied for NBNN techniques. We especially focus on the problem caused by the conditional independence assumption for image classification. Even before being used in computer vision, NBNN classification techniques have been used in text classification under the assumption that all the words in one document are independent. Nonetheless, this assumption is incorrect in many real-world problems. To address this issue, excellent improvements have been proposed in text classification in the last decade. Inspired
by these prior techniques, we aim to design a more accurate, yet efficient Bayesian classifier for image classification. Furthermore, we design our technique such that it can be combined with most prior techniques such as local NBNN and other distance metrics, and can achieve better accuracy over prior NBNN techniques.

B. Dependences among Local Features

A set of local features is typically extracted to represent an image. Many techniques as image representations have been proposed. Scale-Invariant Feature Transform (SIFT), for instance, is an algorithm proposed by Lowe [13] to detect or describe local features as key points. While it has been extremely successful, it can omit some discriminative features of one object because some discriminative features do not appear in key points. For example, in Fig. 3, the feature d_{1} is a discriminative feature of the camera because it has distinctive patterns that can be found on the lens of cameras, but it may not be detected as a key point. To address this issue, dense SIFT, which does not have scale and location selection, is adopted to achieve higher discriminative power for extracted features [8]. These features are produced on a regular grid or locations using a constant patch size with the same scale.

Fig. 3. The combination of d_{1} and d_{2} of a small region $D^{\prime} \subset D$ can have a high probability to decide the image category.

Suppose for Fig. 3 that local features of $d_{1}, d_{2}, \ldots, d_{9}$ are extracted from a part, D, of the camera based on the dense SIFTs. Also, suppose that $d_{1}, d_{2}, d_{3}, d_{4}$ are nearest neighbors to each other such that they can be grouped together to represent a small image region, D^{\prime}, which is a part of D. In this example of the camera class, the combination of d_{1} and d_{2} has a higher probability to decide the image category than having each one of d_{1} or d_{2}. Furthermore, having two features of d_{1} and d_{2} can result in a higher probability to detect the image category than having both features of d_{1} and d_{9}. Note that the feature d_{9} shows a reflected object on the lens and is not a part of the camera object.

As pointed out in the prior example, the dependences and correlations among near local features exist, and the combination of local features can help us to classify images better. It also shows that the assumption of conditional independence among all the local features can weaken the performance of the NBNN classifier. To address this issue, we built a layered structure of features with different scaled descriptors, and utilized the local dependences and correlations to gain better classification results.

C. Bayesian Network

Naive Bayes is the simplest form of Bayesian networks [14-17], and has only two layers: one parent node and other nodes. Its simple structure is constructed on the assumption that given the parent node, the other nodes are independent, which is called conditional independence.

Bayesian networks are structured and graphical models that can represent relations between several random variables. In a Bayesian network, each variable is conditionally independent of all its non-descendants given the value of all its parents. This translates into the following equation:

$$
\begin{equation*}
P\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} P\left(X_{i} \mid \text { parents }\left(X_{i}\right)\right) \tag{5}
\end{equation*}
$$

where X_{1}, \ldots, X_{n} are variables in the Bayesian network, and parents $\left(X_{i}\right)$ indicates parent nodes of X_{i}. In order to tackle the conditional independence assumption in NBNN,
we use a simple Bayesian network considering conditional dependence among features to compute the probability.

Given the casual Markov assumption, we have the dseparation property [14-17] related to conditional dependence and independence among features. For example, suppose that A and B are conditionally independent under parent node X. Similarly, suppose that a_{1}, \ldots, a_{4} are conditionally independent under their parent node A, and b_{1}, \ldots, b_{4} are too under their parent node B. We can then call that X and $\left\{a_{1}, \ldots, a_{4} \cup b_{1}, \ldots, b_{4}\right\}$ are d-separated by A and B. The probability of having X in this context can then be computed as follows:

$$
\begin{gather*}
P\left(X, A, B, a_{1}, . ., b_{4}\right)= \\
P(X) P(A, B \mid X) P\left(a_{1}, \ldots, a_{4} \mid A\right) P\left(b_{1}, \ldots, b_{4} \mid B\right) . \tag{6}
\end{gather*}
$$

III. BAYESIAN NETWORK FOR IMAGE CLASSIFICATION

In order to tackle the weak assumption of conditional independence in NBNN, we need to find out the dependences among or within local features. Searching for the optimal dependences in the image, however, is an NP problem [10]. Instead, we model the dependences within local features by a simple Bayesian network (Section IIC). In this section, we introduce how to build and use our simple Bayesian network with local features. We then propose our optimization, relation-based Bayesian network, for effectively and efficiently considering the conditional dependence (Section III-C).

A. Our Naive Bayesian Network Model

Given an image, descriptors can be computed with different scales or at different locations. For our goal of considering the dependency within features, we extract features for a region in two different scales. Specifically, given a region, we represent the region with a single dense SIFT descriptor as well as four dense SIFT descriptors from 2 by 2 subdivided regions of the region, as shown in Fig. 4. We call the feature with a higher scale a high-level feature, and features with the smaller scale low-level features.

Fig. 4. For an image region, I_{R}, we extract a high-level feature, d_{j} from the region, and four low-level features from 2 by 2 subdivided regions of the same region, I_{R}. These features with two different scales represent the same region I_{R}.

Fig. 5. (a) shows our naive two-level layered Bayesian network, and (b) shows our optimized representation, relation-based Bayesian network. (b) achieves high accuracy with low computational and memory overheads.

We use d_{i} to denote the high-level feature of i th image patch. d_{i} is a $n \times 1$ vector assuming that the dense SIFT has n dimensionality. We partition the i th image patch into 2 by 2 sub-patches, and extract a low-level feature for each sub-patch that is also represented by an n dimensional dense SIFT. As a result, we have four different low-level features, $d_{i, 1}, d_{i, 2}, d_{i, 3}, d_{i, 4}$, from the same, i th image patch.

We model our Bayesian network of local features in two layers. The first layer is constructed by the highlevel feature, and is called a parent node. It is linked with the second layer. The second layer consists of a set of low-level features, which are called children nodes. The layered structure makes a Bayesian network, and we use this structure of features for nonparametric classifiers. The left side of Fig. 5 shows our two-level layered Bayesian network.

B. Classification using Our Bayesian Network

We now explain how to utilize our Bayesian network, two-level layered structure of local features, to classify images. Before running the classification algorithm, we first prepare a set of labeled images for each class in a similar manner to the original NBNN. Unlike the original NBNN, the labeled image set for each class is represented by our layered image representation with their high-level and low-level features.

Given a query image Q, our method with the two-level layered Bayesian network assigns Q to one class, based on the maximum likelihood estimation under the prior uniform among a possible class set indexed by C and the Bayes' rule. We then get $\hat{C}=\operatorname{argmax}_{c} \log [P(Q \mid C)]$, as the original NBNN.

According to our two-level layered Bayesian network, we have the conditional dependence between the highlevel and low-level features. Given a high-level feature
d_{i}, it is associated with its four children nodes $d_{i, 1}, d_{i, 2}, d_{i, 3}$, $d_{i, 4}$. We then reformulate the aforementioned classification equation as the following:

$$
\begin{equation*}
\hat{C}=\underset{C}{\operatorname{argmax}} \log \left[P\left(d_{i} \mid C\right) P\left(d_{i, 1}, d_{i, 2}, d_{i, 3}, d_{i, 4} \mid d_{i}\right)\right] . \tag{7}
\end{equation*}
$$

Under the parent node d_{i}, four children nodes $d_{i, 1}, d_{i, 2}$, $d_{i, 3}, d_{i, 4}$ are independent as the following:

$$
\begin{equation*}
P\left(d_{i, 1}, \ldots, d_{i, 4} \mid d_{i}\right)=\prod_{j=1}^{4} P\left(d_{i, j} \mid d_{i}\right) . \tag{8}
\end{equation*}
$$

Additionally, an image can have n different high-level features, which are assumed to be independent. We therefore get the following classification:

$$
\begin{align*}
\hat{C} & =\underset{C}{\operatorname{argmax}} \log \left[\prod_{i=1}^{n} P\left(d_{i} \mid C\right) \prod_{j=1}^{4} P\left(d_{i, j} \mid d_{i}\right)\right] \\
& =\underset{C}{\operatorname{argmax}}\left[\sum_{i=1}^{n}\left(\log P\left(d_{i} \mid C\right)+\sum_{j=1}^{4} \log P\left(d_{i, j} \mid d_{i}\right)\right)\right] \tag{9}
\end{align*}
$$

In this equation we have two different conditional probabilities. We also use the Parzen window estimator with a Gaussian kernel K and approximate it with a nearest neighbor, $N N_{C}\left(d_{i}\right)$, from d_{i} in the class C, as adopted in the original NBNN. The conditional probability of descriptor d_{i} under the class C is then represented as follows:

$$
\begin{equation*}
\hat{P}\left(d_{i} \mid C\right)=\frac{1}{L} K\left(d_{i}-N N_{C}\left(d_{i}\right)\right) \tag{10}
\end{equation*}
$$

where L is the number of high-level descriptors in the training (labeled) set for the class C. In a similar manner, we define the conditional probability of low-level descriptor $d_{i, j}$ under its parent node descriptor d_{i} as the following:

$$
\begin{equation*}
\hat{P}\left(d_{i, j} \mid d_{i}\right)=\frac{1}{l} K\left(d_{i, j}-N N_{d_{t}}\left(d_{i, j}\right)\right), \tag{11}
\end{equation*}
$$

where l is the number of children nodes that the descrip-

[^0]tor d_{i} has and is set to be 4 in this paper. For evaluating the first conditional probability term, we already identify the nearest neighbor, $N N_{C}\left(d_{i}\right)$, of high-level descriptor d_{i} under the class C. In the labeled image set, $d_{t} \equiv N N_{C}\left(d_{i}\right)$ has four children nodes $d_{t, 1}, \ldots, d_{t, 4}$. As a result, $N N_{d t}\left(d_{i, j}\right)$ indicates the nearest neighbor of the low-level feature $d_{i, j}$ among low-level features $d_{t, 1}, \ldots, d_{t, 4}$ of d_{t}.

The kernel K is chosen as a Gaussian kernel, which is substituted into Eqs. (10) and (11). We then have the following classification function:

$$
\begin{align*}
\hat{C}= & \underset{C}{\operatorname{argmax}}[
\end{align*} \sum_{i=1}^{n}\left(\log \frac{1}{L} e^{-\frac{1}{22^{2}}\left|d_{i}-N N_{C}\left(d_{i}\right)\right|^{2}}+.\right.
$$

In summary, our two-level layered Bayesian network for image classification is shown in Algorithm 1.

Issues of the proposed Bayesian network.

Our naive Bayesian network considers conditional dependence between high-level and low-level features. Its time and memory complexity, however, are higher than those of the original NBNN. Specifically, we need to perform a search in order to locate four more nearest neighbors to compute $N N_{d_{t}}\left(d_{i, j}\right)$ for low-level features. While each search of these operations has only a small data, i.e., four low-level features for each high-level feature d_{t}, we need to perform a few thousands operations overall, since each image can have thousands of highlevel features. Furthermore, storing those low-level features requires extra memory space. Additionally, lowlevel features extracted from a region have location information. This spatial information, unfortunately, is not encoded in the classification function of Eq. (12).

C. Relation-based Bayesian Network

We extract a single high-level feature and its corresponding four low-level features from each image patch. As a result, they have intrinsic dependence or correlation between them. We therefore utilize such a relationship for achieving a high accuracy in addition to lowering computational and memory overheads down.

To utilize such a relationship, we propose to use a relationship vector, r. Specifically, each descriptor vector, d, for a high-level feature has a $n \times 1$ dimensionality, where n corresponds to the dimensionality of the employed feature, e.g., 128 for the used dense SIFT. When we concate-
nate four low-level features into a matrix representation, these concatenated low-level features, denoted by d^{\prime}, live in an $n \times 4$ matrix space. We then represent the relationship between d and d^{\prime} by r, which is a 4×1 vector, as the following:

$$
\begin{equation*}
r=d^{\prime T} d \tag{13}
\end{equation*}
$$

By applying the pseudoinverse, d^{+}, of d to the right side of each term in the above equation, and taking the transpose, we get the following equation:

$$
\begin{equation*}
d^{\prime}=d^{+T} r^{T} \tag{14}
\end{equation*}
$$

where $d^{+} \equiv V \Sigma^{+} U^{*}$ is computed by applying the singular value decomposition on $d ; V, \Sigma, U$ are 128 by 128,128 by 1 , and 1 by 1 matrices, respectively.

Given the equation (Eq. (14)), a high-level feature, d_{i}, extracted from i th patch, and its relationship vector, r_{i}, we can represent the concatenated four low-level features with the SVD counterpart of d_{i}^{T}, d_{i}^{+T} multiplied by r_{i}^{T}. The classification function shown in Eq. (12) can be then transformed as follows:

$$
\begin{equation*}
\hat{C}=\underset{C}{\operatorname{argmin}} \sum_{i=1}^{n}\left(\left\|d_{i}-N N_{C}\left(d_{i}\right)\right\|^{2}+\left\|d_{i}^{T} r_{i}^{T}-N N_{d_{i}}\left(d_{i}^{T T} r_{i}^{T}\right)\right\|^{2}\right) . \tag{15}
\end{equation*}
$$

Performing SVD for each high-level feature d_{i} is, however, a time-consuming process. Fortunately, when the first term has a low value, we can assume that d_{i} and $d_{t}=$ $N N_{C}\left(d_{i}\right)$ are similar, and d_{i}^{+}and d_{t}^{+}are so accordingly. Based on this assumption, we simply drop d_{i}^{+}and d_{t}^{+}in the second term. Based on this simple approximation, we can avoid the expensive SVD computation. Furthermore, there is always a single relationship vector, r_{t}, associated with each high-level vector d_{t} and thus the nearest neighbor operation in the second term reduces to simply returning r_{t}. Since r_{t} is a 4 by 1 vector, we can drastically reduce the memory requirement.

[^1]As a result, we have the following, efficient classification function:

$$
\begin{equation*}
\hat{C} \approx \underset{C}{\operatorname{argmin}}\left[\sum_{i=1}^{n}\left(\| d_{i}-N N_{C}\left(d_{i}\left\|^{2}+\lambda\right\| r_{i}-r_{\|} \|^{2}\right)\right],\right. \tag{16}
\end{equation*}
$$

where λ is a weight factor for the second term. Note that our assumption breaks when two high-level features are similar, but their relationship vectors are significantly different. While this problem occurs rarely in practice, to mitigate this problem, we set ë value to be less than one. We have tried out different values within a range $(0,1)$ and found 0.25 to show the best accuracy with our tested benchmarks.

As shown on the right side of Fig. 5, our relation based representation is quite simple. Instead of storing both high-level and low-level features, we compute the relation vector between them, and represent labeled image sets solely with high-level features and their associated relation vectors. This simple approach saves a lot of space and requires a minor computational overhead over the original NBNN, while considering conditional dependence among high-level and low-level features.

Our final relation-based Bayesian network for image classification is summarized in Algorithm 2.

IV. RESULTS AND DISCUSSIONS

We conducted a series of tests on the Intel Quadcore i7 3.60 GHz with 16 GB memory. We use the FLANN [18] library utilizing multiple, randomized kd-trees, to efficiently compute approximate nearest neighbors. In our experiments, we built the indexes of kd-trees with the labeled data set, and we load and use those pre-built data structures for performing a nearest neighbor search in an efficient way.

Benchmarks: We use the Caltech101 and Caltech256 benchmarks for various tests. Caltech101 contains 101 categories and about 40 to 800 images per category. Caltech 256 has a set of 256 object categories, each of which has at least 80 images. By following the experiment protocol of the original NBNN, we randomly choose 15 (or more numbers of) images per category as labeled data for all the tests. For query images we randomly chose 20 test images from the benchmark, except already chosen training (labeled) images. We have iterated this process two times, and have measured the average precision for each class for accuracy comparisons.

Descriptor: For each image we extract densely sampled SIFT descriptors [8]. The patch size of each highlevel feature is set to be 32×32 pixels, and the patch is divided into 2 by 2 regions, each of where we extract a low-level patch. We extract high-level features at every

16 pixels along X and Y directions, and thus regions of high-level features have overlaps. If the size of an image is smaller than 200 we resize it to 200 , and when the size is bigger than 450 , we resize it to 450 . In these configurations an image contains 300 to 2000 SIFT descriptors of high-level features.

A. Experimental Results

To show benefits of our method, we compare different types of our method against other state-of-the-art NBNN methods, as the following:

- NBNN: The original NBNN method [3].
- LNBNN: The local NBNN method, a recently improved NBNN method [7].
- BN: Our two-level layered Bayesian network.
- RBN: Our relation-based Bayesian network that considers conditional dependence for the original NBNN.

We have implemented NBNN and LNBNN based on the guideline suggested by their corresponding papers.

Table 1 shows classification accuracy of different tested methods with 20 test images in Caltech101. All the methods achieve higher accuracy as we use more labeled data images, and our method achieves the highest accuracy. For the case tested with 30 labeled images for each class, our relation-based Bayesian network RBN shows 72.31%, which is more than 19% higher than that of the original NBNN. Compared with LNBNN, our method achieves more than 16% higher accuracy. This improvement is mainly thanks to considering the conditional dependency between high-level and low-level features.

Table 2 shows the classification accuracy of LNBNN and RBN with 20 test images in Caltech256. We did not

Table 1. Classification results of different methods with 20 test images in Caltech101

Method	No. of labeled images in training set	
	$\mathbf{1 5}$	$\mathbf{3 0}$
NBNN	0.4650	0.5206
LNBNN	0.4821	0.5620
BN	0.5016	0.5906
RBN	0.5971	0.7231

Table 2. Classification results by two methods LNBNN and RBN with 20 test images in Caltech256

Method	No. of labeled images in training set			
	$\mathbf{1 5}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$
LNBNN	0.1535	0.1934	0.2424	0.2922
RBN	0.2982	0.4082	0.4879	0.5711

Fig. 6. Classification results by NBNN, LNBNN, and RBN with different classes. These results are acquired with 15 training (labeled) images for each class in Caltech101.
test NBNN and BN, since they are outperformed by LNBNN and RBN, respectively, as demonstrated in Caltech101. Compared with LNBNN, our method RBN shows higher accuracy over LBNN across all the tested setting. Especially with 50 labeled training data images for each class, our method achieves 57%, which is 27% higher than that of LNBNN.

Fig. 6 shows the classification accuracy of different classes under 15 labeled training images and 20 test images. We can observe that in most cases, LNBNN performs better than NBNN, but shows worse results in some classes such as in a chair and cup. On the other hand, our method RBN shows better or similar accuracy over the tested prior method across different classes. This also demonstrates the robustness of our approach of considering conditional dependence among features.

In terms of runtime computational overheads, LNBNN is the fastest method over other methods including ours. Since the time complexity of our method is similar to NBNN, we gain the classification result for each query in the similar performance with NBNN. Our method RBN takes 2.5 s for a query image extracted by 1000 patches
on average in Caltech101. We have tested adopting the idea of the local NBNN using a single, global kd-tree for all the classes. While it improves the runtime performance of our method, its accuracy was much lower than that of our RBN method. As a result, we maintain kdtrees, each of which is constructed from labeled images of each class, as proposed by the original NBNN.

V. CONCLUSION AND FUTURE WORK

We have proposed our two-level layered Bayesian network to consider conditional dependence among features for NBNN classification. Our method extracts a highlevel feature and four low-level features for each image patch. We proposed our classification function based on the nearest neighbors and our Bayesian network. To utilize spatial information between high-level and low-level features, and optimize the performance and memory requirement of our Bayesian network, we modified our classification into relation-based Bayesian network by using the 4×1 relationship vector between high-level and its corresponding four low-level features. We have demonstrated benefits of our relation-based Bayesian network with two different benchmarks and showed that our method improves the accuracy over the original and local NBNNs. This result is achieved mainly due to the consideration of conditional dependence between high-level and low-level features as well as encoding their correlation into the compact relationship vector.

Due to limitations and future work of our research direction, we would like to further utilize existing dependence among features. While we utilized conditional dependence between high-level and its low-level features, our method does not consider dependence among high-level features, as in the original NBNN method. We have tested our method mainly with Caltech101 and Caltech256, which are considered to be small compared to recent large-scale ones. To handle such larger scales for our method, we would like to adopt recent scalable nearest neighbor search techniques (e.g., hashing [19] and product quantization [20]).

Additionally, we followed all the guidelines of implementing NBNN and local NBNN techniques based on their corresponding papers. Results of our implementation of these techniques, however, showed lower accuracy over ones reported in other papers. We would like to refine our implementation so that this bridge is gapped. Nonetheless, our BN and RBN implementations share a lot of common parts (e.g., nearest neighbor search and dense SIFTs) with these NBNN methods. As a result, we also expect that our method can achieve higher accuracy, as we improve implementations of those NBNN techniques. Finally, we would like to improve the running performance of our method using multicores of CPUs and GPUs [21].

While our method has aforementioned limitations, we believe that our method takes a meaningful step for improving NBNN techniques by considering and encoding conditional dependency between high-level and lowlevel features.

ACKNOWLEDGMENTS

This research was undertaken as part of MSIP/IITP (R0101-15-0176), the StarLab project of MSIP/IITP (R0126-15-1108), and NRF (2013R1A1A2058052).

REFERENCES

1. H. Zhang, A. Berg, M. Maire, and J. Malik, "SVM- KNN: discriminative nearest neighbor classification for visual category recognition," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, 2006, pp. 2126-2136.
2. E. Alpaydin, Introduction to Machine Learning. Cambridge, MA: MIT Press, 2004.
3. O. Boiman and E. Shechtman, and M. Irani, "In defense of nearest neighbor based image classification," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, 2008, pp. 1-8.
4. R. Behmo, P. Marcombes, A. Dalalyan, and V. Prinet, "Towards optimal naive Bayes nearest neighbor," in Computer Vision-ECCV 2010, Heidelberg: Springer, pp. 171-184, 2010.
5. Z. Wang, S. Gao, and L. T. Chia, "Learning class-to-image distance via large margin and 11 -norm regularization," in Computer Vision-ECCV 2012, Heidelberg: Springer, pp. 230-244, 2012.
6. T. Tuytelaars, M. Fritz, K. Saenko, and T. Darrell, "The NBNN kernel," in Proceedings of IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 2011, pp. 1824-1831.
7. S. McCann and D. G. Lowe, "Local naive Bayes nearest neighbor for image classification," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, 2012, pp. 3650-3656.
8. A. Bosch, A. Zisserman, and X. Munoz, "Image classification using random forests and ferns," in Proceedings of 11th International Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil, 2007, pp. 1-8.
9. E. Bienenstock, S. Geman, and D. Potter, "Compositionality, MDL priors, and object recognition," Advances in Neural Information Processing Systems, vol. 9, pp. 838-844, 1997.
10. M. Sahami, "Learning limited dependence Bayesian classifiers," in Proceedings of International Conference on Knowledge Discovery \& Data Mining (KDD), Menlo Park, CA, 1996, pp. 335-338.
11. G. F. Cooper, "The computational complexity of probabilistic inference using Bayesian belief networks," Artificial Intelligence, vol. 42, no. 2, pp. 393-405, 1990.
12. S. N. Vitaladevuni, P. Natarajan, S. Wu, X. Zhuang, \& R. Prasad, "Scene image categorization and video event detection using naive Bayes nearest neighbor," in Proceedings of IEEE Workshop on Applications of Computer-Vision (WACV), Tampa, FL, 2013, pp. 140-147.
13. D. G. Lowe, "Distinctive image features from scale- invariant keypoints," International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
14. R. E. Neapolitan, Learning Bayesian Networks. Upper Saddle River, NJ: Prentice Hall, 2003.
15. D. D. Lewis, "Naive (Bayes) at forty: the independence assumption in information retrieval," in Proceedings of 10th European Conference on Machine Learning (ECML-98), Chemnitz, Germany, 1998, pp. 4-15.
16. D. Heckerman, "A tutorial on learning with Bayesian networks," Microsoft Research, Redmond, WA, Tech. Rep. MSR-TR-95-06, 1995.
17. D. Geiger, T. Vermas, and J. Pearl, "Identifying independence in Bayesian networks," Networks, vol. 20, no. 5, pp. 507-534, 1990.
18. M. Muja and D. G. Lowe, "Scalable nearest neighbor algorithms for high dimensional data," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 11, pp. 2227-2240, 2014.
19. J. P. Heo, Y. Lee, J. He, S. F. Chang, and S. E. Yoon, "Spherical hashing," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, 2012, pp. 2957-2964.
20. J. P. Heo, Z. Lin, and S. E. Yoon, "Distance encoded product quantization," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, 2014, pp. 2139-2146.
21. D. Kim, J. Lee, J. Lee, I. Shin, J. H. Kim, and S. E. Yoon, "Scheduling in heterogeneous computing environments for proximity queries," IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 9, pp. 1513-1525, 2013.

Mingyang Sun

Mingyang Sun is currently at Mainframe Department of Agricultural Bank of China Data Center (ABCDC), ShangHai in China. Her job focuses on the IBM mainframe system operation and system-plex organization. In 2015, she received an M.S. degree in Computer Science Department from KAIST. Her research interest lies in image classification, image representation and Bayesian network.

YoonSeok Lee

YoonSeok Lee is an M.S. student in School of Computing at KAIST, South Korea and also received his B.S. degree in Computer Science from KAIST in 2014. His research interest lies in image classification, image representation and hashing techniques.

Sung-eui Yoon

Sung-eui Yoon is currently an associate professor at KAIST. He received a B.S. and M.S. degrees in computer science from Seoul National University in 1999 and 2001, respectively. His main research interest is in designing scalable graphics, image search, and geometric algorithms. He gave numerous tutorials on proximity queries and large-scale rendering at various conferences including ACM SIGGRAPH and IEEE Visualization. Some of his work received a distinguished paper award at Pacific Graphics, invitations to IEEE TVCG, an ACM student research competition award, and other domestic research-related awards. He is a senior member of IEEE, and a member of ACM and KIISE.

[^0]: $\overline{\text { Algorithm } 1}$ Our two-level layered, Bayesian network for image classification.
 : Compute two-level layered descriptors of highlevel descriptors d_{1}, \ldots, d_{n} and their low-level descriptors $d_{1,1}, \ldots, d_{1,4}, d_{2,1} \ldots, d_{n, 4}$
 2: Compute the nearest neighbor (NN) of the descriptor
 (a) $\forall d_{i} \forall C$, compute the $N N$ of $d_{i}, N N_{C}\left(d_{i}\right) \equiv$ d_{t}, in C.
 (b) for each $d_{i, j}$ in d_{i}, compute the $N N$ of $d_{i, j}$, $N N_{d_{t}}\left(d_{i, j}\right)$, in the low-level descriptors of d_{t}.

 3: $\hat{C}=\operatorname{argmin}_{C}\left[\sum_{i=1}^{n}\left(\left\|d_{i}-N N_{C}\left(d_{i}\right)\right\|^{2}+\right.\right.$ $\left.\left.\sum_{j=1}^{4}\left\|d_{i, j}-N N_{d_{t}}\left(d_{i, j}\right)\right\|^{2}\right)\right]$

[^1]: Algorithm 2 Relation-based Bayesian network for image classification.
 1: Compute high-level descriptors d_{1}, \ldots, d_{n} and their relation vectors r_{1}, \ldots, r_{n} with corresponding low-level descriptors.
 2: Compute the nearest neighbor (NN) of the descriptor
 (a) $\forall d_{i} \forall C$, compute the $N N$ of $d_{i}, N N_{c}\left(d_{i}\right) \equiv$ d_{t}, in C.
 (b) Fetch the relation r_{t} of d_{t} in C

 3: $\hat{C}=\operatorname{argmin}_{C}\left[\sum_{i=1}^{n}\left(\left\|d_{i}-N N_{c}\left(d_{i}\right)\right\|^{2}+\lambda \| r_{i}-\right.\right.$ $\left.\left.r_{t} \|^{2}\right)\right]$.

