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Demands have been growing in safety-critical application fields for producing networked real-time
embedded computing (NREC) systems together with acceptable assurances of tight service time
bounds (STBs). Here a service time can be defined as the amount of time that the NREC system
could take in accepting a request, executing an appropriate service method, and returning a valid
result. Enabling systematic composition of large-scale NREC systems with STB certifications has
been recognized as a highly desirable goal by the research community for many years. An appealing
approach for pursuing such a goal is to establish a hard-real-time (HRT) component model that
contains its own STB as an integral part. The TMO (Time-Triggered Message-Triggered Object)
programming scheme is one HRT distributed computing (DC) component model established by the
first co-author and his collaborators over the past 15 years. The TMO programming scheme has
been intended to be an advanced high-level RT DC programming scheme that enables development
of NREC systems and validation of tight STBs of such systems with efforts far smaller than those
required when any existing lower-level RT DC programming scheme is used. An additional goal
is to enable maximum exploitation of concurrency without damaging any major structuring and
execution approaches adopted for meeting the first two goals. A number of previously untried
program structuring approaches and execution rules were adopted from the early development
stage of the TMO scheme. This paper presents new concrete justifications for those approaches
and rules, and also discusses new extensions of the TMO scheme intended to enable further
exploitation of concurrency in NREC system design and programming.
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1. INTRODUCTION

In recent years networked real-time embedded computing (NREC) applications started
showing explosive growth in both variety and production volume. The growth is ev-
ident even in safety-critical applications. As a consequence, demands for improving
both productivity of the NREC software engineers and reliability of the produced
NREC application systems have started increasing rapidly.

One fundamental way toward meeting these demands is to increase the level of
abstraction dealt with in programming of NREC systems to one much higher than
that in the currently widely practiced programming that uses functions, threads,
task priorities, and sockets as basic building-blocks. The goal of upgrading the level
of programming primitives and languages is to substantially reduce the amount of
labor required in NREC programming while drastically increasing the readability
and analyzability of the produced programs. To meet the productivity improve-
ment demands properly, a high-level real-time (RT) distributed computing (DC)
programming approach should facilitate systematic composition of NREC applica-
tions from independently validated components. The key step in developing such a
programming approach is to establish a high-level RT DC component model.

Complementary advances must also occur in another area to properly meet the
product reliability demands. That is, reliable NREC systems must be accompanied
by certificates of their reliability. In particular, reliable NREC systems must be
produced with acceptable assurances of tight service time bounds (STBs). Each
STB is a tight upper bound on the amount of time that the NREC system could
take in accepting a request (that has just arrived at the incoming door of the host
node, e.g., incoming message queue), executing an appropriate service method, and
returning a valid result (to the outgoing door of the hosting node, e.g., network
interface unit or outgoing message queue). A service time can also be defined more
broadly as the duration from the instant at which a certain event of interest occurs
to the instant at which a valid response is output. Enabling systematic composition
of large-scale NREC systems with STB certifications has been recognized as a highly
desirable goal by the research community for at least 20 years.

A conceptually natural and appealing approach for pursuing such a goal is to
establish a component model containing its own STB as an integral part. Such
a component model may be called the hard-real-time (HRT) component model.
The component model should have a structure that enables easy stacking or other
more complex forms of interconnecting many different instances of the model. An
STB of an NREC system composed of HRT components can then be established
relatively easily by a control-flow-path analysis and summation of the STBs of
selected components. Starting with such STB as a guide, a tighter STB can be
established via various means, e.g., an hybrid approach that combines analysis and
measurements [Im and Kim 2006].

The composition process is recursive in nature. Level-N HRT components can be
established first and then by interconnecting those, Level-(N-1) HRT subsystems
can be built. By using Level-(N-1) HRT subsystems as components and intercon-
necting them in some ways, Level-(N-2) HRT subsystems can be built. Repeating
this way, the full system, which can be viewed as a Level-0 HRT subsystem, can be
built.
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The first co-author established the initial skeleton of an HRT component model,
called TMO (Time-Triggered Message-Triggered Object) [Kim 1997; 1999; 2000;
Kim et al. 2005], 15 years ago and since then the model and supporting tools have
been enhanced at several steps by him and his collaborators. TMO is a syntac-
tically simple and natural but semantically major extension of the conventional
object structure. The TMO programming and specification scheme is also con-
sidered one of the most advanced attempts for raising the level of abstraction at
which RT DC programmers are allowed to exercise their logic. The TMO scheme is
meant to relieve the NREC application designers and programmers of the burden
of dealing with low-level programming tools and low-level abstractions of comput-
ing and communication environments. TMO programmers are required to specify
both the interactions among DC program components, i.e., TMOs, and the timing
requirements of various actions in natural intuitively appealing forms only.

In devising and enhancing the TMO scheme, the most important goals, after that
of raising the level of abstraction in RT DC programming, have been the following:

(1) To enable relatively easy analysis of timing behavior, in particular, derivation
of tight STBs, of TMOs and total NREC application systems structured as
TMO networks; and

(2) To enable extensive exploitation of concurrency within NREC application sys-
tems.

Various mechanisms and various rules for executing parts of TMOs were incor-
porated into the TMO scheme with the above two goals in mind. The purpose
of this paper is to present the mechanisms newly introduced in recent years for
further satisfying the two goals mentioned above. Strengthened justifications for
those mechanisms and rules which were presented before are also provided in this
paper.

In Section 2, an overview of the basic TMO programming scheme is given and
then the TMO scheme is compared against another well-established HRT component-
based programming scheme. A number of previously untried program structuring
approaches and execution rules which were adopted from the early stage of develop-
ment of the TMO scheme are discussed in Section 3. The main goal in this section
is to present some new concrete justifications for those approaches. In Section 4,
some new extensions of the TMO model which are intended to enable further ex-
ploitation of concurrency in NREC system design and programming are presented.
Section 5 is a follow-on to Section 3 and provides a new concrete substantiation of
one basic concurrency control rule adopted in the TMO model. Section 6 provides
a conclusion.

2. OVERVIEW OF THE BASIC TMO PROGRAMMING SCHEME

The TMO scheme is a general-style RT DC extension of the pervasive object-
oriented and component-based design/programming approach [Kim 1997; 2000;
2002a]. It has been established to facilitate RT DC software engineering in a form
which software engineers experienced in the vast non-RT software field can adapt to
with small effort. Calling the TMO scheme a high-level DC programming scheme
is justified by the following characteristics of the scheme:
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007
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(1) No manipulation of processes and threads. Concurrency is specified in an ab-
stract form at the level of object methods. Since processes and threads are
transparent to TMO programmers, the priorities assigned to them, if any, are
not visible, either.

(2) No manipulation of hardware-dependent features in programming interactions
among objects. TMO programmers are not burdened with any direct use of
low-level network protocols and any direct manipulation of physical channels
and physical node addresses.

(3) Timing requirements need to be specified only in the most natural form of a time-
window for every time-triggered method execution and a completion deadline
for every client-requested method execution. This high-level expression matches
the most closely with the designer’s intuitive understanding of the application’s
timing requirements.

Once the high-level specification of timeliness requirements is registered with the
middleware supporting TMOs, then the middleware does its best to meet the speci-
fication by using the CPU scheduler and other resource schedulers in the underlying
node OS kernel and network infrastructure. Here optimal ways of scheduling both
computing and communication resources have been insufficiently studied and are
open to continuous research [Kim and Liu 2002; Kim 2004; Shin and Lee 2004; Li
2005].

The TMO scheme was meant to be a HRT component model from its birth. The
TMO scheme and the TTP programming scheme (developed by Kopetz and his
collaborators [Kopetz and Grünsteidl 1994; Kopetz et al. 1997; Eberle et al. 2001])
are two of the very few practical RT component-based programming schemes that
have been formulated from the beginning with the objective of enabling design-time
guaranteeing of timely actions. The TMO scheme incorporates several rules for
execution of parts of TMOs and the intention is to make the design and validation
of TMOs together with STBs relatively easy and systematic while not reducing the
programming power in any significant way [Kim 1997; 1999; 2002a].

2.1 TMO Structure and Design Paradigms

As depicted in Figure 1, the basic TMO structure consists of four parts:

(1) ODS-sec (Object-data-store section). This section contains the data-container
variables shared among methods of a TMO. Variables are grouped into ODS
segments (ODSSs) which are the units that can be locked for exclusive use
by a TMO method in execution. Access rights of TMO methods for ODSSs
are explicitly specified and the execution engine (a composition of networked
hardware, node OS, and middleware) analyzes them to exploit maximal con-
currency.

(2) EAC-sec (Environment access capability section). Contained here are “gate
objects” providing efficient call-paths to remote TMO methods, logical mul-
ticast channels called RMMCs (Real-time Multicast and Memory Replication
Channels) [Kim 2000; Kim et al. 2005], and I/O device interfaces.

(3) SpM-sec (Spontaneous method section). It contains time-triggered methods
whose executions are initiated during specified time-windows. Time-triggered
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Figure 1. Basic TMO structure (adapted from [Kim 1997]).

(or spontaneous) methods will be discussed further later.
(4) SvM-sec (Service method section). It contains service methods which can be

called by other TMOs.

The key features of the TMO programming scheme are reviewed here.

Use of a Global Time Base. All time references in a TMO are references
to global time [Kopetz 1997] in that their meaning and correctness are unaffected
by the location of the TMO. If GPS receivers are incorporated into the TMO
execution engine, then a global time base of microsecond-level precision can easily
be established. Within a cluster computer or a LAN-based DC system a master-
slave scheme, which involves time announcements by the master and exploitation
of the knowledge on the message delay between the master and the slave, can be
used to establish a global time base of sub-millisecond level precision [Kim et al.
2002].

RT DC Component. TMO is a DC component and thus TMOs distributed
over multiple nodes may interact via remote method calls. Non-blocking types of
remote method calls are supported to allow concurrent execution of client methods
in one node and server TMO methods in different nodes or the same node.

TMOs can use another interaction mode in which messages can be exchanged
over logical multicast channels of which access gates are explicitly specified as data
members of involved TMOs. The channel facility is called the Real-time Multicast
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007
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and Memory-replication Channel (RMMC) [Kim 2000; Kim et al. 2005], of which
an earlier version was called the HU data field channel [Kim et al. 1995]. The
RMMC scheme facilitates RT publisher-subscriber channels in a versatile form. It
supports not only conventional event messages but also state messages based on
distributed replicated memory semantics [Kopetz 1997].

Natural-form Specification of Timing Requirements and Guarantees.
TMO has been devised to contain only high-level intuitive and yet precise ex-
pressions of timing requirements. Start-time-windows and completion deadlines for
object methods are used but no specification in indirect terms (e.g., priority) are re-
quired. A completion deadline may be specified in the form of a global time instant
(e.g., 10:30am) or a bound on execution time (e.g., 250 milliseconds) spent after
a signal triggering the method execution activation arrives at the host node. The
latter bound is called the guaranteed execution duration bound (GEDB). GEDBs
associated with a TMO are taken as guaranteed STBs by the designers of the clients
of the TMO. Deadlines for result arrivals can also be specified in the client’s calls
for service methods.

Autonomous Active DC Component. The autonomous-action capability of
the TMO stems from one of its unique parts, called the time-triggered (TT) methods
or spontaneous methods (SpMs), which are clearly separated from the conventional
service methods (SvMs). The SpM executions are triggered upon reaching of the
global time at specific values determined at design time whereas the SvM executions
are triggered by service request messages from clients. For example, the triggering
times of an SpM may be specified as:

FOR t = FROM 10:00am TO 10:50am
EVERY 30min
START-DURING (t,t+5min)
FINISH-BY (t+10min)

This specification of the execution-time window of an SpM is called the Autonomous
Activation Condition (AAC) of the SpM and has the same effect as the following
does:

{[START-DURING (10:00am,10:05am) FINISH-BY 10:10am],
[START-DURING (10:30am,10:35am) FINISH-BY 10:40am]}

By using SpMs, global-time-based coordination of distributed computing actions
(TCoDA), a principle pioneered by [Kopetz and Ochsenreiter 1987; Kopetz 1997],
can be easily designed and realized.

Basic Concurrency Constraint (BCC). It is a major execution rule in-
tended to enable reduction of the designer’s efforts in guaranteeing timely service
capabilities of TMOs and it prevents potential conflicts between SpMs and SvMs.
Basically, activation of an SvM triggered by a message from an external client is
allowed only when potentially conflicting SpM executions are not in place. The full
set of data members in a TMO is called an object data store (ODS). An ODS is
declared as a list of ODS segments (ODSSs), each of which is thus a subset of the
data members in the ODS and is accessed by concurrently running object-method
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executions in either the concurrently-reading mode or the exclusive-writing mode.
Thus, an SvM is allowed to execute only if no SpM that accesses the same ODSSs
to be accessed by this SvM has an execution time-window that will overlap with the
execution time-window of this SvM. The BCC does not reduce the programming
power of TMO in any way (Section 3 presents a concrete substantiation for this
claim).

Power of TMO Network Structuring. An underlying design philosophy of
the TMO scheme is that an RT computing application system will always take
the form of a network of TMOs, which may be produced in a top-down multi-step
fashion [Kim 1997]. All conceivable practical RT and non-RT applications can be
built as TMO networks.

2.2 TMO Execution Engine and Programming Tools

TMO programming has been enabled without creation of a new language or com-
piler. Instead, a middleware model called the TMOSM (TMO Support Middleware)
provides execution support mechanisms and can be easily adapted to a variety of
commercial kernel-hardware platforms in wide use in industry [Kim et al. 1999;
Kim 2002a; Jenks et al. 2007]. TMOSM uses well-established services of commer-
cial OS kernels, e.g., process and thread support services, short-term scheduling
services, and low-level communication protocols, in a manner transparent to the
application programmer. Prototype implementations of TMOSM currently exist
for Windows XP, Windows CE, and Linux 2.6 platforms.1 Along with TMOSM,
the TMO Support Library (TMOSL) has been developed [Kim 1999; 2000; Kim
et al. 2005]. It provides a set of friendly application programming interfaces (APIs)
that wrap the execution support services of TMOSM. TMOSL defines a number of
C++ classes and enables convenient high-level programming by approximating a
programming language directly supporting TMO as a basic building block. Other
research teams have also developed TMO execution engines based on different ker-
nel platforms [Kim et al. 2002; Kim et al. 2005].

Since its first introduction, the TMO programming model has been enhanced in
several steps along with TMOSM and TMOSL. The TMO programming scheme
and supporting tools have been used in a broad range of basic research and appli-
cation prototyping projects in a number of research organizations. New-generation
application demos developed in the last few years include cars that can be driven by
drivers located thousands of miles away, a dancing robot squad, wireless-network
based digital music ensemble, high-QoS multimedia streaming synchronization, and
tiled display capable of playing high-definition movies. The programming tools have
also been used in an undergraduate course on RT DC programming at UCI for some
years.

2.3 Comparison of Two Hard Real-time Component-based Programming Schemes:
TTP and TMO

The TTP (Time-Triggered Protocol) programming scheme developed by Kopetz
and his collaborators [Kopetz and Grünsteidl 1994; Kopetz et al. 1997; Eberle

1Available at: http://dream.eng.uci.edu/TMOdownload/
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et al. 2001] is another well-established HRT component-based NREC programming
approach. The main differences between the two programming schemes are two-
fold. First, the TTP programming scheme is meant to be a relatively low-level
programming scheme. In the TTP scheme, a function running on an RT thread
is the basic programming unit and functions running on different nodes interact
via one-way messages. In the case of the TMO scheme, the basic component is
the TMO which is an object structure encompassing RT service methods and TT
methods and TMOs can interact via remote method calls and RMMCs.

Secondly, in the TTP scheme, all task scheduling is done off-line, i.e., static
scheduling is used. Even individual message communications over a shared bus
are scheduled at design time. In the TMO scheme, some high-level scheduling
such as periodic activations of TT methods is done at design time but activations
of service methods, executions of both segments of TT methods and segments of
service methods, and message communications are scheduled at run time.

With the TTP scheme, application designers can produce STBs with higher pre-
cision than when using the TMO scheme. On the other hand, being a higher-level
programming scheme, the TMO scheme can lead to smaller amount of labor re-
quired in producing many complex NREC applications. Which approach requires
greater efforts for design and validation of STBs during the development of various
applications is a topic for future research.

3. CONCURRENCY RULES IN THE TMO MODEL FOR EASING THE
DERIVATION OF HARD BOUNDS FOR SERVICE TIMES

3.1 Types of Concurrency and Unlimited Concurrency in Absence of ODSS Con-
flicts

In an NREC system structured as a TMO network, concurrency may be exhibited
among TMOs. From the vewpoint of a TMO, all methods in other TMOs are
treated as remote methods regardless of whether the latter TMOs are located within
the same DC node or in different DC nodes. SpMs belonging to different TMOs
may be active concurrently. Also, SvMs belonging to different TMOs may be active
concurrently. They could have been called by remote SpMs, or some of them could
have been activated by remote SvMs via non-blocking calls.

Even within a TMO, the following major types of concurrency may be found:

(C1) Concurrency among SpM executions, specified in an implicit but natural man-
ner. For example, one SpM designed to be triggered at 10:00am and another
SpM at 10:01am, each with a GEDB (Guaranteed Execution Duration Bound)
of 5 minutes.

(C2) Concurrency among SvM executions.
(C3) Concurrency between SpM executions and SvM executions.

The TMO scheme adopted the approach of allowing unlimited concurrency as
long as there is no data conflict among the candidates for concurrent executions.
This is the opposite of an approach directly indicating that unit A and unit B
may proceed in parallel. Therefore, each method in a TMO is registered with the
execution engine and the registration packet includes the IDs of the ODSSs to be
accessed by the method being registered. The intended mode of using each ODSS,
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i.e., read-only or read-write, is also registered. The execution engine can then figure
out whether or not to activate a certain method at a given time by checking if any
of the ODSSs needed by the candidate method is currently held by any on-going
method execution.

The TMO scheme allows pipelined execution of SvMs. That is, when a call for
an SvM comes in while the SvM is already in execution due to an earlier call, an
execution of the SvM corresponding to the later call may be initiated and the two
executions of the same SvM may proceed in a pipelined fashion as long as there
is no data conflict. If the SvM uses ODSSs in the read-only mode, then pipelined
execution will be allowed since there cannot be any data conflict. However, if the
SvM uses an ODSS in the read-write mode, then there is no possibility for pipelined
execution.

While facilitating maximal exploitation of concurrency is a good thing, determin-
ing tight STBs of server TMOs involves analyses of the competitions among various
TMOs and parts of TMOs for using execution engine facilities. Multiple TMOs can
be co-resident in a processing node of a distributed and/or parallel processing exe-
cution engine. Even when only one TMO is resident on an execution engine node,
methods of the TMO compete among themselves for obtaining execution engine
node services.

3.2 Basic Concurrency Constraint (BCC)

The design and validation of a GEDB of an SpM become greatly simplified by incor-
porating the BCC execution rule. Although type-C3 concurrency, i.e., concurrency
between SpM executions and SvM executions, is allowed, SpM executions cannot
be directly disturbed by any SvM execution under BCC. If there is an SpM that
accesses the same ODSSs to be accessed by the subject SvM and current activation
of an execution of the SvM will create the possibility of the SvM execution being
overlapped with an execution of the SpM, the activation of the SvM execution will
be delayed. Therefore, in validating a GEDB of an SpM, the efforts can be fo-
cused on possible competitions between the subject SpM and other SpMs as well as
the effects of allocating and multiplexing some execution engine resources among
various method executions which do not have data conflicts.

BCC allows analysis of SpM execution times without being concerned with the
SvM execution times and also allows analysis of SvM execution times based on the
knowledge of SpM execution times. It thus enables step-by-step analysis and con-
tributes to major reduction of the burdens imposed on the designer in determining
GEDBs and STBs.

Although the proposition that BCC does not reduce the programming power of
TMO in any way has been accepted as a valid fact because counter examples have
not been found, a clean substantiation has not been presented until this time. A
concrete argument substantiating the proposition is provided in Section 5.

3.3 Ordered Isolation (OI) Rule

The difficulty of analyzing method-to-method competitions depends much on the
way ODSSs are locked and released. To reduce that difficulty further after incorpo-
rating BCC, the TMO scheme adopted the ordered isolation (OI) rule [Kim 2002b].
The OI rule can be stated by using the term initiation timestamp (I-timestamp)
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defined as follows:

- In the case of an SvM execution, the I-timestamp is defined as the record of
the time instant at which the execution engine initiated the SvM execution after
receiving the client request and ensuring that the SvM execution can be initiated
without violating BCC.

- In the case of an SpM execution, the I-timestamp is defined as the record of the
time instant at which the SpM execution was initiated according to the AAC
specification of the SpM.

The OI rule has the following two parts:

(OI-1) A method execution with an older I-timestamp must not be waiting for the
release of an ODSS held by a method execution with a younger I-timestamp.

(OI-2) A method execution must not be rolled back due to an ODSS conflict.

One can easily see that if these rules are not followed, then the validation of
GEDBs can be drastically more complicated. The price paid for reducing the
complexity of deriving tight execution duration bounds (EDBs) by adopting the OI
rule is the loss of some concurrency.

The OI rule also dictates that each used ODSS is locked and released exactly
once during a method execution.

A conservative procedure for the execution engine to follow for locking ODSSs as
a part of activating an execution of a TMO method while satisfying the OI rule is
presented below. This procedure is conservative in that under it a method execution
is activated only after all the ODSSs to be used by the method are locked for use in
the method execution. A practical advantage of this approach is that the execution
engine does not have to deal with the situation where a method execution starts
and then gets blocked later because an ODSS needed in the next instruction step
is still held by another method execution with an older I-timestamp. Derivation of
a tight EDB is also easier than when a less conservative procedure is used.

Procedure OL: Locking ODSSs under OI

The subject method to be activated is an SvM, called SvM1. ODSS-set(method1)
denotes the set of ODSSs to be used during an execution of method1. ITS(method2)
denotes the I-timestamp of an execution of method2 that is either on-going or to be
activated. GEDB(method3) is the guaranteed execution duration bound of method3.
Finally, SxM denotes a TMO method (i.e., an SpM or SvM) in general, and so does
SzM.

Begin-Procedure

(1) Do the BCC check. That is, see if there is any SpM whose start-time-window
falls partly or wholly within the next GEDB(SvM1) amount of time from now.
If there is such an SpM, keep the SvM1 execution on the list To-Activate until
the SpM execution is finished. Then go back to restart Step 1. If there is no
such SpM, create the I-timestamp ITS(SvM1) and continue.

(2) For each SxM execution that has not been activated, i.e., has not fully locked
ODSS-set(SxM) yet, and has ITS(SxM) older than ITS(SvM1), do the following:

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007



66 K. H. Kim and J. A. Colmenares

(a) Check if ODSS-set(SvM1) overlaps with ODSS-set(SxM).
i. If there is an overlap, the execution engine keeps the SvM1 execution in

the list To-Activate until the SxM execution is activated and finished.
Thereafter, continue.

ii. If there is no overlap, continue.

(3) Try to lock ODSS-set(SvM1) by doing the following steps and when it is suc-
cessful, the SvM1 execution is activated.
(a) Try to put a preliminary lock on each member of ODSS-set(SvM1) by

processing the set in the order of the ODSS IDs.
i. If preliminary locks have been put on all members of ODSS-set(SvM1)

without encountering any problem, convert all preliminary locks into
real locks. The activation of the SvM1 execution is now successful.

ii. Suppose that a problem is encountered, i.e., a certain member of the
set, say ODSS9, is still held by an older on-going method execution, say
SzM, and at least one of the two method executions, SvM1 and SzM,
uses ODSS9 in the read-write mode. In this situation, keep the SvM1
execution on the list To-Activate until the SzM execution is finished.
When the SzM execution is finished and thus ODSS9 is released, check
for a possible BCC conflict with a younger SpM execution. Under
normal circumstances, i.e., if GEDB(SvM1) was specified properly, such
an SpM should not be found at this point since Step 1 was already
executed. In the unusual case where such an SpM is found, report the
anomaly to the fault-management system if there is one, and go back
to restart Step 1. In a normal case, go back to execute the remainder
of Step 3a (i.e., to lock remaining members of ODSS-set(SvM1)).

End-Procedure

If the subject method is an SpM, the procedure becomes somewhat simpler but
it will not be described here due to space limit.

With the conservative Procedure OL in use, each method execution keeps its
ODSS set locked for its entire duration. The benefit is again the relative ease
in deriving a tight EDB of a TMO method. Search for approaches that are less
restrictive than the OI rule and Procedure OL and yet do not make the derivation
of tight EDBs of a TMO much harder is a subject for future research.

3.4 Maximum Invocation Rate (MIR)

The TMO programming scheme requires specification of the maximum invocation
rate (MIR), i.e., the maximum rate at which the server TMO can receive service
requests from client objects, to be associated with each SvM. If service requests from
client objects arrive at a server TMO at a rate exceeding the MIR indicated in the
specification for the server TMO, then the execution engine of the server TMO
may return exception signals to the client objects. This is another rule necessary
to make the derivation of hard STBs feasible. The NREC system designer should
ensure that the aggregate arrival rate of service requests at each server TMO does
not exceed the MIR during any period of system operation.
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4. NEW EXTENSIONS OF THE TMO MODEL FOR FURTHER INCREASE
OF CONCURRENCY

In this section, new extensions of the TMO model that enable deeper exploitation
of concurrency without making derivation of STBs much harder are discussed.

4.1 Early Release of ODSSs

By default, the ODSSs held by a TMO method execution are all released together
when the method execution is finished. A way to increase concurrency further is to
allow a TMO method to release the ODSSs early, i.e., before the method execution
is finished. Therefore, such a mechanism, represented by API ReleaseODSS(), has
been incorporated into the TMO model.

Such early release of an ODSS can result in activating another method execution
requiring the ODSS before the releasing method execution terminates. Therefore,
the Procedure OL discussed in Section 3.3 needs to be extended accordingly if
early release of ODSSs is allowed. Due to space limit, such an extended procedure
will not be discussed here. If an SvM uses an ODSS in the read-write mode, then
pipelined executions of the same SvM are not possible at all, but with early release
of such an ODSS, pipelined execution is enabled to some extent.

It is important to note that once a method execution releases an ODSS, it cannot
lock the ODSS again due to the OI rule and other reasons. A companion of the
ODSS release operation is the operation represented by API RW2RO() that changes
the access mode for the subject ODSS from the read-write mode to the read-only
mode. This means that the read-write lock that the method execution has held
on the ODSS is changed into the read-only lock. This change cannot be reversed
during the remainder of the method execution. In a sense, it is a half-way release.
Again, by changing the lock this way, it may allow other TMO method executions
to start early.

4.2 Underground Non-Blocking Buffer (NBB) with a Pair of Access Gates

In the basic TMO scheme, there is no way for any two concurrent method executions
to exchange any data. This is because an ODSS cannot be shared when at least one
method execution needs to access it in the read-write mode. Even with the ODSS
release mechanism discussed in Section 4.1, data can be passed only once and only
in one direction from the earlier started producer (method execution) to the later
started consumer. There is no way to enable multiple rounds of data passing in
both directions between two concurrent method executions.

In some application cases, it may be desirable to let two long-running SpM ex-
ecutions exchange data streams. For example, an SpM running at the periodic
execution rate of 30 executions per second and producing a video data stream by
operating a camera may want to pass the data stream to another SpM running at
the rate of 25 executions per second and rendering the data stream on an LCD
monitor.

Allowing a TMO method execution to dynamically lock and release an ODSS
more than once conflicts directly with our goal of enabling relatively easy design
and validation of STBs of TMOs. When multiple method executions become inter-
dependent through such mechanisms, the derivation of any reasonably tight STB
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Figure 2. Underground NBBs in a TMO.

of the TMO can often become a hopeless task.
A new mechanism that enables multiple rounds of data passing from one method

execution to the other method execution and yet does not damage the nature of
the TMO scheme which makes STB validation relatively easy is proposed here.
The mechanism is based on the Non-Blocking Buffer (NBB) developed in recent
years by several teams [Varma 2001; Kim 2006; Kim et al. 2007]. An NBB used
between a producer thread and a consumer thread allows the producer to insert
a new data item into its internal circular buffer at any time without experiencing
any blocking. Instead of using either synchronization constructs (e.g., locks and
monitors), which sometimes lead a thread to a blocked state, or special atomic
instructions (e.g., test-and-set and compare-and-swap), NBB relies only on the
atomicity of reads and writes of aligned single-word integer variables. If the internal
circular buffer is saturated, then the producer attempting to insert a new item can
detect it immediately and choose to do other things for a while and then check the
NBB again.

Similarly, the NBB allows the consumer to retrieve a data item from the internal
circular buffer at any time without experiencing any blocking. If the internal cir-
cular buffer is empty, then the consumer attempting to retrieve an item can detect
the emptiness immediately and choose to do other things for a while and then check
the NBB again. Incidentally, most textbooks covering the subject of operating sys-
tems contain discussions on the producer-consumer problem but give the erroneous
impressions that it is inevitable to use lock-based synchronization constructs and
encounter blockings in solving the problem.

The version of NBB that is appropriate for use between two methods in a TMO
is depicted in Figure 2. Two NBBs are there. Each NBB consists of an internal
circular buffer, a producer gate, and a consumer gate. The two gates are ODSSs and
they are registered with the execution engine. In a sense, the internal circular buffer
is treated as an invisible data structure. Therefore, the producer method puts a
read-write lock on the producer gate and the consumer method puts a read-write
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lock on the consumer gate and then the two are treated by the execution engine as
two independent methods not sharing any data structure. Only the TMO designer
knows that the internal circular buffer is a shared data structure but the execution
engine pretends not to know this and allows the producer method execution and the
consumer to proceed concurrently. Therefore, this version of NBB may be called
the underground NBB.

The producer gate, which is an ODSS and thus an object, provides a method for
inserting an item into the circular buffer. When the producer (TMO method) is
registered with the execution engine, the registration packet includes the ODSS ID
of the producer gate. Also, the consumer gate provides a method for retrieving an
item from the circular buffer, and when the consumer (TMO method) is registered
with the execution engine, the registration packet includes the ODSS ID of the
consumer gate. An appropriate set of template classes in C++ for the underground
NBB has been devised, but the classes are not discussed here due to space limit.
When an underground NBB is instantiated, the two gates are created.

In principle, an underground NBB may be used between any pair of TMO meth-
ods, i.e., (SvM1, SvM2), (SvM1, SpM2), and (SpM1, SpM2). However, its use
between two SvMs is likely to be rare and this conjecture needs to be confirmed or
disproved in future experimental research.

5. SUBSTANTIATION FOR THE BCC PROPOSITION

A concrete substantiation for the following proposition can now be provided by use
of the underground NBB mechanism discussed in Section 4.2.

Proposition: BCC does not reduce the programming power of TMO in any way.

Substantiation: The only restriction in concurrency that BCC introduces is the
possible delay in activating an SvM execution incurred due to a potential data
conflict with an SpM execution. This delay could be avoided in the absence of
BCC. If avoiding such delay is important for a certain SvM, then one can easily
produce such a TMO without removing BCC. For example, see Figure 3. Both the
SpM and the SvM there use the ODSS. If it is desirable to let the SvM start as
early as the SpM does and let both the SvM and the SpM proceed concurrently, one
might envision removing BCC with concomitant loss of benefits and then designing
both TMO methods to dynamically and harmoniously share the data produced by
them. Instead, Figure 4 depicts an organization of a TMO which produces such
effects without violating BCC or any other rules associated with the TMO scheme.
The SpM is the only possible user of: i) ODSS1, ii) the producer gate of underground
NBB1, and iii) the consumer gate of underground NBB2; whereas the SvM is the only
possible user of: i) ODSS2, ii) the consumer gate of underground NBB1, and iii) the
producer gate of underground NBB2. Therefore, the execution engine treats the
SpM and the SvM as two independent methods. The SvM can start as early as the
SpM does and the two method executions can proceed concurrently. Whenever the
SpM produces new data, it puts the data into not only ODSS1 owned by itself but
also NBB1 from which the data becomes accessible to the SvM. Similarly, whenever
the SvM produces new data, it puts the data into not only ODSS2 owned by itself
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Figure 3. An SpM and an SvM using an ODSS.

Figure 4. Multiple rounds of cooperation between two on-going method executions in a TMO.

but also NBB2 from which the data becomes accessible to the SpM. Therefore, the
two TMO method executions can fully share and exchange data as they proceed
concurrently without violating BCC or any other execution rules. Consequently,
the proposition is valid.

6. CONCLUSION

The motivations underlying various structuring principles and execution rules in the
TMO programming scheme have been discussed in this paper. The TMO scheme
has been intended to be a frontier high-level RT DC programming scheme. This
has been the premier goal not to be compromised easily. The second important
goal has been to enable design and validation of tight STBs of NREC systems with
efforts far smaller than those required when using any existing lower-level RT DC
programming scheme. Yet, we have not wanted to give up the use of run-time
scheduling approaches for allocating computation and communication resources to
various RT computation segments, mainly because the gap in achievable resource
utilization between pure static scheduling approaches and the approaches involving
run-time scheduling actions has been judged to be too much to ignore up to this
time.

A challenge has been to enable maximum exploitation of concurrency without
damaging any major structuring and execution approaches adopted for meeting
the first two goals. With those goals set, a number of previously untried program
structuring approaches and execution rules were adopted from the early develop-
ment stage of the TMO scheme. These approaches and rules were discussed in
this paper along with some new concrete justifications. Moreover, new arguments
substantiating the fact that the BCC (Basic Concurrency Constraint) rule does
not reduce the programming power of TMO in any way were presented.

This paper also discussed new extensions of the TMO model intended to enable
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further exploitation of concurrency in TMO-structured NREC system design and
programming; they are: (1) the mechanisms for early release of ODSSs, and (2) the
underground NBB (Non-Blocking Buffer), which is a mechanism that enables mul-
tiple rounds of data passing between two TMO method executions. Effective ap-
plications of these mechanisms are meaningful topics for future research. Also, the
design and validation of tight STBs of NREC systems are still a big and immature
technological area inviting massive investment of research efforts.
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Kopetz, H., Hexel, R., Krüger, A., Millinger, D., Nossal, R., Steininger, A., Temple, C.,
Führer, T., Pallierer, R., and Krug, M. 1997. A prototype implementation of a TTP/C
controller. In SAE Congress and Exhibition. Number 970296 in SAE Technical Papers. SAE
International, Warrendale, PA, USA.

Kopetz, H. and Ochsenreiter, W. 1987. Clock synchronization in distributed real-time systems.
IEEE Transactions on Computers 36, 8 (August), 933–940.

Li, Y. 2005. A model for efficient real-time distributed computing middleware incorporating a fine-
grained program-segment-level deadline-based scheduling policy and an efficient checkpoint-
based replication scheme. Ph.D. thesis, Department of Electrical Engineering and Computer
Science. University of California, Irvine.

Shin, I. and Lee, I. 2004. Compositional real-time scheduling framework. In Proceedings of the
25th IEEE Int’l Real-Time Systems Symposium (RTSS 2004). IEEE Computer Society, Los
Alamitos, CA, USA, 57–67.

Varma, P. 2001. Two lock-free, constant-space, multiple-(impure)-reader, single-writer structures.
US Patent No. 6304924 B1.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007






