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Contemporary end-servers and network-routers rely on traffic shaping to deal with server overload
and network congestion. Although such traffic shaping provides a means to mitigate the effects of
server overload and network congestion, the lack of cooperation between end-servers and network-
routers results in waste of network resources. To remedy this problem, we design, implement, and
evaluate NetDraino, a novel mechanism that extends the existing queue-management schemes
at routers to exploit the link congestion information at downstream end-servers. Specifically,
NetDraino distributes the servers’ traffic-shaping rules to the congested routers. The routers can
then selectively discard those packets—as early as possible—that overloaded downstream servers
will eventually drop, thus saving network resources for forwarding in-transit packets destined for
non-overloaded servers. The functionality necessary for servers to distribute these filtering rules
to routers is implemented within the Linux iptables and iproute2 architectures. Both of our
simulation and experimentation results show that NetDraino significantly improves the overall
network throughput with minimal overhead.

Categories and Subject Descriptors: C.2.1 [Network Architecture and Design ]: Network
communications ; C.2.3 [Network Operations ]: Network management

General Terms: Network management, server overload, network congestion

Additional Key Words and Phrases: Network management, Internet servers and routers, conges-
tion and overload control, traffic filtering

1. INTRODUCTION

The rapidly growing number of Internet users and services place increasing de-
mands on web servers and network links, making it possible to overload end-servers
and congest network links. Unfortunately, several recent Denial of Service (DoS)
attacks and flash crowds on popular servers have shown that the current Internet
architecture lacks a configurable mechanism for overload protection. Sudden load-
surges can easily overload the servers, which may, in turn, lead to denial of service
or loss of data. They can also easily congest network links, and all flows that run

Copyright c©2007 by The Korean Institute of Information Scientists and Engineers (KIISE). Per-
mission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than KIISE must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permission to republish from: Publicity Office,
KIISE. FAX +82-2-521-1352 or email office@kiise.org.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007, Pages 31–55.



32 J. K. Lee and K. G. Shin

R0 R1

S0

S1

S2

S3

serversclients

� �� �������	�	 �
��
Figure 1. An example network with a congested network link L1 shared by overloaded (S0) and
non-overloaded (S1, S2, S3) servers.

through the congested links will suffer significant delays or losses. Simple active
queue management such as BLUE [Feng et al. 2002], Drop-Tail and RED [Floyd
and Jacobson 1993], can handle link congestion by dropping packets in the core
of the Internet. However, these mechanisms do not differentiate among different
flows/packets, and therefore, there is no way to selectively suppress high-bandwidth
and/or low-priority traffic.

A popular configurable approach to mitigating the effect of congestion is to use
traffic shaping in either network-routers or end-servers. Traffic shaping enforces
prioritization of the transmission/reception of data over a network link. Typi-
cally, it associates packets with their traffic classes and regulates the incoming
and/or outgoing rate of each traffic class as specified by the traffic-shaping rules.
With traffic shaping, routers and servers can distinguish between the individual
flows’/aggregates’ Quality-of-Service (QoS) requirements and protect themselves
from overload. For example, a web server can be configured to discard the requests
from non-preferred customers to keep the total incoming request rate within the
server’s capacity limit.

QGuard [Jamjoom and Reumann 2000] is one such architecture that exploits the
power of traffic shaping to provide overload protection and service differentiation
at an end-server. It monitors the server’s load and dynamically sets up a rate
control to accept as much traffic as possible without overloading the server. QoS
differentiation is achieved by allowing a higher incoming rate for higher-priority
traffic. While simple iptables [Andreasson 2001] in the Linux firewall system can
also provide server overload protection with QoS differentiation, QGuard ’s adapta-
tion mechanism maximizes server utilization. Unfortunately, neither QGuard nor
iptables helps reduce network link congestion, as packets are dropped only after
they are delivered to the end-server at the very edge of the network. Packets that
the end-server will eventually drop as a result of its traffic shaping have already
consumed network resources on their way to the end-server, possibly causing the
dropping of other packets destined for non-overloaded servers. Let us consider
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the network shown in Figure 1 where a sudden surge of requests toward the end-
server S0 has congested the network link L1. S0 can provide QoS differentiation
to incoming requests by its own traffic shaping, but the active queue-management
mechanism at the congested link L1 will indiscriminately discard packets destined
for the other end-servers S1, S2 and S3.

To remedy this problem, the router R0 should shape only the traffic destined for
S0. Committed Access Rate (CAR) [Inc. 1998] and Traffic Control (TC) [Almes-
berger 1998] tools are such traffic-shaping features provided by Cisco and Linux
routers, respectively. While the network administrator can use these features to set
up the routers’ rate controls, the routers cannot ‘sense’ their downstream servers’
conditions in real time. Consequently, they might erroneously (i) drop packets
destined for lightly-loaded servers and/or (ii) forward more requests to already-
overloaded servers.

To combat the above problem, we design, implement, and evaluate NetDraino,
a novel mechanism that allows a server to inform its upstream routers of its con-
gestion status. Routers can then use this information to decide on packet drops.
In the above example, R0 equipped with NetDraino becomes aware of S0’s ac-
tual acceptance rate and allows only that rate of traffic toward S0 to traverse L1,
thus making more bandwidth available for forwarding traffic toward lightly-loaded
servers S1, S2 and S3. The main goal of NetDraino is to selectively discard those
packets—as early as possible in the network (before they reach the servers)—that
the overloaded servers will eventually drop. Not only NetDraino can relieve S0 from
the burden of dropping excess packets, but, more importantly, it can also minimize
possible service degradation that S1, S2 and S3 may suffer. As a prototype to real-
ize this goal, we apply the server-side NetDraino to the Linux 2.4 kernel’s iptables
firewalling system and use Linux routers with the iproute2 ’s traffic control (TC) to
implement the router-side NetDraino.

This paper is organized as follows. Section 2 gives an overview of load-shedding
mechanisms, highlighting the key features of NetDraino. Section 3 places NetDraino
in a comparative context with related work. Section 4 details the design of NetDraino.
Using the ns simulator [UCB/LBNL/VINT 2000], Section 5 evaluates the perfor-
mance of NetDraino. Section 6 summarizes the implementation of a NetDraino
prototype and Section 7 uses the implemented prototype to experimentally evalu-
ate the benefits as well as the overhead of NetDraino. Finally, the paper concludes
with Section 8.

2. OVERVIEW

Network links can be persistently overloaded for several reasons [Mahajan et al.
2001]. Links can be congested by ill-behaved flows, which do not conform to
end-to-end congestion control. By a “flow,” we mean a stream of packets iden-
tified/specified with its end-point attributes such as source and destination IP ad-
dresses, protocol field, and port numbers. To handle the link congestion caused by
such ill-behaved flows, traffic-shaping schemes should schedule packets on a per-
flow basis. Obviously, a router equipped with flow-based congestion control must
maintain state for each flow, making such a scheme unscalable in the core network.

Another traffic type that may congest links is a high-bandwidth traffic class (or
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Figure 2. An example network showing intuitive rule propagation.

an aggregate) that can be formed, for example, by flash crowds or distributed DoS
(DDoS) attacks, both of which are the main target of NetDraino. By “traffic class
(aggregate),” we mean a set of flows with common properties, such as the same
destination IP address and port. This notion of traffic class is commonly used in
policy specifications for firewalls and was initially proposed in [Mogul et al. 1987]. In
NetDraino, traffic-shaping rules at servers specify how to regulate high-bandwidth
or low-priority traffic classes. For example, a rule specifying <destination address:
11.1.1.2, destination port: 80, protocol: TCP> defines a traffic class. If there is
a large amount of traffic belonging to this class, it will be identified as a high-
bandwidth traffic aggregate and then regulated at routers. Note that whether
the traffic is malicious (i.e., DDoS) or not (i.e., flash crowds) does not matter
to the network; either case generates high-bandwidth traffic aggregates that can
be identified by traffic-shaping rules at target servers. Jamjoom [Jamjoom and
Shin 2003] has shown that the high-bandwidth traffic aggregates in the forward
path can cause link overload. The scheme in NetDraino attempts to mitigate the
effect of such link congestion to protect the flows on the overloaded links without
compromising the aggregate’s target.

2.1 Naive Load-Shedding

We first consider an intuitive (naive) load-shedding mechanism and identify its
limitations. Suppose that servers are protected by QGuard [Jamjoom and Reumann
2000]. To discard excessive packets before they reach an overloaded server, the
server may distribute the QGuard rules of the currently-configured filter to its
upstream routers. The rules propagate to all routers within N hops of the server,
where N is a design parameter. A router receiving the rules classifies packets and
regulates their incoming rate according to these rules.

Consider the network in Figure 2. The thick lines in the figure represent heavy
packet flows towards S1. The overloaded server S1 activates/triggers a filter that
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007
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consists of the three rules shown in the figure. Suppose that S1 decides to distribute
a rule that limits the incoming rate of traffic class <* → 11.1.1.1:80, TCP>, to
routers R1 and R2. Upon receiving the rule, R1 and R2 decide whether to install
it, based on their links’ load conditions. Suppose that R2 installs the rule, then
the traffic rate from R2 to S1 identified by the rule <* → 11.1.1.1:80, TCP> will
be limited by the rate specified in the rule distributed by S1. R1 and R2 further
distribute the rule to R3, R4, and R5. Suppose that the rule was accepted by both
R4 and R5. When R4 and R5 begin to shape the traffic according to this rule,
the corresponding traffic from R4 to R2 and from R5 to R2 is regulated. As a
result, traffic towards the lightly-loaded server, S2, will have a greater chance of
reaching S2 without being dropped in the network. The rule will propagate further
to upstream routers of R3, R4, and R5, until it reaches routers located N hops
away from S1.

Note that QGuard rules are distributed from a server to all of its upstream
routers. This is obviously inefficient. In order to achieve wide routers’ partici-
pation, N might have to be large, which can increase the number of a router’s
downstream servers flooding their rules to the router. When a router has a large
number of upstream routers directly connected to it, the rule distribution would be
very expensive. Moreover, the mechanism assumes that all the routers participate
in adopting and propagating rules; a single non-conformant router can interfere
with the entire set of desirable operations.

In the example network of Figure 2, one may suggest lighter-weight rule propa-
gation since S1 only needs to distribute the rule to R2 (because the link L1 from
R1 to S1 is not congested). Unfortunately, this choice would limit R3’s ability to
selectively drop packets. This is disadvantageous to R3 when the link L2 from R3

to R1 is congested by the flow <* → 11.1.1.1:80, TCP>. Even though L1 is not
congested, L2 can be congested by the flow because the capacity of L2 may be
lower than L1. We, therefore, need a more intelligent mechanism that allows all
compliant routers to participate in the load-shedding protocol.

2.2 Sketch of NetDraino

NetDraino allows an end-server to distribute its traffic-shaping rules to its upstream
network-routers. For scalability, not only the rules should be distributed efficiently,
but also they should not over-burden the routers in installing them. A router cannot
accommodate all the rules from all of its downstream servers since it may consume
most of its resources just to match each packet against the many filters installed
on it. The router should, therefore, install only those rules that may significantly
lighten its link congestion condition. Furthermore, since the congestion condition
varies with time, the routers’ rule sets must also be adapted dynamically.

In NetDraino, a congested router informs its downstream end-servers of its IP
address. Specifically, the congested router first advertises its congestion condition
by marking the packets going through the congested link. If an end-server receiving
the router congestion notification happens to be overloaded, it replies back by
marking its outgoing packets so that the congested router can be informed of the
congested server. Then, the congested router can append its IP address to the
packets destined for the overloaded servers. This way, a server learns of the IP
addresses of congested routers, and hence, can directly distribute the rules only to
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those routers which are congested, instead of distributing rules indiscriminately to
all of its upstream routers. Note that the server can customize the rules for the
targete router so that they can effectively and correctly soothe congestion at the
router. The routers regulate packets according to the rules they received from their
downstream servers in order to lighten up their link congestion and cut down the
requests toward the congested servers. To minimize the cost to dynamically adapt
to varying network condition, NetDraino takes a soft-state approach to managing
the rules distributed to each router; the rules must be refreshed within a certain
timeout period, else they expire and hence will become invalid. NetDraino is more
desirable than the intuitive scheme because only overloaded servers and congested
routers need to classify and regulate packets, and communicate with each other.

While NetDraino handles link congestion by separating high-bandwidth traffic
aggregates from other normal traffic, it is orthogonal to a traffic differentiation
algorithm that identifies high-bandwidth aggregates at target servers: it assumes
that traffic-shaping rules at the servers correctly reflect the prioritization policy for
each traffic class, and resorts to the definitions in the policy or rules for identifying
high-bandwidth aggregates. In this respect, NetDraino may complement end-host-
based schemes for mitigating DoS attacks [Lakshminarayanan et al. 2003; Yaar et al.
2004]. Note that the rules are not distributed when none of the congested server’s
upstream routers is overloaded. This avoids unnecessary deployment overhead,
because none of the servers may suffer service degradation if their upstream routers
are not congested. In this case, the server receiving the heavy traffic can easily
protect itself with well-studied overload control schemes [Jamjoom and Reumann
2000; Iyer et al. 2000; Andreasson 2001; Welsh and Culler 2003].

3. RELATED WORK

NetDraino combines traffic shaping at servers with packet scheduling and prefer-
ential dropping at routers. Specifically, the routers in NetDraino enforce an antic-
ipatory flow control back-pressed by traffic shapers at severs. In this section, we
first discuss the related work that prevents congestion and overload of severs and
routers. Then, we briefly review the work that also uses a back-pressure control
scheme in a distributed system, stressing the distinct features of NetDraino.

Traffic regulation at servers was usually studied as a part of QoS management
solutions for Internet severs. These solutions allow the network administrators to
specify a traffic-shaping policy, which defines rate limits for different traffic classes.
For example, Linux iptables [Andreasson 2001] and Extreme Network’s Extreme-
Ware [Inc. 2002] provide an interface to specify traffic classifiers and associated rate
limits. These approaches are based on static rate control; their traffic-shaping policy
cannot be integrated with the current overload status of Internet servers, without
intervention of administrators. To maximize server utilization, APF s [Reumann
et al. 2001] in QGuard [Jamjoom and Reumann 2000] allow administrators to de-
fine dynamic overload responses for their systems. Based on monitoring the input of
an overload server, QGuard protects the Internet server dynamically with the least
restrictive filter possible. While all these schemes protect servers from overload
and provide a certain level of QoS differentiation, they have a common limitation
of inbound rate controls; the earlier their traffic-shaping policy is enforced in the
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network, the better performance they may provide.

There are numerous studies on router scheduling mechanisms. While simple
active queue management such as Drop-Tail and RED can handle link congestion
by dropping excess packets, RED with ECN [Floyd 1994], RED variants [Feng
et al. 1999; Ott et al. 1999] and BLUE [Feng et al. 2002] were proposed to improve
the network performance in the presence of congestion. While these schemes alone
cannot differentiate packets with various priorities, per-flow scheduling mechanisms
and their variants such as Fair Queueing [Demers et al. 1989] and Core-Stateless Fair
Queueing [Stoica et al. 1998] enable preferential dropping of packets with flow-based
congestion control. Another approach to differentiating and rate-limiting packets
is a class-based scheduling mechanism, which regulates the traffic aggregates based
on traffic classifiers. Class-based scheduling mechanisms include CBQ [Floyd and
Jacobson 1995] and Adaptive Packet Marking [Feng et al. 1997], and NetDraino can
be viewed as a descendant of these approaches. The contribution of NetDraino is
to enable a router to have dynamic definitions of aggregates that cause congestion
at its downstream severs, instead of fixed definitions specified by administrators.

NetDraino “pushes” traffic-shaping rules at servers—defined either statically or
dynamically—into the network so that routers can regulate traffic aggregates before
they reach the servers. This concept of back-pressure flow control can be found in
literature. First, it dates back to Tymnet and X.25 [CCITT 1998b] packet-switched
networks with their hop-by-hop flow control. ATM networks also use the back-
pressure scheme for their flow control on VCs. In TCP/IP Internet, Iyer et al. [Iyer
et al. 2000] argue that incoming traffic into a server had better be regulated early at
the server’s network interface card (NIC), or at the server’s previous node (a proxy
server), for effective overload control in servers. In a similar context, Welsh and
Culler [Welsh and Culler 2003] use their staged event-driven architecture (SEDA)
to apply admission control at as early stages as possible, based on the performance
of back stages. These control schemes are to minimize the server’s work spent
on a request which is eventually not serviced due to overload. On the other hand,
NetDraino tries to minimize the network resources consumed for such a request, and
is orthogonal to the schemes mentioned above; NetDraino may seamlessly combine
with the existing overload control schemes at servers.

Lakshminarayanan et al. [Lakshminarayanan et al. 2003] take the same view of
NetDraino to propose that end-hosts be responsible for defining traffic filters and
pushing them back into the network. But their approach still focuses on protecting
the target hosts, thus inserting filters at the last hop router only instead of propa-
gating them far into the network. Pushback [Ioannidis and Bellovin 2002], a mecha-
nism for defending against DDoS attacks, has an approach similar to NetDraino, in
that routers dynamically adopt and propogate traffic-shaping rules, which identify
aggregates and specify rate limits. But their definitions of aggregates do not re-
flect the condition of servers, and the rules should be propagated router-by-router.
Persistent dropping (PD) [Jamjoom and Shin 2003] takes into account the effects
of client persistence on the controllability of aggregate traffic. PD complements
the existing traffic-shaping solutions by controlling the reaction of the underlying
traffic to a rate-limiting policy, and NetDraino will also benefit from PD.
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Figure 3. NetDraino example.

4. NETDRAINO

This section details the design of NetDraino. Specifically, Sections 4.1 through
4.4 describe the steps taken in NetDraino to accomplish the cooperation between
routers and servers as outlined in Section 2.2. Figure 3 depicts a simplified pictorial
example of how NetDraino works in each step. The first two steps are to let
congested servers know the IP addresses of the congested routers, and prepare the
traffic-shaping rules to be distributed to the congested routers. The last two steps
perform actual traffic regulation at the congested routers, and maintain the rules
distributed to each congested router.

4.1 Determination of Router Congestion and Communication of Server Congestion
to Routers

Before informing servers of its IP address, a congested router should first learn of
congested servers. NetDraino uses two ToS bits in the IP packet header for this
purpose. As shown in Figure 4, NetDraino uses one of ToS bits to indicate router
congestion and the other to indicate server congestion. Note that if there is no
congested server at all, thus no hint on downstream servers’ overload conditions,
the router cannot take advantage of NetDraino. Instead, it can resort to its own
AQM policy [Floyd 1994; Floyd and Jacobson 1995; Feng et al. 2002; Jamjoom
and Shin 2003] to quench congestion. But fortunately, the very natures of traffic
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007



NetDraino: Saving Network Resources via Selective Packet Drops 39

Precedence Type of Service 0

0 3 7

must be zero

(a) IPv4 ToS byte

0

0 3 75 6

RC
N

SC
N

router congestion
notification bit

server congestion
notification bit

(b) Newly-specified ToS byte

Figure 4. Use of ToS bits in NetDraino.

aggregates such as flash crowds or DoS attacks suggest that there exist conngested
servers corresponding to the traffics causing router congestion.

As in RED, a router equipped with NetDraino calculates the average queue
length using the exponentially-weighted moving average. This average queue length
is compared to a threshold thcongest, a design parameter, that NetDraino uses to
determine if the router is congested. When the average queue length is greater than
thcongest, every arriving packet is randomly marked with the Router-Congestion-
Notification (RCN) bit set to 1. Thus, packets with RCN bit=1 indicate that they
traversed at least one congested router. Random marking of packets in this step is
to reduce the chance of marking packets that are not part of heavy traffic.

When a server equipped with a traffic rate limiter receives a packet with RCN
bit=1, it checks if the marked packet constitutes excess traffic to the server, i.e.,
the server is overloaded. If yes, it sets the Server-Congestion-Notification (SCN)
bit in the header of its outgoing packets with the destination equal to the source
of each marked packet. When a congested router receives the packets with SCN
bit=1, it knows which servers are congested and may begin to notify the servers
of its IP address as described in Section 4.2. Note that, in this scenario, the
congested router should reside both in the forward and reverse paths between the
client and the server. This is a reasonable assumption within an AS. But, as AS
path asymmetry is known to be common in the Internet, we may have to slightly
modify the mechanism for NetDraino to be widely deployed by multiple ISPs. For
example, in this extended scenario, a client, instead of a router, can be aware of the
packets with SCN bit=1, and use an additional ToS bit to notify routers of server
congestion. That is, it can mark the packets destined for the congested servers so
that the routers along the packets’ paths can be aware of the congested servers as
well.

The router stores the IP addresses of thus-identified congested servers using a
FIFO queue called CServs (Congested Servers) whose length is `Q. Since the num-
ber of simultaneously-congested servers is expected to be small, `Q is usually small.
IP addresses in CServs age with time. If their age exceeds a pre-set limit, they
will be removed to prevent the router from using obsolete servers congestion infor-
mation. Since NetDraino adds to CServs the source (server) addresses of packets
with SCN bit=1 whenever such packets arrive at a congested router, CServs may
contain the server addresses for which the router’s heavy traffic is not destined.
While a mechanism for keeping the history of packets marked with RCN bit could
be added to handle these false congested server addresses, such a situation would
occur very rarely and hence we omitted it. Figure 5 depicts the algorithm for a
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  upon arrival of a packet p at dev in

  if (p is marked with a SCN bit) then
  add a source address of p to CServs list of  devin

  upon departure of a packet p from devout

  calculate the average queue size Qavg

  if (Qavg > thcongest ) then
  mark p with a RCN bit randomly

Figure 5. The algorithm for a router to identify congested servers.
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Figure 6. The algorithm for a router to broadcast its IP address.

router to identify congested servers.

4.2 Communication of Router Congestion to Servers

Once a congested router has identified congested servers, it appends its IP address
to the IP option fields of packets destined for the servers in CServs so that it may
receive hints as to which packets the servers will probably discard. We assume that
all routers just forward, rather than drop, the packets with unknown IP options,
though we do not require that all the routers be aware of NetDraino and participate
in the mechanism. The servers receiving the packets with the NetDraino-filled
IP option can identify the congested routers and collect & maintain statistics of
how much of their traffic has gone through each congested router. The hints on
packet drops are returned to the congested routers after they are tailored to the
statistics collected by the servers. Because it is expensive to append additional
data to a packet in flight, a router does not alter all in-transit packets. Instead, it
modifies each candidate packet with some probability pa, one of NetDraino design
parameters. Note that the traffic consuming more bandwidth is more likely to be
modified, which is desirable because it is the high-bandwidth traffic that a congested
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007
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Figure 7. The algorithm for a server to distribute traffic-shaping rules.

router wants to limit.
Figure 6 depicts the proposed algorithm. When packets arrive at the router’s

output queue, a traffic shaper polices them according to the installed traffic-shaping
rules as described in Section 4.4. If the router is not congested or the outgoing
packet is not destined for the servers in CServs, the router does not append its
address. When it decides to modify the packet, some of its upstream routers might
have already appended their addresses to the packet. Even then, it just adds its
own address to the packet forming a list of router IP addresses. While allowing
unlimited addition of information to a packet — though IPv4 allows addition of no
more than 40 bytes for IP option fields — is usually a poor design choice, allowing
addition of only one router address in a packet and disallowing modification of the
already-modified packet will provide servers erroneous statistics. However, more
than one IP address will rarely be appended to a packet since pa is usually very
small. Our simulation results in Section 5.3 show that pa = 0.1 suffices to maintain
correct statistics at servers, in which case the probability of appending multiple IP
addresses to packets is less than 0.01.

4.3 Distributing Server’s Traffic-Shaping Rules

For each policed traffic class tci, a server maintains a list CRi of congested routers’
IP addresses. CRi represents the congested routers that class tci packets have
traversed before reaching the server. Each entry in CRi associates with it the
statistics of the traffic rate from the router represented by the entry. When a
server receives a tci-packet with a router’s IP address, the packet is fed into the
corresponding entry in CRi as a sample. If enough samples are collected in the
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entry, the filtering rules will be determined and then distributed.
The server should first allocate a rate limit for the router to which it forwards

a shaping rule. Suppose that (i) a rule Ri polices traffic class tci by limiting its
rate to ratei in the server; and (ii) the server determines to distribute Ri to one
of its upstream routers, routerU . The server knows that the total incoming rate
of tci is totaltci , and uses the statistics maintained in CRi to infer the fraction,
fromrouterU

, of this traffic that comes from routerU . Then, the ideal rate limit for
routerU would be somewhere between ratei ∗ fromrouterU /totaltci and ratei. It is
very difficult to get an exact value for this rate limit since it depends on the actual
traffic arrival process. We use k∗fromrouterU

/totaltci
as the fractional rate limit for

routerU , where k is an experimentally-determined scaling factor. After determining
the rate limit for the congested router, the server distributes the tailored rule to
the corresponding router. Figure 7 summarizes this algorithm.

4.4 Policing Packets

Once a router receives the rules from a server, it installs them and polices pack-
ets according to them. The received rules constitute the NetDraino traffic shaper
shown in Figure 6. The server does not maintain the rules once they are dis-
tributed. Instead, the router maintains the installed rules by itself. This minimizes
the amount of state information each end-server needs to maintain, thus increasing
the robustness of NetDraino; it can tolerate router or server failures without incur-
ring any further overhead. Failed servers or routers will simply be “forgotten” via
expiration of soft states by NetDraino.

The rules installed in each router remain valid only for δ seconds after which they
time out. Suppose that a rule Ri is to police traffic class tci by limiting its rate to
ratei in a router. By installing Ri at time t0, the router could reduce its congestion.
If it removes Ri at t0 + δ, its outgoing link can become heavily-overloaded by
unregulated tci traffic because the traffic might not yet have subsided. Instead of
completely removing an expired rule, NetDraino gradually increases the rate limit
specified in the rule. Let total ratei denote the rate limit for tci in the server which
distributed Ri. NetDraino places several gradual rate limit steps between ratei and
total ratei, which are incrementally adopted at every δ seconds by each installed
rule in the router as it ages. While relaxing the rate limit, both the router and the
server might become congested. In such a case, the mechanism restarts. The router
will mark packets with its IP address and the congested servers will eventually send
updated rules to the router. ratei is removed from the router either when its rate
limit becomes higher than total ratei or when it becomes lightly-loaded.

5. SIMULATION

The performance of NetDraino under various configurations is evaluated using the
ns simulator [UCB/LBNL/VINT 2000] for an example network with 25 clients
and 5 servers as shown in Figure 8. Each client requests multiple TCP and UDP
connections to each server. Pareto ON/OFF sources with mean ON-time of 500 ms
and mean OFF-time of 1000 ms were run to generate TCP traffic, and CBR sources
were run to generate UDP traffic. In addition, all sources started transmission of
1-KB packets at a random time within the first 3 seconds of simulation. The
routers were configured to store up to 30 packets in each output queue under a
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007
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Figure 8. The network topology used for simulation.

Table I. Default configuration.
# TCP connections to S0 per client 100
UDP traffic rates to S0 per client 18 KB/sec
# TCP connections to each other server per client 10
UDP traffic rates to each other server per client 4 KB/sec
k 1.2
thcongest 15
pa 0.1

RED queueing discipline modified to support NetDraino. Among servers, we made
S0 overloaded by making most of connection requests to S0. Each server adopted
a simple packet filter that polices the rates of TCP and UDP traffic as shown in
Figure 8. It simulates iptables rather than QGuard since it does not adapt itself to
the server’s load. The default configurations in Table I were used for our simulation
unless specified otherwise.

5.1 Incoming traffic rate at a congested server

To understand the behavior of NetDraino, Figures 9(a) and 9(b) compare the in-
coming traffic rates of the congested server S0 in the example network with and
without NetDraino. Both the rate of traffic arriving at the server and that of traffic
accepted by the server are shown in each graph. The filters were distributed for
the first time around t = 5.0 in the simulation. In Figure 9(a), the overlap of two
traffic rates after t = 5.0 shows that traffic to S0 was regulated by upstream routers
and few packets were rejected by S0, while the difference between two traffic rates
in Figure 9(b) shows that unregulated traffic to S0 was filtered out at S0, wasting
the resources to deliver packets which were dropped at S0. During the simulation
the acceptance rate in Figure 9(a) remained around 400 pkts/s, which was a total
traffic rate limit specified by the filter of S0. This means that traffic was regulated
properly; few packets were filtered out in the upstream routers of S0 when S0 could
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Figure 9. Traffic rates of the congested server.

accept all of the packets.

5.2 Throughput

We now show the increase of network throughput by adopting the NetDraino’s
selective packet drop mechanism. By throughput, we mean the average number
of packets per second that are accepted by each server. To consider the effect of
traffic towards the congested server, the throughput was measured by increasing
the number of TCP connections and the UDP sending rate of each client. The
number of TCP connections was varied from 10 to 400 in increments of 10, while
the UDP sending rate was varied from 0 KB/s to 78 KB/s in increments of 2KB/s.
For readability, We provided only the number of TCP connections in the x-axis
of the graph. Figure 10(a) shows the throughput measured from simulations with
and without NetDraino, while Figure 10(b) shows the fractional throughput gain
of NetDraino. The fractional throughput gain is the percentage increase in the
throughput of the network with NetDraino, compared to that without NetDraino.
In Figure 10(a), the throughput of the network with NetDraino remains unchanged
as the number of connections to S0 increases over a certain point (around 40 TCP
connections), while that without NetDraino decreases as more traffic is bound for
S0. Since the congested links remain fully-utilized for both systems, the gap between
the two represents the number of packets that waste the network resources without
NetDraino. The gain of network throughput with NetDraino in Figure 10(b) is
the result of the decreasing throughput without NetDraino. It shows that the
throughput of the network with NetDraino is almost 90% higher than that without
NetDraino when traffic bound for S0 is the heaviest (400 TCP connections), at
which point the ratio of traffic toward S0 to other traffic is 10 to 1.

Note that the throughput gain keeps increasing as traffic bound for S0 gets heav-
ier. The throughput goes up to 1.27 and 1.38 when traffic to S0 increases to 800 and
1200 TCP connections, respectively. Theoretically, it reaches its maximum when
traffic to S0 overwhelms other traffic, which is about

900 pkts/sec (the maximum bandwidth of network)
450 pkts/sec (the accepting rate of S0)

.
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Figure 10. Performance of NetDraino.

5.3 Effects of design parameters

We now illustrate how the choice of NetDraino design parameters affects its per-
formance. Each point in Figures 11(a), 11(b) and 11(c) represents a different sim-
ulation, with different values for k , thcongest and pa, respectively, where k is the
scaling factor used by a server to allocate a rate limit for a congested router, and
thcongest is the threshold used by a router to decide if it is congested or not in the
NetDraino semantics. Finally, pa is the probability for a congested router to append
its IP address to the packets destined for the servers in CServs. The performance
of NetDraino was evaluated in terms of the network throughput gain while varying
these configuration parameters. To get a more general understanding of the effect,
each configuration was tested under two situations: (i) each client generates 100
TCP connections to S0 (default), and (ii) it doubles the traffic to S0.

Figure 11(a) shows that NetDraino’s performance does not make any significant
difference when k is varied from 1.0 to 2.0. This is surprising because we expected
a lower gain with a small k around 1.0 as well as with a large k around 2.0. The low
gain with a small k may be the result of ‘false positives’ where the filters distributed
by S0 over-limit the rate of traffic toward S0, causing the underutilization of S0.
The low gain with a large k may result from the opposite situation; the distributed
rules are too generous and too much of excess traffic is dropped at S0, wasting
network resources. However, it turned out that the over-limiting rules distributed
under a small k allow more traffic delivered to other servers than S0, compensating
for the underutilization of S0. When a large k was used, the generous rules at the
congested routers did drop some packets bound for servers other than S0 in order
to deliver the packets that S0 would drop, but its effect was insignificant because
the increased rate limit by the generous rules was insignificant compared to the
entire traffic.

The results in Figure 11(b) are related to the responsiveness of NetDraino; the
smaller thcongest, the earlier a router begins to set the RCN bit of its in-transit
packets, and therefore, the better responsiveness. Figure 11(b) shows that there
was no significant difference in the throughput gain when thcongest ranges from 5
to 20, but it decreased if thcongest was configured to be over 20. The burstiness
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Figure 11. Effects of design parameters.

of traffic yielded similar responsiveness to the case of thcongest values ranging from
5 to 20, while the effects of slow responsiveness appeared in the simulations with
thcongest configured to be over 20. Figure 11(c) shows the effect of pa on NetDraino’s
performance. pa is closely related to NetDraino’s overhead, because it is the most
expensive in the mechanism for a router to append its IP address to in-transit
packets. A smaller pa is needed to lower the overhead, but it may result in erroneous
statistics to be maintained by servers. Fortunately, the simulation results show that
a pa value as small as 0.1 suffices for NetDraino to perform well.

6. IMPLEMENTATION

The router- and server-side NetDraino prototypes are implemented as extension
modules for the Linux 2.4 kernel’s iproute2 framework and iptables firewalling sys-
tem, respectively. Each router or server participating in the NetDraino mechanism
loads the kernel module and runs a user-level daemon called ndagent which is re-
sponsible for communication between a router and a server. Specifically, ndagent in
a server makes a TCP connection to ndagent in a router to distribute traffic-shaping
rules. To pass information from the kernel modules to the co-hosted ndagent or
vice versa, we chose to use the Linux Netlink socket [Dhandapani and Sundaresan
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Figure 12. NetDraino architecture.

1999].
Figure 12 provides an abstract view of NetDraino architecture. The arrows in

the figure represent the flow of traffic-shaping rules. The kernel in a server notifies
the co-hosted ndagent of the rule tailored to the statistics it collects and maintains.
Then, ndagent in the server sends the rule to ndagent in the target router over a
TCP connection. We chose to use ASN.1 [CCITT 1998a] to specify the rule for its
flexibility. ndagent receiving the rule in the router requests the kernel to regulate
the incoming traffic according to the rule.

While we use flexible Linux machines for prototype implementation, we argue
that an implementation of the routing extension can scale as well on an alternative
architecture such as a Cisco router. For example, as mentioned in Section 1, routers
with Committed Access Rate (CAR) feature can already rate-limit traffic aggregates
defined by user supplied rules. A router’s manipulation of a packet’s RCN bit is
also a trivial task, considering that an Internet router must already decrement the
TTL and recalculate the IP header checksum of every packet it forward. To store
the list of congested servers and check if a packet is destined for any of them, the
routing table structure can be slightly extended to set aside a room for additional
fields. But, unfortunately, for the router’s exchange of traffic shaping rules with
end hosts, our simple ASN.1 protocol unit may have to be replaced with a more
formal protocol, which can be an extension of SNMP.

6.1 Router-side NetDraino

For the router-side NetDraino implementation, we added a new queueing discipline,
called ndfifo, to Linux 2.4 kernel’s iproute2 framework. ndfifo extends the FIFO
(drop-tail) queueing discipline module so that it can perform additional functions
described in Section 4, while other queueing disciplines such as RED can also be
easily extended to provide such functionalities.

Figure 13 shows the architecture of the router-side NetDraino prototype. When
ndfifo is loaded, it registers to listen to NF IP FORWARD hook in the Linux Net-
filter architecture, at which it identifies packets with SCN bit set and updates the
corresponding CServs list. The incoming traffic is regulated by the NetDraino rules
when it is enqueued according to the ndfifo queueing discipline. We implemented
ndfifo’s dequeue function so that it can randomly append the router’s IP address to
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FIRST ROUTER IP ADDRESS

APPEND PROBABILITY SEQUENCE NUMBER
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. . .

Figure 14. The format of new IP option.

a packet’s IP option field if the packet is destined for a server in CServs. Figure 14
shows the format of the new IP option to deliver router’s IP addresses. APPEND
PROBABILITY and SEQUENCE NUMBER fields in the option are used by the
destination server to maintain statistics as described in Section 6.2. The IP option
can contain information of multiple routers, but the total length of IP options in
IPv4 must not exceed 40 bytes. If ndfifo is unable to append the router’s IP ad-
dress due to the total length limit of IP options, it simply gives up on appending
the information; it may cause inaccurate statistics at the server, but its effect would
not be significant since such a situation occurs very rarely.

6.2 Server-side NetDraino

We have implemented a new match extension module, called ndlimit, for the Linux
2.4 kernel’s iptables firewalling system. ndlimit extends the existing limit match
extension that implements the well-known token bucket rate-control scheme, while
slightly changing the original semantics. ndlimit assumes that the target of the
match is limited to NF ACCEPT and unmatched packets should be dropped. These
assumptions are valid, considering the fact that ndlimit is only to regulate the
incoming traffic while the original match module is intended to provide more general
functionalities such as limited logging of specific rules. In addition to traffic-shaping
functionality, ndlimit maintains the statistics of excess traffic and handles the SCN-
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007



NetDraino: Saving Network Resources via Selective Packet Drops 49

Network protocol processing layer

Network
Device

ndlimit match 3

packet filter layer

Traffic shaper

ndlimit match 2

<router address, # info pkts, # total pkts,
appending probability, sequence number>

ndlimit match 1

Statististics

Network
Device

Network
Device

Application

Network
Device

Network
Device

Network
Device

congested
router list

SCN
marker

agent

Netlink

:  flow of packets

:  flow of shaping rules

User
level

Kernel
level

Figure 15. Server-side NetDraino prototype.

bit marking of packets.
Figure 15 shows the architecture of server-side NetDraino prototype. It identifies

packets with RCN bit set at NF IP LOCAL IN hook, and selectively marks the
packets with SCN bit at NF IP POST ROUTING hook in the protocol stack. Each
ndlimit match rules in the server maintains a list of congested routers’ statistics
as shown in the figure. Every incoming packet that is fed into a ndlimit match
increments the count of total packets in the match. If the packet contains a router’s
information in its IP option field, it also increments the count of info packets in
the corresponding router’s entry. By info packets, we simply mean the packets
carrying the congested routers’ IP addresses. ndlimit estimates the number of
packets that traversed the congested router as (# info pkts)/(append probability).
If the estimation exceeds a pre-defined threshold, it notifies the agent daemon of
the collected statistics to distribute the rule to the routers. Because there is no
fixed time window to collect statistics, it may take a long time to distribute the
rule if its info packets arrive at a slow rate. But this is reasonable because such
traffic would not be very heavy and it is not urgent to deliver the shaping rule.
Sequence numbers are used to prevent erroneous statistics. Suppose that a router
R0 starts randomly appending its IP address to packets destined for S0 at time t0
but stops it at t1. If R0 restarts notifying S0 of its IP address at t2, S0 must notice
the absence of this information between t1 and t2. Otherwise, it will underestimate
the number of packets traversed R0. For this purpose, the router assigns a new
sequence number whenever it starts ‘shipping’ its IP address, and the server resets
statistics and recollects it whenever it detects the change of the sequence number.

7. EVALUATION

7.1 Experimental Setup

To validate NetDraino in a more realistic environment, we conducted experiments
on a testbed consisting of 4 routers and 2 servers (1 GHz Pentium III generic
PCs with 256 MB memory and 100 Mbps Ethernet adapters, hosting Linux 2.4.19)
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as shown in Figure 16, where Rn are routers and Sn are servers. To make the
measurement easier, we lower the bandwidth of the link between the R2 and R3 to
2 Mbps, expecting R2 to be easily overloaded in the presence of heavy transit traffic.
We use class-based queue (CBQ) present in Linux 2.4 kernel’s iproute2 framework
to simulate the link with a low bandwidth, while our ndfifo kernel module serves as
a queueing discipline of CBQ. Note that the topology consists of 3 layers. The first
(leftmost) layer conceptually corresponds to WAN-to-MAN links, the second layer
to MAN-to-LAN, and the last one to LAN-to-Host links. Each router is configured
to store up to 50 packets in its outgoing queue.

We performed two sets of experiments, where the traffic generation agents simu-
late either flash crowds or DoS attacks. In both sets of experiments, high-bandwidth
traffic is bound for S0, while the other normal traffic heads for S1. In the first set of
experiments with the flash crowds traffic, two traffic generation agents attached to
R0 and R1 make requests to S0 and S1; 200 requests representing the background
traffic towards S1 are generated every second, while the number of requests to S0

is varied to account for the aggressiveness of the flash crowds traffic. In the second
set of experiments, the agents generate a massive number of 1KB UDP packets
destined for S0 (as well as normal traffic), mimicking DoS attacks to S0. Specifi-
cally, each agent generates 50 requests/sec to S0 and S1, while varying the rate of
UDP traffic towards S0 as specified in each experiment. TCP and UDP requests’
interarrival times are simply configured to be uniformly-distributed, because the
effects of using other more realistic distribution (e.g., a Poisson-distribution) are
trivial when the agent generates a very high rate of requests as in our experiments.

Each server adopts a traffic shaper that polices the rates of TCP SYN and UDP
traffic as shown in Figure 16. We use the Linux 2.4 kernel’s iptables firewalling
system with our ndlimit extension module to regulate the traffic at servers. While
S1 can accept all the incoming packets with this configuration, S0 may drop some of
them and thus simulate to be overloaded, depending on the request rates specified
in each experiment.

Table II shows the values of several NetDraino design parameters chosen in our
experiments. These values are shown to be appropriate in Section 5

7.2 Basic Overhead

In NetDraino, appending the congested router’s IP address to packets in the network
and forwarding traffic-shaping rules from the congested servers may increase the
network traffic, but the network bandwidth requirement for NetDraino is minimal.
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Table II. NetDraino design parameters chosen in our experiments.
k 1.2
thcongest 25
pa 0.125
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Figure 17. Performance of NetDraino—Flash crowds.

Under the testbed setup in Section 7.1, NetDraino can add at most 0.4% more
network traffic as a result of appending the NetDraino-filled IP option to packets,
which takes into account the possible packet segmentation. In addition, only one or
two NetDraino control messages — which contain the traffic-shaping rules — are
generated in a minute by a congested server.

To evaluate the overhead NetDraino incurs to a router, we collected the CPU time
spent in each kernel function at R2 during the experiments. For this purpose, we
used kernprof [SGI 2003], a set of facilities for profiling the Linux kernel. NetDraino
consumes the router’s CPU time to (1) regulate the traffic according to the installed
shaping rules, and (2) process each incoming packet to randomly append its IP
address. To account for the first case overhead, we varied the number of rules
installed at R2 from 1 to 100 and let R2 check each incoming packet against all
those rules. The second case overhead was measured through the experiments
described in the following subsections. The experimental results obtained in both
cases show that the overhead of NetDraino is negligible: R2 consumes less than 1%
more CPU cycles when it has installed as many as 100 shaping rules than when
it has installed none, and it consumes less than 2% more CPU cycles to randomly
append its IP address to packets than when it does not use NetDraino.

7.3 Performance of NetDraino

NetDraino is designed to reduce network congestion by selective packet drops.
A congested router will reduce its congestion intelligently to maximize network
throughput. To validate the throughput gain by NetDraino, we performed two
sets of experiments as described in Section 7.1, with and without NetDraino. As
was done in Section 5.2, the throughput was measured by increasing TCP or UDP
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Figure 18. Performance of NetDraino—DoS attacks.

request rates towards S0 by each traffic generation agent. In the first set of exper-
iments with TCP only traffic, the total TCP request rate to S0 was varied from
50 to 500 reqs/s in increments of 50 reqs/s. In the second set of experiments with
UDP traffic overloading the links, the total UDP sending rate was varied from
0.4 Mbps to 4 Mbps in increments of 0.4 Mbps. In each experiment, throughput
was measured over ten 120-second intervals and then averaged. Figures 17 and
18 show the measurement results that compare the throughputs with and without
NetDraino in the experiment sets simulating either flash crowds or DoS attacks.
The throughput was represented by the average number of TCP requests accepted
by the servers every second. Figures 17(a) and 18(a) plot the total throughputs of
S0 and S1, while Figures 17(b) and 18(b) summarize the experiments by showing
the fractional throughput gain of NetDraino.

They show the results similar to those obtained from the simulation in Section
5.2, demonstrating NetDraino’s ability of improving the network throughput. In
the first scenario, S0 achieves the same throughput with and without NetDraino,
limited by the accepting rate of S0 (100 reqs/s), while S1 enjoys the most benefit
from NetDraino as expected. When there are 400 reqs/s towards S0, the network
throughput with NetDraino is 30% higher than that without NetDraino. In the
second scenario, both S0 and S1 get the same benefit from NetDraino. NetDraino
throttles UDP traffic at R2, saving the link bandwidth between R2 and R3 for Web
traffic. In the presence of 4 Mbps UDP traffic, the servers with NetDraino could
accept 45% more requests than those without NetDraino. Though we have not per-
formed additional experiments with more aggressive traffic towards S0, we expect
that as the traffic to S0 gets heavier, the network throughput without NetDraino
continues to drop down to a certain point (the acceptance rate of S0 in the first
experiments set, and 0 in the second case), while that with NetDraino remains un-
changed. One interesting result is that the total throughput with NetDraino also
drops when the traffic toward S0 increases. Because NetDraino incurs little over-
head to routers, the responsiveness of NetDraino accounts for such a drop in the
total throughput. With ideal responsiveness, traffic-shaping rules at S0 should be
forwarded to R2 as soon as R2 becomes congested, and should be enforced at R2 as
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long as such congestion remains. But due to the distributed nature of NetDraino,
R2 is left unprotected from congestion for a short time, resulting in a slight service
degradation at servers.

Note that S0 may also save its resource used to handle the incoming packets,
because NetDraino drops packets before they reach the servers. To evaluate the
resource savings at S0, we collected the kernel profiles of S0 during the experiments.
The results show that NetDraino saves S0’s CPU cycles used in the network kernel,
but the savings is less than 1%. This small savings may be due to the fact that we
limit the link bandwidth between R2 and R3 to 2 Mbps, and S0 has only a single
network interface accepting the traffic. If S0 is configured to receive a massive
amount of traffic, NetDraino may save much more CPU cycles of S0.

8. CONCLUSION

We have proposed, implemented and evaluated NetDraino, a new mechanism that
links servers’ traffic-regulation schemes to routers’ queue management mechanisms,
in order to maximize the network throughput. Specifically, NetDraino distributes
servers’ traffic-shaping rules to, and enforces them on, congested routers. It largely
consists of four steps. First, a congested router identifies congested servers, and
conversely, a congested server maintains a list of congested routers. Second, the
congested router broadcasts its IP address using the NetDraino-filled IP option,
while the congested server maintains the statistics showing the traffic rate from
each congested router. Third, the congested server tailors its traffic-shaping rules
to the target router based on the statistics, and directly distributes them to the
router. Finally, each congested router can enforce the rules distributed to itself.

Our simulation and experimentation results have shown that NetDraino signif-
icantly improves the overall network throughput with minimal overhead. This
benefit can be provided to all flows sharing the congested link, without burdening
any specific hosts. More importantly, NetDraino can be easily deployed in, and is
scalable to, a large network, because only those congested servers and routers need
to classify packets, police traffic flows, and communicate with each other.
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