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In this paper we have provided an extensive survey of the databases and other resources related
to the current research in bioinformatics and the issues that confront the database researcher
in helping the biologists. Initially we give an overview of the concepts and principles that are
fundamental in understanding the basis of the data that has been captured in these databases.
We briefly trace the evolution of biological advances and point out the importance of capturing
data about genes, the fundamental building blocks that encode the characteristics of life and
proteins that are the essential ingredients for sustaining life. The study of genes and proteins
is becoming extremely important and is being known as genomics and proteomics, respectively.
Whereas there are numerous databases related to various subfields of biology, we have maintained
a focus on genomic and proteomic databases which are the crucial stepping stones for other fields
and are expected to play an important role in the future applications of biology and medicine. A
detailed listing of these databases with information about their sizes, formats and current status
is presented. Related databases like molecular pathways and interconnection network databases
are mentioned, but their full coverage would be beyond the scope of a single paper. We comment
on the peculiar nature of the data in biology that presents special problems in organizing and
accessing these databases. We also discuss the capabilities needed for database development
and information management in the bioinformatics arena with particular attention to ontology
development. Two research case studies based on our own research are summarized dealing with
the development of a new genome database called Mitomap and the creation of a framework
for discovery of relationships among genes from the biomedical literature. The paper concludes
with an overview of the applications that will be driven from these databases in medicine and
healthcare. A glossary of important terms is provided at the end of the paper.

Copyright c©2007 by The Korean Institute of Information Scientists and Engineers (KIISE). Per-
mission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than KIISE must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permission to republish from: Publicity Office,

KIISE. FAX +82-2-521-1352 or email office@kiise.org.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007, Pages 1–30.



2 S. B. Navathe et al.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design; J.3 [Life
and Medical Science]: Medical information systems

General Terms: Database, Bioinfomatics

Additional Key Words and Phrases: Database management, data management, genomic database,

proteomic database, bioinformatics, biological database, genome, proteome, health-care, medical

application

1. BIOINFORMATICS: AN AMALGAMATION OF MULTIPLE DISCIPLINES

The biological science studies the phenomenon of life and encompasses an enor-
mous variety of information. This wealth of information that has been generated,
classified, and stored for centuries has only recently become a major application of
database technology. The first genome of RNA bacteriophage MS2, was sequenced
in 1976, in a truly heroic feat of direct determination of an RNA sequence. In
those early years when scientists were just beginning to understand the complexity
of viral genetic material, sequencing the 3,569 nucleotides long sequence of viral
bacteriophage MS2 helped biologist in establishing the complete primary chemical
structure of this viral genome [Fiers et al. 1976] as the first successful effort of this
kind. However, it was not until August of 1995 that the complete genome sequence
of the parasitic bacterium haemophilius influenza, ushered the era of real genomics,
the study of complete genomes of cellular organisms [Fleischmann et al. 1995].

The U.S. government launched the Human Genome Project [Pearson and Soll
1991] in 1988 with the hope of sequencing the entire genome by 2005. However,
with the major advances in the sequencing machinery, scientists in the private
sector in conjunction with the HGP achieved the long desired goal already in 2002
by obtaining the sequence of the 3 billion base pairs making up the human genome.
This sequenced human genome did not actually belong to a single human being
but was in fact obtained from many volunteers because all humans share the same
basic set of genes and other DNA regions, so this “reference” sequence represents
every person. This landmark was the start of the post genomic era. Currently it is
widely accepted that only powerful computational tools can achieve identification of
protein coding genes in the genome sequence and determination of protein functions
encoded by such genes with a variety of experimental approaches from the arsenals
of biochemistry, molecular biology, genetics and cell biology [Koonin and Galperin
2003]. Thus deciphering the evolutionary history of life and maybe in future to
manipulate and induce favorable evolution is the fundamental task of biology.

Bioinformatics is a field, which studies the information content of life. Bioin-
formatics has been defined as a combination of mathematics, computer science and
molecular biology to analyze large scale genomic data. Computers have become
an essential tool in biology to gather, store and analyze data, which ranges from
research articles to complex metabolic pathways. According to NIH definition1:
Bioinformatics is defined as “research, development, or application of computa-
tional tools and approaches for expanding the use of biological, medical, behavioral
or health data, including those to acquire, store, organize, archive, analyze, or vi-
sualize such data”. They define another related term, Computational Biology as

1http://www.bisti.nih.gov/CompuBioDef.pdf
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Table I. Classification of Organisms.
Aristotle
(4th century B.C.)

Classified organisms as Plants and Animals

Ernst Haeckel Promoted genealogy of life, as analogous to a tree. Classified organ-
isms as Plants, Animals and Microbes.

Current Concept of three domains of life based on rRNA studies making the
tree of life. Organisms are classified into Eucarya, Archaea and Bac-
teria.

“the development and application of data-analytical and theoretical methods, and
mathematical modeling and computational simulation techniques to the study of
biological, behavioral, and social systems”. While the terms bioinformatics and
computational biology get used interchangeably, the former is geared more toward
the development of algorithms for analysis of biological data while the latter is
concerned with the discovery of new biological knowledge by applying computing
resources to large scale modeling and simulation coupled with experimental data.
System Biology is viewed from multiple perspectives: one of them [Kitano 2001]
considers it as a discipline that is trying to study the interactions between com-
ponents of biological systems that gives rise to the structure and function of the
systems such as tens of thousands of genes and proteins working together in in-
terconnected networks to orchestrate the chemistry of life. The large volume and
range of molecular, biochemical, genetic, anthropological and medical information
has given rise to a very large variety of databases due to a phenomenal number of
organisms produced in nature - we summarize briefly the entire evolution history
of organisms (see Table I). Bioinformatics knowledge has become a necessity for
any laboratory in developmental genetics. The future research advances in compu-
tational biology, molecular biology, genomic medicine as well as pharmacogenomics
have now become critically dependent on what information such databases will
contain including their data organization, accessibility and connectivity to other
related databases [François and Peer 2001].

Currently, the people working in this field in most cases have training either in
biology or computer science, but not both. After complementing their skill sets
with the missing knowledge, they are gradually getting ready to deal with the
problems in computational biology. This paper is intended to give a broad survey
of the basic biological conceptual foundation necessary for understanding this field,
the state of the art of databases and related tools available to the biologists today,
and the problems that confront the database researcher in helping the biologists.
We end the paper with several important upcoming application areas to which the
ever-growing data in these databases may be applied.

2. BIOLOGY CONCEPTS AND PRINCIPLES

The field of biology is vast and it is impossible to summarize the basic concepts in a
couple of pages. What is presented below are few terms essential for understanding
the complexity of biological information, its representation and management. Some
terms appear in the glossary at the end of the paper. Scientists have tried to
classify organisms since the time of Aristotle. Darwin in the 17th century proposed
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the fundamental ideas of natural selection and evolution. Table 1 summarizes the
changing view of the tree of life.

2.1 Genomes

The term genome refers to the totality of the genetic code present in the cells of
an organism. The genetic code is in the form of the nucleotides A,T,G,C which
respectively stand for Adenine, Thymine, Guanine, Cytosine, in the form of a double
helix; the protein information is made up of sequences containing 20 different amino
acids, eventually forming a 3-D complex protein molecule.

Genomics
In a cell, information flows from DNA to RNA to Protein. There exists a need

to develop a mechanistic understanding of protein speciation and understanding
the role of genome in transcription and to develop precise models of where and
when the initiation and termination takes place for transcription. Developing pre-
cise models of alternative RNA splicing (In RNA splicing introns are removed and
exons are joined together and when a splicing signal in an intron is hidden by a
regulatory protein, then the process is called alternative splicing.) and signal trans-
duction pathways (Series of signals passed through receptors in the cell membrane
to activate transcription are called signal transduction pathways) is essential along
with determining mechanistic understanding of protein evolution by protein:DNA,
protein:RNA, protein:protein recognition codes, for an accurate ab initio prediction
of protein structure. To understand such complex models of cellular functions, of
transcription and translation, there is a need to have models generated from evalu-
ating numerous gene and protein sequences to compare and reconstruct the earliest
stages of evolution. More details on these and subsequent biological concepts are
outside the scope of this paper and the reader is advised to consult [Snyder and
Champness 2007; Lewin 2007].

Genomics consists of two component areas:

(1) Structural genomics.
(2) Functional genomics.

Scientists are currently using a combination of functional genomics approaches
and microarray analysis techniques to identify and clone human genes. Functional
genomics is currently considered a major driving force behind such impending rev-
olution in the field of genomics. Structural genomics mainly deals with approaches
related to traits which are controlled by one or only a few genes, and mostly ends
up providing information related to the location of a gene or genes in the genome.

Such gene position information is an essential preliminary step; functional ge-
nomics helps us further analyze the interrelationships and interactions between
many genes to help us understand expression of certain traits and the role of cer-
tain genes in expressing them.2 Together, with this functional genomics and struc-
tural genomic information, scientists will be well equipped for efficiently creating
species with exact combinations of traits. Such new genes introduced into a species
through genetic engineering are called as transgenes. For example, functional and
structural genomic knowledge can potentially play an important role in producing

2http://www.cimmyt.org/
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special variety of plants that can optimize the yield potential under any given set
of conditions; this could potentially be an answer to the growing demand for food.

Due to the fact that functionality in genome and proteins is conserved, the idea
of comparative genomics arose with a potential to solve the mystery of the Origin
of Life. Comparative genomics started of with help of viral genomes and proteins,
which in turn was a blessing in disguise [Koonin and Galperin 2003]. Due to
the difficulty in understanding the sequence conservation in viral proteins, certain
crucial approaches of sequence comparison had to be laid down.

Always compare protein sequences, rather than nucleotide sequences

Rely on multiple, rather than pairwise comparisons.

Search for conserved patterns or motifs in multiple sequences

Try to visualize potential relationships in sequences or structures

Comparative genomics is informative in principle, especially in homologs (Ho-
mologs have common origins but may or may not have common activity) but lacks
to shed light on evolutionary distances and similarity seen between vertebrates and
bacteria. Sequence similarity not only exists between organisms with common an-
cestry but also can exist in convergence from unrelated sequences in which only a
limited similarity is observed and is poorly supported by current search techniques.
Thus, whenever statistically significant sequence or structural similarity between
proteins or protein domains is observed, it indicates their divergent evolution from
a common ancestor or evidence of homolog [Koonin and Galperin 2003].

Homologs can be of two types, namely, Orthologs and Paralogs, and crucial to the
understanding of evolutionary relationships between genomes and gene functions.
This information is also essential in understanding the concepts behind some of
the databases e.g. COG [Tatusov et al. 2003]. Another evolutionary concept,
which needs to be understood while dealing with genomes are standard (vertical)
vs. horizontal (lateral) gene transfer and single nucleotide polymorphism (SNP).

Conservation of function
Functions which are important for a cell’s existence are always preserved; or in

other words, if there is a mutation in the genes of important functions then those
cells do not always survive. But on the other hand, because of the mutation, if the
same important function can be achieved in a much more efficient way, then those
cells tend to thrive more than their ancestors in the same environment. Disease
causing mutations are those that have been shown to be linked to a disease with
high probability. Research on Drosophila blue cheese (bchs) gene has shown that
mutation can lead to a neuronal apoptosis with the age-dependent formation of
protein aggregates throughout the neurons of the central nervous system and thus
leading to a neuron-degenerative disease [Finley et al. 2003].

3http://www.ddbj.nig.ac.jp/
4http://www.ncbi.nlm.nih.gov/Taxonomy/
5http://www.ncbi.nlm.nih.gov/PubMed/
6http://www.ncbi.nlm.nih.gov/omim/
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Table II. Current Genomic and Proteomic Databases.
Database Format Size

Nucleotide Databases

Genbank [Benson et al.
2007]

Abstract Syntax Notation 1
(ASN.1) syntax

GenBank (Aug. 2006) con-
tains 61,132,599 entries totaling
65,369,091,950 base pairs

European Molecular Biology
Laboratory (EMBL)
[Kulikova et al. 2007]

-Flat file format EMBL release 91 (May 2007)

contains 197,361,640 entries and

170,766,876,848 nucleotides

-A more syntax-oriented

structure adopted

DNA Data Bank of Japan

(DDBJ3)

-Flat file format DDBJ release 70 (Jul. 2007)
contains 72,801,67 enteries and
76,788,510,646 nucleotides

Nucleotide Structure Database

Nucleic acid database
(NDB) [Berman et al.
1992]

-PDB and mmCIF format NDB (Jun. 2007) contains 3,557

Structures

Protein Databases

SWISSPROT/TrEMBL

(ExPASy) [Boeckmann

et al. 2003]

-Currently flat file UniProtKB/Swiss-Prot release
54.1 (Aug. 2007) contains
277,883 sequence entries,
comprising 101,975,253 amino
acids abstracted from 158,679
references

-Future Relational
Database system with
XML format

UniProtKB/TrEMBL release
37.1 (Aug. 2007) contains
4,754,787 sequence entries, com-
prising 1,543,116,088 amino
acids

Protein International Re-
source (PIR) [Wu et al.
2002]

-Flat files with XML format PIR-PSD final release 80.00 (Dec.
2004) contains 283,416 entries

Protein Structure and Interrelationship Databases

Protein Data Bank (PDB)
[Weissig et al. 2000]

A collection of mmCIF data
files

It has a total of 45,506 molecular
type files, 27,984 structure fac-
tor files, 3,601 NMR restraint files
(Aug. 2007)

Structural Classification
of Proteins (SCOP) [An-
dreeva et al. 2004]

Tightly linked hypertext
documents

SCOP release 1.71 (Oct. 2006)
contains 27,599 PDB entries,
75,930 domains, 971 folds, 1,589
superfamilies and 3,004 families

CATH [Pearl et al. 2003] -Flat file format CATH release 3.1.0 (Jan. 2007)
contains 30,028 PDB entries,
93,885 domains, and 63,453
chains

Families of Structurally
Similar Proteins (FSSP)
[Holm et al. 1992]

-Flat file format FSSP current release (Nov.
2004) has 2,860 entries-A more syntax-oriented

structure adopted

Restriction Enzyme
Database (REBASE)
[Roberts et al. 2007]

-Flat file format It contains 3,805 biochemically-
characterized restriction enzymes
(Sep. 2006)

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007
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Protein Domain, Motif & Family Databases

PROSITE (ExPASy) [Hulo
et al. 2006]

ASCII text file PROSITE release 20.17 (Jul.
2007) contains 1,489
documentation entries that
describe 1,319 patterns, 739
rules and 763 profiles/matrices

-Prosite.dat is a computer
readable file

-Prosite.doc contains tex-
tual information

BLOCKS Database
[Henikoff et al. 2000]

Data files of the Blocks
database are disseminated
as ASCII text files.

BLOCKS version 14.2 (Mar.
2006) consists of 29,767 blocks
representing 6,149 groups docu-
mented in InterPro 12.0 keyed to
SWISS-PROT 48.3 and TrEMBL
31.3 obtained from the InterPro
server

Protein Families Database
(PFAM) [Finn et al. 2006]

Traditional- Structure of
one directory of text files
for each family. Also has a
PfamRDB, a MySQL rela-
tional database

PFAM version 22.0 (Jul. 2007)
contains 9,318 families, 73.23% of
all proteins in Pfamseq contain a
match to at least one Pfam do-
main. 50.79% of all residues in
the sequence database fall within
Pfam domains

Protein Fingerprints
Database (PRINTS)
[Attwood 2002]

Former-ASCII text PRINTS release 38.1 (May 2007)
contains 1,904 entries, encoding
11,451 individual motifs

Current-Relational
database with a new
display

Simple Modular Archi-
tecture Research Tool
(SMART) [Letunic et al.
2006]

-Relational database SMART current release shows a
total of 726 domain families

Clusters of Orthologous
Groups (COG) [Tatusov
et al. 2003]

Tightly linked hypertext
documents

COGs are delineated by compar-
ing protein sequences encoded in
68 complete genomes and repre-
senting 14 major phylogenetic lin-
eages

Conserved Domain
Database(CDD) [Marchler-
Bauer et al. 2005]

ASN.1 syntax CDD currently contains domains
from Smart and Pfam and COG

Species specific databases

Saccharomyces Genome
Database (SGD) [Wood
et al. 2002]

- A collection of Locus
Pages [Wood et al. 2002] for
Yeast

It contains 8,001 genomic entries,
including 6,609 ORFs, 382 long
terminal repeats, 299 tRNA, etc.;
14,650 GO annotations on 4,214
gene products of S. cerevisiae
(Sep. 2007)

FlyBase [Crosby et al. 2007] - Flat file format Flybase current release (Aug.
2007) contains 184,745 refer-
ences, 78,122 research papers,
35,866 abstracts, 85,022 fly
stocks, 870 fly images, etc.

Mouse Genome Database
(MGD) [Blake et al. 2006]

-Relational database imple-
mented in Sybase

Currently it contains 30,881
genes, of which 27,617 genes with
sequence data, 19,580 genes with
protein sequence information,
16,572 genes with GO anno-
tations, 15,849 mouse/human
orthologies, 15,532 mouse/rat
orthologies, 94,891 reference, etc.
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Human Genome Database

(GDB) [Pearson and Soll

1991]

An object-oriented data

model was used to imple-

ment the system, data ar-

ranged in a hierarchy of ob-

ject classes

Currently it contains 6,458,156

objects in HGD, including:

209,070 alleles, 103 gene families,

507 gene products, 4,915,369

genomic segments, 4,537 maps,

etc.

European mutant mouse

pathology database (Path-

base) [Schofield et al. 2004]

- Images It currently holds over 1,000 im-
ages of lesions from mutant mice
and their inbred backgrounds

Specialized Genomic (Gene and Protein) Databases

MitoMap [Kogelnik et al.
1998]

ASN.1, Current: Relational
database.

Mitochondrial Genome: Total
number of nucleotides per mito-
chondrion : 16,569

Kyoto Encyclopedia of
Genes and Genomes
(KEGG) [Kanehisa et al.
2006]

Integration is at the level
of data entries in different
databases, retrieved uni-
formly with links.

KEEG release 43.0 (Jul. 2007)
contains 56,987 pathways gener-
ated from 333 reference path-
ways, 8,049 hierarchies generated
from 44 reference hierarchies,
10,222 KO groups, 2,603,477
genes, 14,877 compounds, 6,572
drugs, 10,972 glycans, 7,217 reac-
tions, and 7,251 reactant pairs

The Encyclopedia of Es-
cherichia coli Genes and
Metabolism (EcoCyc) [Ke-
seler et al. 2005]

An object-oriented data
model was first used to im-
plement the system, with
data stored on Ocelot, a
frame knowledge represen-
tation system. Data ar-
ranged in a hierarchy of ob-
ject classes.

EcoCyc release 11.5 (Aug. 2007)
contains 224 pathways, 1,615
reactions, 1,342 enzymes, 224
transporters, 4,471 genes, 4,413
gene product summaries, 3,187
transcription units, and 16,154 ci-
tations

Transcription Factor Databases

Gene Transcription Factor
Database (TRANSFAC)
[Matys et al. 2003]

- Flat file format TRANSFAC release 11.1 (Apr.
2007) contains 9,621 factors,
19,114 sites, 24,340 factor-site
links, 19,338 genes, 16,884 chip-
chip fragments, 821 matrices, and
14,783 references

Transcription Regulatory
Regions Database (TRRD)
[Kolchanov et al. 2002]

- Relational database TRRD current release (Sep.
2005) contains 2,334 genes,
14,407 expression patterns, 14
locus control regions, 3,490
regulatory units, 10,135 tran-
scription factor binding sites,
7,609 publications

Taxonomy Databases

NCBI (Taxonomy4) Includes a UNIX com-
pressed tar file called “tax-
dump.tar.Z”. A note for
*.dmp files - they are
not human-friendly files,
but can be uploaded into
SyBase with the BCP facil-
ity.

As of 2007, it contains 260,876
entries, of which, there are 739
entries on Archaea, 18,639 en-
tries on Bacteria, 210,423 entries
on Eukaryota, 21,915 entries on
Fungi, 101,365 entries on Meta-
zoa, 77,968 entries on Viridiplan-
tae, and 27,134 entries on Viruses
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Text and Ontology Databases

NCBI- PUBMED5 Medline database is avail-
able in XML with updates
every two weeks

PubMed includes over 17 million
citations for biomedical articles
back to the 1950’s. Growing at
roughly 20,000 entries per week

Online Mendelian Inheri-
tance In Man (OMIM6)

The full-text entries were
converted to an ASN.1
structured format when
OMIM was transferred to
the NCBI

As of September, 2007, OMIM
contains more than 18,049 en-
tries.

Gene Ontology (GO) [Ash-
burner et al. 2000]

Implemented using
MySQL, with a monthly
database release which is
available in SQL and XML
formats

As of September, 2007, it con-
tains 23,803 GO terms, and
664,463 associations between
219,335 gene products and the
GO terms.

2.2 Proteins

Structure: Primary, Secondary, Tertiary, and Quaternary
Proteins are functional products of genes, which have evolved over years under

selective pressure, to perform very specific and essential functions. These functions
depend on their structures, which arise due to particular amino acid sequence fold-
ing to generate linear chains, and compact domains with specific three-dimensional
structures.

Proteomics
The objective of proteomics is the quantitative measurement of protein expres-

sion, particularly under the influence of drug or disease perturbations [Anderson
and Anderson 1998]. To understand proteomics it is important to know the basic
subunits of proteins, mainly domain and motif, which help in defining the structure
of the protein. Domains are considered to be the natural independent units of pro-
tein structure and evolution, to the extent that they can be excised from the chain,
and still be shown to fold correctly, and often still exhibit biological activity. These
folding units of protein vary in length from 80-120 amino acids and may include
two or more motifs. Motifs are associated with a particular function. Motifs are
patterns of amino acid residues that can highlight the characteristic regions of pro-
teins with similar function and common ancestral background [Lones and Tyrrell
2005; Seehuus et al. 2005]. Motifs are mostly confined to short stretches of protein
of varying length of about 10-30 amino acids.

3. FUNDAMENTAL CHARACTERISTICS AND CHALLENGES OF MOLEC-
ULAR BIOLOGY DATABASES

In this section we briefly review the peculiar characteristics of the data arising from
experiments and natural observations, which originate from the above concepts in
biology. We experienced this first hand during the process of creating MITOMAP7,
a mitochondrial genome database. Then we present in Table II, a summary of the
available databases.

7Details of MITOMAP and its information complexity can be seen in [Kogelnik et al. 1996; 1998]
and at http://www. mitomap.org. The database is currently actively maintained.
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3.1 Characteristics of biological data and related data management problems

Characteristic 1: Biological data is highly complex when compared with most
other domains or applications. Definitions of such data must thus be able to rep-
resent a complex substructure of data as well as relationships and to ensure that
no information is lost during biological data modeling. The structure of biological
data often provides an additional context for interpretation of the information. Bi-
ological information systems must be able to represent any level of complexity in
any data schema, relationship, or schema substructure-not just hierarchical, binary,
or table data. As an example, MITOMAP is a database documenting the human
mitochondrial genome. This single genome is a small, circular piece of DNA encom-
passing information about 16,569 nucleotide bases; 52 gene loci encoding messenger
RNA, ribosomal RNA, and transfer RNA; 1000 known population variants; over
60 known disease associations; and a limited set of knowledge on the complex
molecular interactions of the biochemical energy producing pathway of oxidative
phosphorylation. We initially proposed to design a database using the traditional
RDBMS or ODBMS approaches to capture all aspects of the data, but were not
fully satisfied. Later we ended up designing our own structure which would be
“natural” and “optimal” for understanding and navigation by a biological scientist
[Navathe and Kogelnik 1999]. Later, for the sake of long-term maintainability and
ease of curation, we ended up going back to a standard relational DBMS. We believe
that a number of databases that are publicly available today may have undergone
a similar evolution.

Characteristic 2: The amount and range of variability in data is high. Hence,
biological systems must be flexible in handling data types and values. With such a
wide range of possible data values, placing constraints on data types must be limited
since this may exclude unexpected values- e.g., outlier values-that are particularly
common in the biological domain. Exclusion of such values results in a loss of
information. In addition, frequent exceptions to biological data structures may
require a choice of data types to be available for a given piece of data.

Characteristic 3: Schemas in biological databases change at a rapid pace.
Hence, for improved information flow between generations or releases of databases,
schema evolution and data object migration must be supported. The ability to ex-
tend the schema, a frequent occurrence in the biological setting, is unsupported in
most relational and object database systems. Presently systems such as GenBank
re-release the entire database with new schemas once or twice a year. Such an
evolutionary database would provide a timely and orderly mechanism for following
changes to individual data entities in biological databases over time. This sort of
tracking is important for biological researchers to be able to access and reproduce
previous results.

Characteristic 4: Representations of the same data by different biologists will
likely be different (even when using the same system). Hence, mechanisms for
“aligning” different biological schemas or different versions of schemas should be
supported. Given the complexity of biological data, there are multitudes of ways of
modeling any given entity, with the results often reflecting the particular focus of
the scientist. While two individuals may produce different data models if asked to
interpret the same entity, these models will likely have numerous points in common.
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007
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In such situations, it would be useful to biological investigators to be able to run
queries across these common points. By linking data elements in a network of
schemas, this could be accomplished.

Characteristic 5: Most users of biological data do not require write access to
the database; read-only access is adequate. Write access is limited to privileged
users called curators. For example, the database created as part of the MITOMAP
project has on average more than 15,000 users per month on the Internet. There are
fewer than twenty non-curator-generated submissions to MITOMAP every month.
Thus, the number of users requiring write access is small. Users generate a wide va-
riety of read- access patterns into the database, but these patterns are not the same
as those seen in traditional relational databases. User requested ad hoc searches
demand indexing of often un-expected combinations of data instance classes.

Characteristic 6: Most biologists are not likely to have any knowledge of the
internal structure of the database or about schema design. Biological database
interfaces should display information to users in a manner that is applicable to the
problem they are trying to address and that reflects the underlying data structure.
Biological users usually know which data they require, but have little technical
knowledge of the data structure or how a DBMS represents the data. They rely on
technical users to provide them with views into the database. Relational schemas
fail to provide cues or any intuitive information to the user regarding the meaning
of their schema. Web interfaces in particular often provide preset menus supporting
search which in turn do a limited type of querying of the database. However, if
these interfaces are generated directly from database structures, they are likely to
produce a wider possible range of access, although they may not guarantee usability.

Characteristic 7: The context of data gives added meaning for its use in bio-
logical applications. Hence, context must be maintained and conveyed to the user
when appropriate. In addition, it should be possible to integrate as many con-
texts as possible to maximize the interpretation of a biological data value. Isolated
values are of less use in biological systems. For example, the sequence of a DNA
strand is not particularly useful without additional information describing its or-
ganization, function, the organism, etc. A single nucleotide on a DNA strand, for
example, seen in context with non-disease causing DNA strands, could be seen as
a causative element for Lebers Hereditary Optical Neuropathy (LHON) in the case
of MITOMAP.

Characteristic 8: Defining and representing complex queries is extremely im-
portant to the biologist. Yet, the biologists are not likely to use any detailed syntax-
based queries. Hence, biological systems must support complex queries and yet
provide an easy interface to do so. Without any knowledge of the data structure
(see Characteristic 6), average users cannot construct a complex query across data
sets on their own. Thus, in order to be truly useful, systems must provide some
tools and menu based or iconic or forms based interfaces for building these queries.
As mentioned previously, many systems provide predefined query templates.

Characteristic 9: Users of biological information often require access to “old”
values of the data-particularly when verifying previously reported results. Hence,
changes to the values of data in the database must be supported through a system
of archives. Access to both- the most recent version of a data value and its previous
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version are important in the biological domain. Investigators consistently want to
query the most up-to- date data, but they must also be able to re-construct previous
work and reevaluate prior and current information. Consequently, values that are
about to be updated in a biological database cannot simply be thrown away.

All of these characteristics clearly point to the fact that today’s DBMSs do not
fully cater to the requirements of complex biological data. A new set of features in
database management systems is necessary (Chap.30, [Navathe and Elmasri 2007]).

3.2 State of the art of database creation and management for applications in
genomics and proteomics

Genome research projects generate enormous quantities of data. GenBank is the
National Institutes of Health (NIH) molecular database, which is composed of an
annotated collection of all publicly available DNA sequences [Benson et al. 2000;
Benson et al. 2003; 2007]. There exist many standalone databases, which harbor
important scientific data and are goldmines for a biologist. These databases have
expanded exponentially and typically double in size every 12-18 months due to
development of advanced DNA sequencing technologies. GenBank statistics show
that in 1995 GenBank had less than 0.3 million sequences and today it has over 10
million of them.8

In biological information management, two levels of heterogeneous database prob-
lem exist: one is across diverse systems housing the same types of information (for
example, genetic maps in RiceGenes and MaizeDB), and a second is across different
types of data that needs to be related and made accessible for analysis through a
single interface (for example, genetic maps and DNA sequences differ from each
other, which are different from temporal profiles of gene expression, but they all
are relevant to the inquisitive scientist engineering a new species or variety) [Sobral
1999].

As described in the survey of Pearson and Soll [Pearson and Soll 1991], genome
databases are used for the storage and analysis of genetic and physical maps. Just
as the information inside a cell flows from DNA to RNA to Protein, there are three
main categories of major types of public databases, which include Genomic DNA
databases, RNA databases (complementary DNA - cDNA, Expressed Sequence
Tags - ESTs, Unigene), and Protein Databases. There are numerous bioinformatic
databases located around the world, which are growing very rapidly, consistent with
the growth of GenBank. They harbor complete sequence and annotation data and
hold the potential to be a vital resource for researchers for years to come. Most of
these databases are stand-alone text-only repositories containing highly specialized
medical, mutational, sequence or coordinate data. The number, size, redundancy
and limited query capabilities of the current databases sometimes prevents many
researchers from making full use of the information contained within them. The lim-
itations of present-day bioinformatic databases could largely be overcome if many
of them could be combined, reorganized and integrated. In Table II, we summarize
some of the main databases available to the biological researcher today.

8http://www.ncbi.nlm.nih.gov/Taxonomy/
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4. CRITICAL DATABASE RESEARCH NEEDS FOR CURRENT ISSUES OF
GENOMIC AND PROTEOMIC DATABASES

4.1 Current capabilities vs. needed features

As we can see from the description of the databases in Table II, many of them still
use the simple flat file organization; in terms of the data formats, ASN.1 (Abstract
Syntax Notation 1) which was originally proposed for defining the syntax of the
telecommunication protocols is used by several databases; we also employed it in
MITOMAP due to its popularity. Relational DBMSs are getting more popular
for storing genomic and proteomic information in public databases - SYBASE and
MySQL seem to be two of the more frequently used RDBMSs by this community.
They are used basically as storage managers without really utilizing the complex
querying and transaction processing as well as concurrency control and recovery
functions because they are simply not required, as biological databases are not for
heavy-duty transaction processing. RDBMSs fail to meet the semantic demands
of irregular, incomplete, overlapping and ill defined data which is rampant in bi-
ology. There is no support for subtyping and inheritance which is needed - e.g.,
a mutation in a gene could be subtyped into replacement or insertion or deletion
subtypes. Object oriented DBMSs would meet the needs of several of the above
databases in terms of complex structuring of objects, dealing with data types that
need type constructors like sets, bags and lists. It would be easy to capture the be-
havior of the biological objects and to identify properties like homologs, orthologs,
paralogs etc. using inheritance and encapsulation. However, the query processing
techniques of the OODBMSs are not adequate and leading commercial OODBMSs
like Objectstore, Versant, Objectivity and Gemstone have not been able to estab-
lish themselves to an extent where the general users felt sufficiently confident about
their long term existence in the market. Unfortunately, the marketshare of OODB
technology is at most only about 2 to 3% of the total database market today. We
experimented with a relational DBMS and an OODBMS ourselves before settling
on our own approach for modeling and implementing the mitochondrial genomic
database in MITOMAP. However, most recently, we re-implemented the system
using Oracle 9i for the sake of long term maintainability. Generally speaking, the
relational model has been adopted for the genomic and proteomic databases at
large, not because it is ideally suited for the data, but because of the support
provided by the vendors and the expected longevity of the relational DBMSs in
the marketplace. Although all the major relational vendors offer Object-relational
features in their systems (IBM in DB2, Oracle in Oracle 10g and Microsoft in MS
SQL Server), the use of these two data models concurrently has not been widely
adopted by the application developers. See (Chap.22, [Navathe and Elmasri 2007])
for further details of the object-relational approach that still has good potential of
applicability to the genomic and proteomic databases.

4.2 Main thrust areas of research for data management

It is obvious from the above discussion that there is a need to develop solutions
for managing data in biology that go beyond the scope of the current relational
and object oriented databases that will have the scalability as well as the semantic
capability to handle the characteristics of biological information that we pointed
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out in the section above. We highlight the issues below. Some of these coincide with
those mentioned by [Jagadish and Olken 2003] in their report of the Workshop on
Data Management for Molecular and Cell Biology held in February 2003 at NIH.

4.2.1 Non-standard and unstructured data. As we show above, this data in-
cludes sequence data for DNA, RNA, mRNA sequences and protein sequences. It
is unclear whether every position in the sequence should be treated as a data object
and its related information stored around it. (This is the strategy we have in MIT-
OMAP). Typically sequence data itself is stored independently; other non-sequence
data which describes various aspects about the sequence such as function, products,
SNP (single nucleotide polymorphisms), mutations etc. would constitute the main
content. Scientists are currently using tools like BLAST or PSBLAST to do pattern
searches; this capability needs to be integrated into biological DBMSs. There is
structural data about proteins, carbohydrates etc., that needs a 3-D representation.
Techniques from GIS (geographic information systems) and CAD (computer aided
design) as well as from geometric modeling need to be applied to such databases
for efficient indexing and querying. Chemical pathway databases such as [Kane-
hisa et al. 2006] essentially store a graph where the links represent some chemical
reactions/phenomena. These are hard to represent in most conventional databases
and support for graph queries including recursive queries is almost completely non-
existent. Data in the form of matrices occur in microarray experiments (where each
cell has some intensity value) and needs further analysis in terms of clustering, clas-
sification and matrix operations.

4.2.2 Complex query processing. As we suggested in the characteristics of bio-
logical data, the queries tend to be complex involving paths and links along con-
nected objects of data. Similarity of sequences, graphs and 3-D shapes is typically
beyond the basic querying capabilities of RDBMSs and OODBMSs. Similarity is
a vague notion in bioinformatics and becomes context-dependent as well as prob-
lem specific - e.g., consider terms like homologs, paralogs and orthologs - they are
all based on notions of similarity and derived functions due to ancestry. Pattern
matching using Hidden Markov Models (HMM), complex language grammars and
regular expressions are common in sequence analysis and protein motifs identifica-
tion. Computational biology involves indexing and processing of in-memory data;
current DBMSs do not support much in-memory processing or operations between
main memory and disk. Recursive query processing support is almost non-existent
in today’s database products; it is needed wherever graphical data is used in terms
of pathways. TIGR’s gene indices clustering tool [Pertea et al. 2003] uses tran-
sitive closure to form clusters on the graph with sequences as nodes. Transitive
reduction queries are opposite of transitive closure and find minimal subgraphs
whose transitive closure includes the original graph. Matching queries for graphs
are also very complex and use properties such as homomorphism and isomorphism.
Graph matching typically is analogous to global sequence alignment and subgraph
matching tries to find embedded subgraphs within a graph. Matrix multiplication
is another need in dealing with results of microarray or other types of data.

All of these queries have currently little or no support in the existing DBMS prod-
ucts. Oracle 10g includes a network data model (NDM) as part of its spatial feature
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007



Genomic and Proteomic Databases 15

that allows users to model and analyze data as a graph. IBM has also reported
work on graph data management [Eckman and Brown 2006]. DBMS developers
must particularly address the requirements of these complex, sometimes NP-hard
problems to make them suitable for dealing with path-oriented queries. Specialized
libraries have been created (e.g., [Pitt et al. 2001]) for aiding the bioinformatics
researcher with some special functions.

4.2.3 Data interpretation and metadata management. A very important prob-
lem with biological data is to provide enough metadata so as to allow the scientist
to interpret it. Toward this end, various techniques are employed:

A) Annotation: The annotation process involves adding reliable and up-to-date
information as possible to describe a sequence, or in other words adding biological
meaning to raw sequence data using known publications, articles and databases.
Proteins are better sources for annotation than DNA because each amino acid has
different properties like size, charge, etc. and are closer to biological function in
terms of evolution.

Two main types of annotation are present: Structural and Functional annotation.

Structural annotation: Finding genes and other biologically relevant sites thus
building up a model of genome as objects with specific locations
Functional annotation: This type of annotation attaches biologically relevant
information to whole sequence and individual objects

Automatic annotation is carried out with the help of already known data in
current databases after confirming sequence homology rules, and then transferring
the information to raw biological data eventually classifying them to specific families
with similar functions. Gene clusters are used in functional prediction. The COG
database [Tatusov et al. 2003] also plays an important role in this. This automatic
classification is done through pattern matching, sequence clustering, comparing
protein structure and function information. Automatic functional characterization
is done with the help of functional databases. Context information is added with
the help of comparative genome analysis, and metabolic pathway databases. Good
examples of a well-annotated reference database are SWISS-PROT [O’Donovan
et al. 2002; Boeckmann et al. 2003] or PIR [Wu et al. 2002].

B) Ontology (Controlled Vocabulary) and other language systems Biologists waste
a lot of time and effort in searching for relevant and specific information related
to their research. For successful data mining of related literature on diseases or
gene/protein data we need a dictionary of standardized keywords, which should in-
terface with current genetic repositories and medical terminologies. Some examples
are:

MeSH (Medical Subject Headings) is the National Library of Medicine’s controlled
vocabulary thesaurus (MESH [Lipscomb 2000]). It mainly consists of sets of terms
naming descriptors in a hierarchical structure that permits searching at various
levels of specificity. MeSH descriptors are arranged in both an alphabetic and a
hierarchical structure, using to index MEDLINE article. Currently there are 22,997
descriptors in MeSH.

UMLS (Unified Medical Language System) consists of the metathesaurus, the
semantic network and the specialist lexicon and is provided with a variety of tools
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for installation and searching of the ontology. Metathesaurus contains information
about biomedical concepts and terms from many controlled vocabularies and clas-
sifications used in patient records, administrative health data, bibliographic and
full-text databases and expert systems (UMLS [Humphreys et al. 1998]). Names
of concepts are present in 17 languages. The 2007AB edition of the Metathesaurus
includes 1,436,586 concepts and 7,243,751 concept names in its source vocabularies.

GO (Gene ontology) consortium is also another project, which is a collaborative
effort to address the need for consistent descriptions of gene products in different
databases (GO [Ashburner et al. 2000]). The GO collaborators are developing
three structured, controlled vocabularies (ontologies) that describe gene products
in terms of their associated biological processes, cellular components and molecular
functions in a species-independent manner. The GO datasets are freely available
and have three different formats: flat files (updated daily), XML (updated monthly)
and MySQL (updated monthly). Currently there are 23,803 GO terms (13916
biological process, 2007 cellular component and 7880 molecular function) in its
vocabulary, and over 664,463 associations between 219,335 gene products and the
GO terms.

Open Biomedical Ontologies (OBO9) is a US National Center for Biomedical On-
tology (NCBO)’s effort to create well-structured controlled vocabularies for shared
use adhering to a set of principles specifying best practices in ontology develop-
ment. OBD (Open Biomedical Database) is the database for OBO expressed using
relational semantics. OBO will form a central element of the NCBO’s BioPortal.
The OBO foundry10 contains over 65 ontologies.

Another resource is the Ontology Lookup Service (OLS11) part of the PRIDE
project which is a central query interface for many ontologies and controlled vo-
cabularies lookup. Multiple ontologies can be queried from a single location with
a unified output format using the OLS web service interface. OLS contains 50 on-
tologies and has a total of 517989 terms loaded in it. Some important ontologies
that can be accessed through OLS include UniProt Taxonomy Database (NEWT)
- 381,608 terms, Chemical Entities of Biological Interest (CHEBI) - 16054 terms,
Human Disease (DOID) - 16054 terms, Mammalian Phenotype (MP) - 5923 terms.

The PRoteomics IDEntifications database (PRIDE12) is a centralized, standards
compliant, public data repository for proteomics data. It has been developed to
provide the proteomics community with a public repository for protein and peptide
identifications together with the evidence supporting these identifications. The
PRIDE database currently contains: 3,182 experiments, 340,493 identified proteins,
2,145,587 identified peptides, 309,971 unique peptides, and 2,582,616 spectra.

4.2.4 Data integration across related databases. We pointed out in Table II the
various databases related to information on genes and proteins from organisms in-
cluding the human (homo sapiens). There has been an intensive study and reporting
in the literature of certain species like E-coli, yeast, C-elegans, drosophila (fruit fly),
or mouse. In the botanical domain, a lot of data pertaining to the Rice or Maize

9http://obo.sourceforge.net
10http://obofoundry.org/
11http://www.ebi.ac.uk/ontology-lookup/
12http://www.ebi.ac.uk/pride/
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genomes has been collected. It is not possible with the available technology of web
links to get a complete and uniform picture of where science stands today on any one
of these organisms unless a scientist spends many hours using search engines with
some associated frustration. While annotations and links take the biologist from
one database to the next, currently no uniform interfaces or consolidation of data
has been done so that information can be accessed in an integrated fashion in any
given context or by any particular classification. Scientists at SRI have embarked
on a bold effort to consolidate all metabolic pathways and provide a complete view
of one organism- the bacterium E-coli based on their existing EcoCyc database
[Karp et al. 2002; Keseler et al. 2005]. In general, there is a tremendous need to
bring together related heterogeneous information under one uniform interface to
support a variety of ambitious applications which we have stated later in Section 6.
This problem is saddled with the typical problems in databases of heterogeneous
data integration - multiple models, multiple formats, different underlying files and
database systems, and a large amount of context-sensitive semantic content. The
general advances in heterogeneous database integration and multi-database query
processing ought to come to the rescue of the biologist in this domain. Many bi-
ological integration efforts have been reported recently, like BioMOBY [Wilkinson
and Links 2002], and DiscoveryLink [Haas et al. 2001]. A survey of approaches to
biological source integration appears in [Hernandez and Kambhampati 2004]).

4.3 Need for a uniform set of data management solutions

On the laboratory technology front, the challenge will be to devise more efficient and
cost effective technologies for identifying and scoring all types of genetic variants
(at the structural level) in a given genome, with the human genome taking the
lead [Chakravarti 1999]. Of special interest, the development of high-throughput
methods to monitor and analyze responses at the level of regulatory and biochemical
networks, will allow enhanced understanding of genetic control.

The shift in emphasis from data accumulation to data interpretation has already
begun and will continue to expand. Integration of data types, provision of unified
interfaces to complex biological data sets and provision of distributed data acqui-
sition, storage and analysis is a current focus of many public and private efforts in
the broadly defined field of bioinformatics [Sobral et al. 2001].

To prevent further continued anarchy in terms of handling of raw data production
and its analysis, a collaborative effort is needed to reduce redundancy and improve
the quality by curation of data.

5. RESEARCH CASE STUDIES

We have been involved with two pertinent projects related to the database creation
of a mitochondrial genome database and the mining of a medical text (PubMed13)
database for the benefit of biologists conducting microarray studies. We briefly
summarize these as examples of research case studies where in the first, a new
database has been designed and populated and in the second, an existing very rich
database of literature is being utilized to support interpretation of experimental
data by the biologists.

13http://www.ncbi.nlm.nih.gov/PubMed/
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Mitomap: (www.mitomap.org) - this is a database of mitochondrial genome infor-
mation developed as the result of the Ph.D. work of Andy Kogelnik (with advisor
Navathe at Georgia Tech and with Prof. Doug Wallace as advisor in molecular
genetics at Emory). Mitochondria are monomorphic little sausage like structures
present in each cell and only cellular organelles known to have their own deoxy-
ribonuclease acid DNA (mtDNA). They are normally considered the powerhouses
of a cell since they generate adenosine triphosphate (ATP) but are also involved in
many other cellular functions [Naviaux 1997]. MITOMAP is the most complete
database of published data relating to the human mitochondrial genome. This
single genome is a small, circular piece of DNA encompassing information about
16,569 nucleotide bases; 52 gene loci encoding messenger RNA, ribosomal RNA,
and transfer RNA; 1000 known population variants; over 60 known disease asso-
ciations; and a limited set of knowledge on the complex molecular interactions of
the biochemical energy producing pathway of oxidative phosphorylation [Kogel-
nik et al. 1996; 1998; Navathe and Kogelnik 1999]. Many important diseases like
Parkinsons, Optical Neuropathy, Cardiomyopathy, and Deafness have been linked
to mitochondrial disorders and hence there is a vast potential use for this data.
Our goal is to make this a comprehensive repository of mitochondrial genome in-
formation that includes sequence data as its core and relates it to biochemical
functional data, anthropological data, gene-gene interactions (including those with
nuclear genes) and records disease causing as well as natural mutations. Having
experimented with the RDBMS and OODBMS approaches, we stored it in our own
data model using the ASN.1 notation. Recently we have moved it to the Oracle
RDBMS for long term maintainability. The database is maintained and curated at
the Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG)
at the university of California, Irvine. MITOMAP receives a few new entries every
week and is regarded as a standard source of information on mitochondrial genome.

Genetrek : under this project, our goal is to create a system which extracts rel-
evant keywords from medical text for a given set of genes that may have been
identified as having a differential or temporal pattern of interest from microarray
experiments. We have been mainly dealing with neurological disorder related genes.
The data is from Medline, a database of over 17 million abstracts dating back to
1950’s. We do extraction of important keywords based on statistical weighting
analysis [Liu et al. 2004a; Liu et al. 2006]). We employ a variety of techniques
like stemming, stop lists, background sets of documents to extract the words. We
manipulated gene vs. keyword matrices with a variety of clustering algorithms
and eventually developed our own algorithm called BEA-PARTITION [Liu et al.
2005] based on the Bond Energy Algorithm which was used in [Navathe et al.
1984] for attribute partitioning in databases. We showed in [Liu et al. 2005] that
our clustering yields better results compared with k-means, self-organizing maps,
and hierarchical clustering, which have been popular clustering algorithms among
bio-scientists. We also showed [Liu et al. 2004b] that the traditional information
retrieval measure of TFIDF (term frequency*inverse document frequency) yields
better results than the Z-score technique commonly used in the prior information
extraction work from biomedical text [Andrade and Valencia 1998]. So far our
results are extremely encouraging and we have come up with new clusters of genes
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on known gene sets that lend new biological insights as well as we have found that
for certain genes, we get keywords indicative of their functions that are otherwise
difficult to determine from publicly available databases. The keywords have been
used as features to perform an SVM (support-vector-machines)-based classification
of literature for public health with very high precision and recall in a project with
CDC [Polavarapu et al. 2005].

6. LINKING GENOMIC AND PROTEOMIC DATABASES TO FUTURE
HEALTHCARE APPLICATIONS

In this section we highlight several important areas and issues where genomic and
proteomic databases as well as the various technologies of data generation that feed
into these databases will play a significant role in the next few decades. Database
technologists need to realize this vast potential application area.

Genomic Medicine
In the new century the healthcare industry faces a variety of new challenges as

consumers are becoming more active in the search for healthcare information and
treatment alternatives. Healthcare community faces several technological and sci-
entific difficulties due to lack of universal gateways, partial interoperability and
no standardized template for researchers and clinicians to record their findings
[Kumar 2007b]. The growing use of the Internet is also pushing the envelope on
e-health and the demand for higher levels of service. Hence there exists a need to
invest in resources, research, and partnerships with the main objective of making a
positive impact on the quality and efficiency of services offered by healthcare orga-
nizations.14 In future, a patient’s medical record will also include his/her complete
genome as well as a catalog of single base-pair variations depending on his/her
family history, race and geographical location. It will be used to accurately predict
a patient’s predisposition to not only the rare Mendelian diseases but also suscep-
tibility to a whole range of common but complex medical diseases like cancers,
coronary heart disease, stroke, diabetes, hypertension, neurodegenerative disorders
and psychiatric illness like bipolar disorder and schizophrenia [Kumar 2007b; Car-
don and Bell 2001]. A patient’s response to the therapeutic dosage of drugs could
be accurately measured based on their genetic makeup to metabolize a particular
drug. The genetic variation between individuals together with environmental fac-
tors probably determines disease susceptibility and protection, and is important for
drug efficacy and side effects [Holden 2000; Chakravarti 2000]. This will permit
a patient to be treated as a biochemical and genetic individual, thus making med-
ical interventions more specific, precise, and successful. The PharmGKB project
at Stanford (pharmgkb.org) is aiming to develop a pharmacogenetics and phra-
macogenomics database as an integrated resource to study how variation in human
genetics leads to variation in response to drugs. In addition, the increased power
of medicine to predict susceptibility to specific diseases will allow a patient to al-
ter one’s lifestyle in order to reduce the likelihood of developing such diseases or
to be treated with preventive or disease-delaying medicine. Such an approach has

14IBM Life Sciences, Pharmaceutical Clinical Development: The future of clinical trials- How

genomics, proteomics and technology are changing the clinical development process, 2002

IBM Life Science Solutions: Integrated infrastructure to accelerate and enhance research, 2002
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a tremendous potential to reduce morbidity and mortality [Nebert and Bingham
2001]. To reach such capability we need to understand all human genetic varia-
tions which include all mutations and gene polymorphisms. Scientists have already
taken steps to tackle this enormous challenge by initiating projects like the Human
Genome Variation Database, Indian Genome Variation Project and human gene
mutation database [Kumar 2007a; 2007b].

Disease Studies for Large Populations
With the completion of Human Genome Project, researchers predict the use of

personalized genomic information will transform the way clinicians & epidemiolo-
gists combine medicine and public health [Guttmacher and Collins 2002; Collins
and Guttmacher 2003; Khoury et al. 2000]). Analyzing genetic data, interpreting
genetic risks, and then formulating and testing new concepts will require signifi-
cant computational and storage power. Initiatives like the HuGE Net for appraisal
and integration of epidemiological data on human genome will provide some of the
refined ever increasing databases which collect, analyze and correlate medicine and
public health together in the 21st century [Khoury 2002]. The implementation of
a high-performance information infrastructure to facilitate and support the work
of life scientists in genomics, proteomics, and drug discovery and development is
needed. In future, genomic and proteomic databases will have to handle genomic
data from almost every individual in the world. Examples of such large population
databases include UK Biobank [Wright et al. 2002], CartaGene15, Decode Genet-
ics [Hakonarson et al. 2003], Estonia16, GenomeEUtwin17. Manipulation of such
vast data needs durable, robust databases with trouble-free implementation/ data
cleaning and data curation capability. Databases should be able to accommodate
data changes, allow flexible searches, and be scalable for different data sources.

Physician Aids
Physicians will require interactions of different databases, which could potentially

include information from electronic medical records database, genome databases,
laboratory data, detailed disease information (the OMIM database18), and phar-
macological data before they make a diagnosis and prescribe a personalized drug.
The Marshfield Clinic Personalized Medicine Research Project (PMRP [McCarty
et al. 2005]) is a population-based DNA biobank database created to serve research
focused on pharmacogenetics, genetic epidemiology and population genetics. In-
teractions of multiple databases will not only require enormous computational ca-
pability to manage large datasets and analyze them but also requires robust and
scalable data integration. New paradigms such as systems biology are predicated on
the availability of such large integrated data sets of many different types [Sternberg
2000]. Data integration is a critical aspect of disease diagnosis and drug discovery
in the future.

Role of Gene Therapy
The potential for using genes themselves to treat disease–gene therapy–is the

most exciting application of DNA science. Although still in its infancy and plagued

15http://www.cartagene.qc.ca/en/index.htm
16http://www.geenivaramu.ee/index.php?show=main&lang=eng
17http://www.genomeutwin.org/
18http://www.ncbi.nlm.nih.gov/omim/
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by technical difficulties, gene therapy for single-gene diseases will almost certainly
be routine and successful in the next 20 years.19 Certain aberrant disease-associated
genes will be replaced with normally functioning versions, and several hundred dis-
eases will be curable. Gene therapy treatments utilize retro virus to deliver such
damaged or missing genes to the targeted cells, which in turn gets assimilated into
the cellular genome over time. But such therapies require in depth understanding
of not only the genes but also their products (i.e., proteins) which results due to
their expression and their delivery systems. Many researchers have created their
own ad hoc databases with detailed information on a particular disease or condi-
tion under study for gene therapy. Such ventures, though rich in information, still
pose enormous challenges for the database community at the time of integration
with other public databases. Recently gene therapy appears to have cured Myeloid
Blood Disease which includes a variety of bone marrow failure syndromes.20 Simi-
lar studies have shown that expressing an engineered wild-type copy of the gene in
the nucleus can rectify the effects of a pathogenic mutation in a human mitochon-
drial gene. But the uniqueness of the mitochondrial genome presents a number of
obstacles to the successful use of gene therapy for the treatment of mitochondrial
DNA disease [Douglass and Robert 2002]. Our long term goals with MitoMap are
to make use of it as a resource for the physician and eventually in gene therapy.

Pharmacogenomics: Designer drugs
Until the late 20th century, drug discovery was mainly a slow tedious process

based on the screening and testing of thousands of chemical and natural substances
for potential therapeutic activity. Identification of new drug targets was always
the main bottleneck of the drug discovery process. For efficiency and cost-cutting,
nearly the entire pharmaceutical industry has been developing systems for automat-
ing the steps in drug discovery to streamline the entire process. With the advent of
genome research during the past decade, pharmaceutical companies were exposed
to a new frontier for drug development. In-silico genetic models could identify
polymorphisms in drug metabolizing enzymes that contribute to differential drug
performances. Such genetic models could also formulate novel and accurate hy-
potheses about traits of biomedical importance [Wang et al. 2005; Kaminsky and
Zhang 1997]. Scientists predict that instead of trying to replace a gene, it will be
more effective and simpler to manipulate cellular functions by replacing proteins
made by that gene. But a single protein can potentially also have multiple functions
which could be interpreted as side effects in a patient. Targeting such a protein
to a relevant cell is indeed a challenge and needs a detailed study across different
human races or even species. Instead of having to rely on a chance and screening
thousands of molecules to find an effective drug, which is how most drugs used
today were found, scientists will begin the process of drug discovery with a clearer
notion of what they’re looking for and where it will act by searching protein struc-
ture databases There have been estimates that the number of these targets would
range from 3000 to 10,000 [Minoru 2001].

Structural biology & drug discovery
The elucidation of the 3D structure of potential drug targets, in particular in

19Genetics: The future of Medicine, National Human Genome Research Institute
20http://www.cincinnatichildrens.org/about/news/release/2006/3-gene-therapy.htm
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the case where complexes between drug and target can be obtained, is another
very powerful approach to target validation. Specific structural and physiochemi-
cal properties are required for such macro drug molecules for efficacy, bioavalibility
and safety [Lipinski et al. 2001]. These requirements often limit the number of
drug-gable macro drug molecules which can be found but at the same time some
drug-gable macro drug molecules are also shared among different diseases like Beta-
adrenoreceptor for circulatory system diseases, nervous system disorders and respi-
ratory system diseases [Hopkins and Groom 2002; Hardy and Peet 2004]). Struc-
tural data is being analyzed computationally and stored in huge protein-structure
databases like Strucural Folds of Protein database (SCOP [Andreeva et al. 2004])
and Protein Data Bank database (PDB [Weissig et al. 2000]). And because ratio-
nally designed drugs are more likely to act very specifically, they will be less likely
to have damaging side effects such as drug interactions and drug allergies.

Systems Biology
Microbes can thrive mostly in any environment and have mostly helped this

planet to sustain life. It is essential to understanding the intricate details of their
functions which can eventually enable us to harness their sophisticated biochemical
abilities towards energy production, global climate change mitigation, and toxic
waste cleanup. This study of tens of thousands of genes and proteins working
together in interconnected networks to orchestrate the chemistry of life is known as
whole-systems biology. The changes in the metabolism are often expressed through
transcriptional changes introduced by complex regulatory mechanisms coordinating
the activity of different metabolic pathways [Patil and Nielsen 2005]. Systems
biology is creating a context for interpreting the vast amounts of genomic and
proteomic data being produced by pharmaceutical companies in support of drug
development.

Harnessing Microarray Data
Gene discovery and expression: Traditional methods in a molecular biology lab

take a long time to discover all the genes and their expression since scientists work
on a one gene on one experiment basis. With the discovery of a recent technology,
called DNA microarrays, biologist can see a better picture of the interactions among
thousands of genes simultaneously. Microarray technology provides a tool to po-
tentially identify and quantify levels of gene expression for all genes in an organism.
With 10,000 to 80,000 genes per experiment, the problem of how to further study
the identified genes remains. The large set of important databases we described
in Table 2 can be employed for a better interpretation of the results of microarray
experiments. This is where the project Genetrek we have described above comes
in.

Disease diagnosis
Microarrays have helped us understand the functions of individual genes. They

are also proving to be an essential tool for understanding disease processes and
identifying new diseases [Meltzer 2001]. Until recently disease diagnosis was done
by identifying defects at the tissue or cellular level, but with microarrays the shift
towards using positional cloning in identifying the underlying patho-mechanisms in
human disease, has proved to be a successful step. There are many emerging vari-
ants on microarray technology, such as expression arrays, exon arrays, array-based
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comparative genomic hybridization and sequencing arrays [Dobrin and Stephan
2003]. The power of mRNA and its association with the disease process has only
recently been acknowledged by both scientists and physicians. Certain transcrip-
tional changes can be tracked to predict a disease state or exacerbation of a disease
state. Laboratory tests based on this concept will be able to predict cardiovascular
diseases in patients months before a patient can even manifest its symptoms. Such
preemptive disease diagnosis has a huge potential in reducing long term health-
care costs. Such studies require complex algorithm development which can analyze
both patient phenotype data against transcriptional changes at cellular level via
microarray/PCR laboratory processes [Patil and Nielsen 2005].

Overall, these futuristic medical applications can only be successful if they are
supported by a standardized but robust technological growth.

Glossary
Basic terms

DNA: (Deoxyribonucleic acid) DNA molecules carry the genetic information
necessary for the organization and functioning of most living cells and control
the inheritance of characteristics.
RNA: (Ribonucleic acid) RNA is involved in the transcription of genetic in-
formation; the information encoded in DNA is translated into messenger RNA
(mRNA), which controls the synthesis of new proteins with help of tRNA and
rRNA.
Base-pair: Nucleotides in a pair with each other: A pairs with T, and G pairs
with C.
Gene: Basic unit of heredity made up of a string of DNA base pairs.
Genetics: Study of genes and their inherited properties.
Allele: Any of the alternative forms of a gene that may occur at a given gene
locus.
Genotype: Allelic composition of an individual.
Phenotype: Any morphological, biochemical, behavioral properties of an indi-
vidual.

Terms related to Genomics and Proteomics

(1) Prokaryotes Genomes: They have inhabited the earth for billions of years and
are small cells with relatively simple internal structures e.g. bacteria.

(2) Eukaryotic Genomes: The eukaryotic cell probably originated as a complex
community of prokaryotes. Humans, called as Homo Sapiens (Homo: genus,
sapiens: species) are eukaryote organism.

(3) Archael Genomes: Archaea and bacteria are the two main branches of prokary-
otic evolution.

(4) Genomics is defined as the scientific discipline, which focuses on the systematic
investigation of genomes, i.e., the complete set of chromosomes and genes of an
organism [Houle et al. 2000].

(5) Structural genomics refers to the large-scale determination of DNA sequences
and gene mapping.
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(6) Functional genomics is a systematic scientific study that seeks to recognize and
describe the function of genes, and expose when and how genes work together
to produce traits.

(7) Homologs can be of two types and crucial to the understanding of evolutionary
relationships between genomes and gene functions. Homologs have common
origins but may or may not have common activity.

(8) Orthologs: Evolutionary counterparts derived from a single ancestral gene in
the last common ancestor of the given two species. They retain the same
ancestral function.

(9) Paralogs: Evolutionary counterparts evolved from duplication within the same
ancestral genome. They tend to evolve new function.

(10) Horizontal gene transfer occurs due to acquisition of genes from other species,
genera or even higher taxa. A good example of such horizontal gene transfer
is Archaeal genomes where some genes are close homologs between eukaryotes
and bacteria.

(11) Vertical or standard gene transfer occurs due to acquisition of genes from same
species.

(12) Protein: Primary, Secondary, Tertiary, Quaternary structures: The amino
acids sequence forming a polypeptide chain is called its primary structure.
Certain regions of this polypeptide chain form local regular secondary structures
in the form of alpha helix and beta strands. Further packing leads to formation
of tertiary structure, which are compact globular units, also called as domains.
The quaternary structure may be formed by a bunch of tertiary structures
formed from polypeptide chain [Branden and Tooze 1999].

(13) Proteomics: Defined as the use of quantitative protein-level measurements of
gene expression in order to characterize biological processes and elucidate the
mechanisms of gene translation.

(14) Domain: In structural biology they are defined as structurally compact in-
dependently folding parts of protein molecules. In comparative genomics the
central atomic objects are parts of proteins that have distinct evolutionary
trajectories and can have single domain or multi-domain architecture.

(15) Motif: They are groups of highly conserved amino acid residues in multiple
alignments of domain that tend to be separated by regions of less pronounced
sequence.

7. CONCLUSION

This paper is an attempt to take stock of the current situation related to a large
number of public databases containing genomic and proteomic information reposi-
tories. To help the average (non-biologist) reader, we provided the important basic
biological concepts and phenomena that provide the experimental and factual data
to these databases. A glossary of important terms is provided at the end of the
paper. Typically, most of these databases undergo “curation”, a process of quality
and reasonableness checking that precedes data entry.

We have tried to highlight the unique characteristics of biological data and the
challenges faced by computers scientists and database professionals in the creation,
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management and querying of these databases. Finally, we have provided a brief
glimpse of the myriad applications in medicine and health sciences that relate to
diagnosis of disease, treatments based on knowledge of genetic screens, designer
drug development, gene therapies, and all types of assistance that will be made
available to physicians. With the systemic view of biology as an integrative disci-
pline and with the help of bioinformatics tools at the disposal of biologists, the next
several decades will see a major revolution in improving the health of the human
race.
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