
Hiding Sensitive Frequent Itemsets by a
Border-Based Approach

Xingzhi Sun
IBM China Research Lab, Beijing, China

sunxingz@cn.ibm.com

Philip S. Yu
IBM Watson Research Center, Hawthorne, NY, USA

psyu@us.ibm.com

Nowadays, sharing data among organizations is often required during the business collaboration.
Data mining technology has enabled efficient extraction of knowledge from large databases. This,
however, increases risks of disclosing the sensitive knowledge when the database is released to
other parties. To address this privacy issue, one may sanitize the original database so that the
sensitive knowledge is hidden. The challenge is to minimize the side effect on the quality of the
sanitized database so that non-sensitive knowledge can still be mined.

In this paper, we study such a problem in the context of hiding sensitive frequent itemsets by
judiciously modifying the transactions in the database. Unlike previous work, we consider the
quality of the sanitized database especially on preserving the non-sensitive frequent itemsets. To
preserve the non-sensitive frequent itemsets, we propose a border-based approach to efficiently
evaluate the impact of any modification to the database during the hiding process. The quality of
database can be well maintained by greedily selecting the modifications with minimal side effect.
Experiments results are also reported to show the effectiveness of the proposed approach.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Application -
Data Mining

General Terms: Privacy preserving data mining, frequent itemset

Additional Key Words and Phrases: Border

1. INTRODUCTION

Information sharing may require an organization to release its data to public or to
allow another party to access it. However, some sensitive information, which is se-
cret to the organization, needs to be hidden before the data is released. Data mining
technology enables people to efficiently extract unknown knowledge from a large
amount of data. This, however, extends the sensitive information from sensitive

Copyright c©2007 by The Korean Institute of Information Scientists and Engineers (KIISE). Per-
mission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than KIISE must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permission to republish from: Publicity Office,
KIISE. FAX +82-2-521-1352 or email office@kiise.org.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007, Pages 74–94.

Hiding Sensitive Frequent Itemsets by a Border-Based Approach 75

raw data (e.g., individual identifier, income, and type of disease identifier) to the
sensitive knowledge (e.g., sales pattern of particular product). The reason of this
extension is because the data to be released may carry some sensitive knowledge,
which can be discovered by certain data mining algorithms.

In [Clifton and Marks 1996], a scenario that releasing data with sensitive knowl-
edge can be a threat to the business of a company or organization is analyzed as
follows. Consider a supermarket company S. During the negotiation with a paper
company C1, S reaches an agreement for a reduced price on C1’s products and
as a repayment, allows C1 to access its database to find sales pattern of its mer-
chandise. After mining S’s database, C1 finds that people who buy product P1

often purchase a paper product of another company C2. C1 now runs a coupon
promotion “50 cents off product P1 when people buy the paper product of company
C1”. This heavily cuts into the sales of the paper product of company C2, which
then increases the prices to S because of the low sales figure of its product. During
company S’s next negotiation with C1, C1 is reluctant to offer S the discounted
price because of the reduced competition. Then, company S starts to lose business
to its competitors (who were able to negotiate a better deal with C2).

In this paper, we give another motivating example of hiding sensitive knowledge
during information sharing. In Australia, the supermarket COLES and K-MART
share the same customer bonus card, by which the customer id can be identified
during the transactions. To facilitate business cooperation (note that the products
sold in these two supermarkets are not much overlapped), two supermarkets may
integrate their transaction datasets and analyze the “inter-associations” between
their products. However, before releasing the dataset to the other party, each
supermarket wants to hide sensitive frequent itemsets/association rules of its own
products.

Generally, there is a need to prevent confidential or sensitive knowledge (con-
tained in a database) to be discovered by another party even though the informa-
tion sharing is necessary. In [Verykios et al. 2004], the problem of hiding sensitive
knowledge has been considered as an important issue of privacy preserving data
mining. To preserve data privacy in terms of knowledge, one can modify the orig-
inal database in some way so that the sensitive knowledge is excluded from the
mining result.

One of the most important data mining techniques is to find the frequent itemsets
from a transaction database. The task is: given a transaction database D and a
threshold σ, to find all itemsets that are contained by at least σ transactions in D.
In this paper, we study the problem of hiding frequent itemsets from a transaction
database. Considering the given scenario, if the company S can make some changes
on the supermarket database to hide the frequent itemset containing product P1

and the paper product of company C2, the sensitive association between them can
be protected from company C1.

To hide the sensitive frequent itemsets, the original database D needs to be
modified into D′, called result database. This modification can be regarded as
a process of deliberately injecting noises into D, which unavoidably impairs the
quality of D′. Considering the goal of information sharing, releasing a garbage
database is meaningless. Therefore, during the process of hiding sensitive frequent

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

76 X. Sun and P. S. Yu

itemsets, the quality of the database needs to be preserved so that the impact on
the non-sensitive frequent itemsets is minimized.

The quality of result database D′ can be evaluated from two different angles.
The raw quality of D′ can be measured by how many items has been changed
during the transformation from D to D′. The aggregated quality can be evaluated
by how well the non-sensitive frequent itemsets in D are preserved in D′. In this
paper, with the focus on the second angle, we study the following research problem:
to hide sensitive frequent itemsets from a database and meanwhile, maintain the
aggregated quality of the result database.

Previous work [Atallah et al. 1999; Saygin et al. 2001; Dasseni et al. 2001; Saygin
et al. 2002; Oliveira and Zaiane 2002; 2003a; 2003b; Oliveira et al. 2004] on hiding
knowledge has limited concern on minimizing the side effect on the aggregated
quality of the result database. Basically, in their work, some simple heuristics are
applied to preserve the quality of the database. In this paper, we use the border
[Mannila and Toivonen 1997] of the non-sensitive frequent itemsets to track the
impact of altering transactions. As all itemsets form a lattice, the elements on the
border are the boundary to the infrequent itemsets. During the hiding process,
instead of considering every non-sensitive frequent itemset, we focus on preserving
the quality of the border, which can well reflect the aggregated quality of the
result database. According to this idea, a border-based approach is proposed to
efficiently evaluate the impact of any modification to the database during the hiding
process. The quality of database can be well maintained by greedily selecting the
modifications with minimal side effect.

The contribution of this paper is as follows. First, we introduce the border
concept to the problem of preserving non-sensitive frequent itemsets. Furthermore,
during the hiding process, while previous work only follows some heuristics (rather
than really evaluating the impact of each change), our approach ensures that any
modification on the database is controlled according to the impact on the result
database. An efficient algorithm is devised to identify the candidate change that
has minimal impact on the border. Specifically, for each sensitive frequent itemset
X, the algorithm determines the optimal deletion candidate (T, x), i.e., the item
x and the transaction T from which item x is deleted. For each item x ∈ X, we
provide an efficient way to estimate the upper and lower bounds on the impact
(to the border) of deleting x. With these bounds, the item which may potentially
minimize the border impact can be straightforwardly selected. We then determine
from which transactions to delete that item.

The rest of this paper is organized as follows. In Section 2, we give the background
of hiding sensitive frequent itemsets and formulate our research problem. A border-
based approach is proposed in Section 3. Section 4 gives algorithms to hide sensitive
itemsets. The experiment results are shown in Section 5. Section 6 reviews the
related work. Finally, we conclude this paper in Section 7.

2. HIDING SENSITIVE FREQUENT ITEMSETS

In this section, we further discuss the problem of hiding sensitive frequent itemsets
and then give its formal definition.

Our work is based on the concept of frequent itemset, which is defined as follows.
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

Hiding Sensitive Frequent Itemsets by a Border-Based Approach 77

Let I = {i1, . . . , im} be a set of items. An itemset is a subset of I. A transaction
T is a pair (tid, X), where tid is a unique identifier of a transaction and X is
an itemset. A transaction (tid, X) is said to contain an itemset Y iff X ⊇ Y. A
database D is a set of transactions. Given a database D, the support of an itemset
X, denoted as Supp(X), is the number of transactions in D that contain X. For a
given threshold σ, X is said to be σ-frequent if Supp (X) ≥ σ.

Tid Items

1 abcde

2 acd

3 abdfg

4 bcde

5 abd

6 bcdfh

7 abcg

8 acde

9 acdh

(a) Database

Frequent itemset : Support

abd : 3, acd : 4, bcd : 3, cde : 3

ab : 4, ac : 5, ad : 6, bc : 4, bd : 5, cd : 6, ce : 3, de : 3

a : 7, b : 6, c : 7, d : 8, e : 3

(b) All frequent itemsets

Expected Frequent itemsets on D′

acd, cde

ab, ac, ad, bd, cd, ce, de

a, b, c, d, e

(c) Non-sensitive frequent
itemsets

Figure 1. An example.

To give more intuitive explanation of our hiding problem, we give the follow-
ing example. A transaction database D is given in Figure 1(a). Let the support
threshold σ be 3. Figure 1(b) shows all σ-frequent itemsets1 (with their support)
in D. Among those frequent itemsets, abd, bcd, and bc are sensitive itemsets, which
cannot be seen by another party. The question is how to transform D into the
result database D′ in a sensible way such that 1) the sensitive frequent itemsets
become infrequent in D′ and 2) the aggregated quality of D′ is maintained.

2.1 The Way to Change

We first look at how to hide a sensitive frequent itemset X. According to the
above definitions, X is hidden if Supp(X) drops below the threshold σ. For any
transaction that contains X, once an item x ∈ X is changed, the record does not
contain X anymore and Supp(X) decreases by 1.

Considering a single change of an item, we may have three different approaches:
deletion, perturbation (i.e., changing to another item) and blocking (i.e., chang-
ing to unknown). Perturbation could introduce new frequent itemsets into result
database D′, which damages its aggregated data quality. So, in our problem, either
deletion or blocking can be a candidate approach. For simplicity, we select deletion
during the discussions of the rest of the paper. To avoid unnecessary changes and
maintain the quality of the result database, for a sensitive frequent itemset X, we
delete an item from a transaction in the database D only if it contributes to the
decrease of Supp(X). Also, we stop further deletion once X becomes infrequent,
i.e., Supp(X) = σ − 1.

1The itemset is denoted as a list of items alphabetically and the set brackets are omitted

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

78 X. Sun and P. S. Yu

2.2 Aggregated Quality of the Result Database

Since the challenge of hiding frequent items lies in minimizing the side effect on the
result database D′, we now analyze how to evaluate the aggregated data quality of
D′.

Given the set L of σ-frequent itemsets in D and the set 4L of sensitive frequent
itemsets, we can determine the set Lr of non-sensitive frequent itemsets. Note that
in general, Lr is not equal to L−4L. According to the Apriori property [Agrawal
and Srikant 1994], if we hide a sensitive frequent itemset X, any super-itemset of
X should be hidden from L as well. So, Lr can be computed by removing each
sensitive frequent itemset and its supper-itemset from L. In our running example,
4L = {abd, bcd, bc}, So, Lr should be the set of itemsets shown in Figure 1(c).

Considering the problem of preserving non-sensitive frequent itemsets, Lr can be
regarded as the expected set of frequent itemsets in D′. Let L′ be the actual set of
frequent itemset of D′ (under the same threshold). The aggregated quality of D′

can be evaluated by comparing the similarity between L′ and Lr, which is discussed
from the following two aspects.

—Itemsets in L′ and Lr. Intuitively, to evaluate two sets of itemsets Lr and L′,
|Lr − L′| and |L′ − Lr| can be used as indicators of their similarity. To our
problem, because deleting an item from a transaction can only reduce the support
of itemsets, no new frequent itemset can be introduced after the hiding (i.e.,
|L′ − Lr| = 0). Naturally, we use |Lr − L′| as an indicator of the quality of D′.
If |Lr − L′| = 0, we have the optimal hiding result in terms of the remaining
frequent itemsets with Lr = L′.

—The support of itemsets in L′ and Lr. In the result of frequent itemsets mining,
each itemset is affiliated with a support, indicating its frequency. Hiding4L may
decrease the support of different itemsets in Lr to different levels. In this case,
the maintenance of relative frequency of itemsets in Lr could reflect the quality
of D′. Let us consider the following example. Suppose that we want to hide
a set 4L of sensitive itemsets in a given database D under the threshold 200.
Let abc and bcd be two non-sensitive frequent itemsets with Supp(abc) = 500
and Supp(bcd) = 400 in D. Assume that there are two result databases D′

and D′′ corresponding to different hiding processes. In D′, Supp′(abc) = 330
and Supp′(bcd) = 390, while in D′′, Supp′′(abc) = 400 and Supp′′(bcd) = 320.
Apparently, the quality of result database D′′ is better than D′ as the relative
frequency of itemsets is maintained much better.

One reason that we should not underestimate the importance of the second aspect
is that the frequent itemset mining is sensitive to threshold. Completely ignoring
the relative frequency of itemsets in Lr may cause some misleading mining result
of D′ under anther threshold. Therefore, to maintain the quality of D′ during
the hiding process, we have the following two considerations: 1) trying to keep
itemsets in Lr frequent and 2) maintaining relative frequency among Lr during the
sanitization process.
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

Hiding Sensitive Frequent Itemsets by a Border-Based Approach 79

2.3 Formal Problem Definition

After giving the standards to evaluate the aggregated quality of the result database,
the problem studied in this paper can be formulated as follows: Given a threshold
σ and a database D, let L be the complete set of σ-frequent itemsets in D. In
addition, let 4L ⊂ L be the set of frequent itemsets that need to be hidden. Note
that L and 4L determine the set Lr of non-sensitive frequent itemsets based on
the Apriori property. The problem is to transform D into D′ by deleting some
items from the transactions such that for the set L′ of σ-frequent itemset in D′, the
following conditions are satisfied: 1) L′ ∩4L = φ, 2) |Lr − L′| is minimized, and
3) the relative frequency of remaining frequent itemsets is maintained.

3. A BORDER-BASED APPROACH

In this section, we propose a novel border-based approach to address the hiding
problem. We first give the basic idea and the rationale of our approach in Section
3.1, followed by technical details in Sections 3.2 and 3.3.

3.1 Basic Idea

The way we are performing transformation guaranties that condition 1) must be
satisfied. The challenge is how to deal with conditions 2) and 3). In work [Atallah
et al. 1999], the authors have proven that optimal hiding (i.e., hiding 4L but
minimizing |Lr − L′|) is NP-hard. Due to complexity of the problem, previous
work provides only some heuristics to avoid degrading the quality of the database.
However, without actually tracking the impact to the result database during the
hiding process, the relative frequency among itemsets in Lr are not maintained and
considerable amount of itemsets in Lr are over-hidden. To rectify this shortcoming,
we use the strategy of explicitly monitoring the frequent itemsets in Lr and their
support throughout the entire hiding process.

The number of frequent itemsets in Lr is often very large. It is difficult and
inefficient to evaluate the impact of deleting an item from a transaction on all
frequent itemsets in Lr. Because of the Apriori property, we can focus on the
border of Lr, which is the set of maximal frequent itemsets in Lr.

Figure 2. Lattice and border 1.

Formally, given a set of itemsets U the upper border (respectively, lower
border) of U, denoted as Bd+ (U) (respectively, Bd− (U)), is a subset of U
such that 1) Bd+ (U) (respectively, Bd− (U)) is an antichain collection of sets2

2A collection S of sets is an antichain if for any X, Y ∈ S, both X Y and Y X hold.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

80 X. Sun and P. S. Yu

Figure 3. Lattice and border 2.

and 2) ∀X ∈ U, there exists at least one itemset Y ∈ Bd+ (U) (respectively,
Y ∈ Bd− (U)) holding X ⊆ Y (respectively, X ⊇ Y). An itemset in the up-
per border or lower border is called a border element. In the running example,
we have Bd+ (L) = {abd, acd, bcd, cde} and Bd− (4L) = {abd, bc} . The itemset bc
is a border element of Bd− (4L) . Note that due to the Apriori property, we only
need to hide the lower border Bd− (4L) rather than every itemset in 4L. Figure
2 gives a graphic representation of the upper border of L in the itemset lattice.

Using the border notion, the number of itemsets needed to be considered is
reduced dramatically. So, in stead of evaluating every itemset in Lr during the
hiding process, we can focus on Bd+ (Lr). Figure 3 shows Bd+ (Lr) in the itemset
lattice of our example (note that the sensitive frequent itemsets are circled). Clearly,
Bd+ (Lr) can be determined by L and Bd− (4L) . A straightforward approach for
computing Bd+ (Lr) is as follows. First, for each X ∈ Bd− (4L) , we remove X
and all its supper-itemset from L. We then find the upper border of the remaining
itemsets. Now let us examine why the border of Lr is helpful to maintain the
aggregated quality of the result database, i.e., taking care of the conditions 2) and
3).

—Condition 2) is to reduce the over-hiding of any non-sensitive frequent itemsets.
According to the Apriority property, if all itemsets on the border of Lr remain fre-
quent, every itemset in Lr is frequent. So, concentrating on the border Bd+ (Lr)
during the hiding process is effective in avoiding the over-hiding problem. Note
that border representation of Lr is not completely lossless in terms of condition
2). This is because when an itemset on the border becomes infrequent, according
to requirement 2), we should consider the new border instead of sticking with
Bd+ (Lr). However, we could regard Bd+ (Lr) as a close approximation in most
cases.

—To satisfy condition 3), keeping the relative frequency among border elements
should be helpful. First the support of border elements is relatively low and
the relative frequency among them is sensitive to the sanitization. Intuitively,
focusing on the most sensitive part of the frequent itemsets can effectively avoid
the significant change on the relative frequency. In addition, because of the
Apriori property, the support of the border could also reflect the support of the
other frequent itemsets to some degree.

From the above discussion, we can see that introducing border representation is
a sensible and effective approximation for our hiding problem.

The basic idea of our border-based approach is as follows. Each border element
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

Hiding Sensitive Frequent Itemsets by a Border-Based Approach 81

B in Bd+ (Lr) is assigned a weight, showing its vulnerability of being affected
by item deletion. The weight of B is dynamically computed based on its current
support during the hiding process. Let us first consider a single sensitive itemset
X. When we try to reduce Supp(X), for each possible item (from a transaction)
to be deleted, we can evaluate its impact on the border based on the weights of
the border elements that will be affected. Each time the candidate item with a
minimal impact on the border Bd+ (Lr) is deleted until Supp(X) drops to σ − 1.
Next we consider a set of sensitive itemsets. Note that the border of non-sensitive
frequent itemsets Bd+ (Lr) is determined by the sensitive frequent itemsets and our
hiding approach is based on the impact on the entire border. So, hiding any single
sensitive itemset will not destroy the border unconsciously. In this case, we can
order the sensitive frequent itemsets in an appropriate way and hide one of them
at a time.

The challenge to our approach is twofold. The first one is on how to quantify the
impact of an item deletion in term of the aggregated data quality of D′. The second
issue is on how can we find the item with minimal impact on Bd+ (Lr) efficiently.
We will discuss the first challenge in the rest of this section and address the second
issue in Section 4.

3.2 Hiding One Itemset with Minimal Impact on Border

For brevity, we use border Bd+ and Bd− to denote Bd+ (Lr) and Bd−(4L) in the
rest of this paper. In this section, we analyze the problem of hiding a given itemset
with a minimal effect on Bd+. It is clear that to hide an itemset X below the
threshold σ, we need to delete Supp(X)− σ + 1 items from different transactions.
Because there are too many choices to make deletions, it is hard to select Supp(X)−
σ + 1 items such that the total impact of them on Bd+ is minimal. Accordingly,
we adopt a greedy technique, deleting one item (from a transaction) with minimal
impact on Bd+ at a time.

In the following parts, we discuss the search space of hiding an itemset in Section
3.2.1. In Section 3.2.2, we discuss how to quantify the impact of deleting an item.

3.2.1 Search Space of Hiding an Itemset. Given a frequent itemset X, let Λ (X)
be the set of transactions that contain X. For each transaction T ∈ Λ (X),
if any item x ∈ X is changed, T will no longer contain X and Supp (X) will
decrease by 1. The set C of hiding candidates of itemset X is defined as
{(T, x)|T ∈ Λ (X) ∧ x ∈ X}. Clearly, the total number of hiding candidates of X
is |Λ (X)| ∗ |X| . To hide the itemset X below the threshold σ, we need to change
Supp (X) − σ + 1 of hiding candidates of X such that any two of them are not
within the same transaction. To maintain the border Bd+, the greedy approach
reduces the support of X by 1 at each step, i.e., delete one hiding candidate at a
time. Note that once a hiding candidate (T0, x0) is deleted, i.e., x0 is deleted from
transaction T0, the new set of C ′ hiding candidate is C − {(T, x) |T = T0}.

3.2.2 Quantify the Impact of Hiding Candidates on the Border. Note that delet-
ing a hiding candidate may affect from zero to multiple border elements. Our goal
is to select the appropriate hiding candidate at each step such that deleting this
hiding candidate causes minimal impact on the border. Intuitively, each border
element should have a weight reflecting the vulnerability of further change. The

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

82 X. Sun and P. S. Yu

impact of deleting an item could be evaluated by the sum of weights of the affected
border elements.

We examine the weight of a border element first. Remember that we have two
considerations for the border, i.e., 1) to keep the existing border and 2) to maintain
the relative frequency for border elements. To take care of these two considerations,
we give the following definition for the weight of a border element. The larger
the weight of a border element B is, the more vulnerable B is to further change,
therefore, the lower priority of having B affected.

Definition 3.1. Given a database D and a border element B ∈ Bd+, let Supp (B)
be the support of B in D. In addition, let D̃ be the database during the process of
transformation and ˜Supp (B) be the support of B in D̃ (note that at the beginning

of transformation, D̃ = D and ˜Supp (B) = Supp (B)). The weight of border
element B is defined as:

w(B) =

Supp(B)− ˜Supp(B)+1
Supp(B)−σ , ˜Supp (B) ≥ σ + 1

h + σ − ˜Supp (B), 0 ≤ ˜Supp (B) ≤ σ

From the definition, we can see the following points: 1) For a border element B,

when the current support of B, ˜Supp (B), is greater than the threshold σ, w(B) is

no more than 1. When ˜Supp (B) equals to σ, w(B) is assigned a large integer h,
where ∞ > h > |Bd+| . The intuition behind this is: if the border element B is
about to be infrequent, a large value is assigned to w(B), indicating low priority

of being affected. If B is already over-hidden (˜Supp (B) < σ), B should also be
avoided for further change. In that case, w(B) is decided by h and the amount of
˜Supp (B) less than σ. 2) If ˜Supp (B) > σ +1, with the decrease of ˜Supp (B) , w(B)

increases under the rate of 1
Supp(B)−σ . This reflects the consideration of checking the

risk of destroying the border element and maintaining the relative frequency among
itemsets on the border. For example, consider the case for two border elements B1

and B2, where Supp (B1) = 30, Supp (B2) = 15 and σ = 10. When we need to hide
a sensitive itemset by affecting the support of B1 and B2, we can see that B1 has
higher priority of being affected until its support is down to 26. Then B2 starts to
decrease its support by 1, followed by another 4 changes on Supp (B1) if necessary.

3) After ˜Supp (B) drops below the threshold, the weight is increased at rate 1 with

the decrease of ˜Supp (B) (note that this rate is no less than the rate of 1
Supp(B)−σ).

Considering two border elements with their current support below the threshold,
they will have the same increase rate on their weights (i.e., their support difference
in original database D is ignored). The reason is that we want to keep the support
of every disappeared border element close to the threshold.

In our running example, the weight of each border element in database D is
shown in Figure 5 (with value on the left most column).

After defining the weight of the border element, we next discuss the impact on
the border caused by deleting a hiding candidate. Hiding a frequent itemset may
not potentially affect all border elements. For example, hiding ab may decrease the
support of border element acd, say by deleting (T1, a). However, it will not decrease
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

Hiding Sensitive Frequent Itemsets by a Border-Based Approach 83

the support of border element cde for certain. Apparently, only the border element
that has intersection with the sensitive frequent itemset may be affected during the
hiding process. Given a sensitive frequent itemset X and a border Bd+, we define
the potentially affected border of X, denoted as Bd+|X , as the set of border
elements of Bd+, which may potentially be affected by hiding X. Formally, we
have Bd+|X = {Bi|Bi ∈ Bd+ ∧Bi ∩X 6= φ}. Clearly, for evaluating the impact of
hiding X on Bd+, only Bd+|X needs to be considered.

For a hiding candidate u of sensitive frequent itemset X, we can determine the set
Su of border elements that will be affected by deleting u (note that Su is a subset of
Bd+|X). The impact of deleting u on the border should be the sum of the weights of
border elements in Su. Formally, let Bd+|X be {B1, . . . , Bn} and a lexicographical
order can be imposed among B1, . . . , and Bn. Given a hiding candidate u of sensitive
frequent itemset X, we have a relevance bit vector b1b2 · · · bn such that bi = 1
if u is a hiding candidate of Bi (i.e., deleting u will decrease Supp(Bi)), otherwise
bi = 0. The relevance bit vector of u shows which border element Bi will be
affected if deleting u. In our running example, for sensitive itemset abd, Bd+|abd =
{ab, bd, acd, cde} . The relevance bit vector of hiding candidate (T1, a) and (T3, b)
are 1010 and 1100 respectively.

Definition 3.2. Given a hiding candidate u of a sensitive itemset X, w (Bi) for
each Bi ∈ Bd+|X , and the relevance bit vector b1b2 · · · bn of u, the impact of u on
Bd+, denoted as I (u) , is defined as: I (u) =

∑
bi ∗ w (Bi).

The value of I (u) is the sum of the weights of border elements that will be
affected by deleting u. In our running example, if we first delete (T1, a) to reduce
Supp(abd), the impact I ((T1, a)) is computed as w (ab)+ w (acd) = 1 + 1 = 2.

According to definition 3.2, at each step, we can compute the impact for each
hiding candidate and select the one with minimal impact to delete. Note that after
the deletion of one hiding candidate, the set of hiding candidates of X shrinks and
the weights of affected border elements increase.

3.3 The Order of Hiding Itemsets in Bd−

In this part, we discuss the appropriate order of hiding frequent itemsets in Bd−.
The reason why we should consider the order of itemsets in Bd− is as follows.
If there exists two itemsets X, Y ∈ Bd−, where Bd+|X ∩ Bd+|Y 6= φ. Hiding X
may change the weight of border element B ∈ Bd+|X ∩Bd+|Y , therefore, affect the
process of hiding Y . In general, different orders may lead to different results. Let us
consider the following example. Suppose that abcd and de are two sensitive itemsets
and bcd ∈ Bd+. bcd is directly related to hiding abcd and indirectly related to de
(because abcd is a super-itemset of bcd but de is not). If Supp(abcd) and Supp(bcd)
are close, hiding abcd may have the risk of over-hiding bcd. Note that, hiding de
may also affect the support of bcd. However, this may be regarded as a side effect
on maintaining bcd because they are less correlated. To keep the border element
bcd frequent, we want to maintain that every decrease of its support contributes to
the hiding of abcd. In this case, we need to consider abcd first to avoid any side
effect on the vulnerable border element bcd. In general, the longer border element is
vulnerable to be over-hidden. In this case, for any two sensitive frequent itemsets,
we consider the longer sensitive itemset first. For two sensitive itemsets with the

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

84 X. Sun and P. S. Yu

same length, we hide the one with less support first for the same reason.

4. ALGORITHM

In this section, we give the border-based algorithms to efficiently hide sensitive
frequent itemsets. The main algorithm shows the structure of our approach. The
candidate selection algorithm performs a key task of efficiently identifying and
deleting the candidate with minimal impact on Bd+. For each sensitive frequent
itemset X, the candidate selection algorithm determines the optimal hiding candi-
date ((T, x)). We provide an efficient way to estimate the upper and lower bounds
on the border impact of deleting each item x, x ∈ X. With these bounds, the item
which may potentially minimize the border impact can be easily selected. We then
determine from which transactions to delete that item. Finally, we demonstrate
how the algorithms work on our running example.

4.1 Main Algorithm

Main Algorithm
Input: A database D, the set L of σ-frequent itemset in
D and the set of sensitive itemsets 4L
Output: D′ so that aggregated data quality is maintained
Method:
Compute Bd− and Bd+;
Sort itemsets in Bd− in descending order of length and
ascending order of support;
for each X ∈ Bd− do

Compute Bd+|X and w (Bj) where Bj ∈ Bd+|X ;
Initialize C (C is the set of hiding candidates of X);
for(i = 0; i < Supp(X)− σ + 1; i + +) do
/* Candidate selection algorithm*/

Find ui = (Ti, xi) such that I (ui) = Min {I (u) |u ∈ C} ;
Update C = C − {(T, x) |T = Ti};
Update w (Bj) where Bj ∈ Bd+|X ;

Update database D;
Output D′ = D;

Figure 4. Main algorithm.

Figure 4 shows the main algorithm of hiding sensitive frequent itemsets, which is
a summary of the approach we described before. The key step is to efficiently find
a hiding candidate with minimal impact on the border, as will be shown in the next
section. After selecting a candidate, we need to update the hiding candidate set
and the weights of the border elements, respectively. Note that for each sensitive
frequent itemset, we update the database once after selecting all hiding candidates
(to be deleted).

4.2 Candidate Selection Algorithm

The candidate selection algorithm gives the core of the border-based approach,
which is to efficiently find the hiding candidate with minimal impact on the border.
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

Hiding Sensitive Frequent Itemsets by a Border-Based Approach 85

Remember that at each step,
{

(T, x)|T ∈ Λ̃ (X) ∧ x ∈ X
}

is the search space of

hiding candidates, where Λ̃ (X) is the set of transactions in the current database D̃
that contains X. For a large database and a long sensitive itemset X, it is costly
to evaluate the impact of every hiding candidate in C̃. In this section, we propose
some heuristics to speed up this search.

4.2.1 The Approach for Speeding up the Search. To efficiently select one hiding
candidate with minimal impact on the border, our strategy is to quickly select the
item x first and then decide a transaction T ∈ Λ̃ (X).

To find an item x that may bring the minimal impact, we first estimate the
possible impact of deleting a hiding candidate with item x. Based on the estimation,
we select an item with possible minimal impact on the border.

Let us look at the running example. For the sensitive frequent itemset abd, its
potentially affected border is {ab, bd, acd, cde} .

To hide abd, deleting a hiding candidate with item d will definitely affect the
border element bd, but may possibly affect border elements acd and cde (depending
on the transaction). For instance, if d is deleted from T1, both acd and cde will
be affected, but if d is deleted from T3, neither acd nor cde will be affected. In
general, for a sensitive frequent itemset X, when deleting the hiding candidate with
x ∈ X, we can find some border elements that must be affected and some border
elements that could be affected. According to this observation, for any item x ∈ X,
we can use an interval to estimate the possible impact (to the border) of deleting
the hiding candidate with x.

Formally, given a sensitive itemset X, the affected border Bd+|X can be parti-
tioned into direct border and indirect border, denoted as Bd+|1X and Bd+|2X
respectively, such that ∀Y ∈ Bd+|1X , Y ⊂ X. For example, given a sensitive itemset
abd, {ab, bd} is its direct border and {acd, cde} is its indirect border. Let u = (T, x)
be a hiding candidate of a sensitive itemset X. For any direct border element
Y ∈ Bd+|1X and x ∈ Y , deleting u must decrease the support of border element Y .
For an indirect border element Z ∈ Bd+|2X and x ∈ Z, the support of Z decreases
iff T ⊇ X ∪ Z. From the above example, for u1 = (T3, a), deleting u1 will affect all
direct border elements {ab, bd}, but none of the indirect border elements. On the
other hand, for u2 = (T1, a), deleting u2 will affect all direct and indirect border
elements.

Given a sensitive frequent itemset X and an item x ∈ X, we can use an interval
i (x) = [Il, Ir] , called impact interval, to represent possible range of the impact
of changing a hiding candidate with item x. i (x) can be interpreted as: changing
a hiding candidate with item x will cause at least Il impact on the border for sure
and with the risk of Ir impact in the worst case.

At the first iteration, for any x ∈ X, i (x) .Il =
∑

w (Yi) where Yi ∈ Bd+|1X∧
x ∈ Yi and i (x) .Ir =

∑
w (Zi) where Zi ∈ Bd+ ∧x ∈ Zi. The left bound Il is the

sum of the weights of all relevant direct border. The right bound Ir is the sum
of the weights of all relevant border element of Bd+.

Having known the impact interval of each item, to show the priority of being
changed, we define partial order º on items based on the following principle: for
any two items x1, x2 ∈ X, if i (x1) .Ir < h∧i (x2) .Ir ≥ h, x1 º x2; on the contrary,

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

86 X. Sun and P. S. Yu

if i (x2) .Ir < h∧ i (x1) .Ir ≥ h, x2 º x1; otherwise, x1 º x2 ⇔ i (x1) .Il < i (x2) .Il

or i (x1) .Il = i (x2) .Il ∧ i (x1) .Ir ≤ i (x2) .Ir

The intuition behind this ordering is: for any two items, if we know one has
risk of damaging the border but the other does not, we will change the no risk
one to guarantee that the border is intact. Otherwise we always select the item
with less possible impact on the border. Let us consider our running example. The
impact interval for item a, b, and d are initialized as [1, 2] ,

[
3
2 , 3

2

]
, and

[
1
2 ,h + 3

2

]
,

respectively. We have the order a º b º d. In general, based on the order º, we
can select an item x. Now we show how to determine the transaction T.

After finding an item x, we calculate the impact of deleting x for each transaction
and find the one with the minimal impact. To hide a sensitive frequent itemset X,
we use a bit map representation to reduce the size of Λ (X) . We maintain |Λ (X)|
bit vectors, each of which corresponds to a transaction T ∈ Λ (X). The length of
each bit vector is |Bd+|X | . For a bit vector of the transaction T ∈ Λ (X) , b′i = 1
iff T contains Bi, where Bi ∈ Bd+|X . In Figure 5, we can see bit vectors for
T1, T3, T5 are 1111, 1100, 1100.3 Given a hiding candidate u = (T, x) of sensitive
frequent itemset X and the bit vector b′1, . . . b

′
|Bd+|X | of T, the relevance bit vector

b1, . . . b|Bd+|X | of u can be computed as bi = b′i∧(x ∈ Bi) for i = 1, . . . , and |Bd+|X | .
In our example, Bd+|abd = {ab, bd, acd, cde} and the relevance bit vector of (T1, a)
is computed as 1010, which is the same as the result in our previous discussion.
For each transaction T ∈ Λ (X), the impact of deleting (T, x) can be computed by
the formula given in definition 3.2. After scanning the bit map once (in a worst
case), we can find the hiding candidate with minimal impact on the border. Several
techniques can be used for improve the performance of scanning bit vectors. For
example, if we find a transaction T such that the impact I((T, x)) = i(x).Il, there
is no need to perform the rest of the scan. Also, we can order the transaction based
on its bit vector and current weight of the border elements. A simple example is
that 1100 is always evaluated prior to 1110 because changing the former transaction
always affects fewer border elements than changing the latter one. We do not give
details here due to space limitation.

X ∈ Bd− T1 T2 T3 T4 T5 T6 T7 T8 T9

abd 1 1
a→ 0[1] 1

d→ 0[2]

bc 1 1
b→ 0[3] 1

c→ 0[4] 1

w (Bi) Bi ∈ Bd+

1 → h[1] ab 1 1 → 0 1 1
1
2
→ 1[2] → h[3] bd 1 1 1 → 0 1 → 0 1

1 acd 1 1 1 1

h cde 1 1 1

Figure 5. Algorithm demo.

4.2.2 Update Impact Intervals. Once a hiding candidate is deleted, for any af-
fected border element Y , its weight needs to be updated from w (Y) to w′ (Y).

3For completeness, we show bit vectors for all transactions. However, for a sensitive frequent
itemset X, only T ∈ Λ (X) needs to be considered.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

Hiding Sensitive Frequent Itemsets by a Border-Based Approach 87

Accordingly, the impact interval i (x) of each item x also needs to be updated to
i′ (x) .

Given a set of new weights for the border elements of Bd+, we can always compute
i′ (x) .Il =

∑
w′ (Yi) where Yi ∈ Bd+|1X∧ x ∈ Yi. However, to make the impact

estimation more accurate, we use the following way to tighten the left bound.

Theorem 4.1. Let A′ (x) be computed as
∑

w′ (Yi) where Yi ∈ Bd+|1X and
x ∈ Yi. For any item x, if there exists a perviously deleted hiding candidate
u0 with item x such that the impact I (u0) is greater than the estimated left bound
Il (at that stage), for the next step, the new value i′ (x) .Il should be be updated
as Max {V1, V2}, where V1 = A′ (X) + Min

{
w′ (Zi) |Zi ∈ Bd+|2X ∧ x ∈ Zi

}
and

V2 = A′ (x) + I (u0) − A (x) . Otherwise, the new value for i′ (x) .Il, is updated as
A′ (x).

Proof. According to our approach of selecting hiding candidate, i (x) .Il is ini-
tialized as the sum of weights of elements in the direct border. Also, we always
select the one with minimal impact on the border. So, the first occurrence of a
deleted hiding candidate u0 with I (u0) > i (x) .Il indicates that, from now on,
changing item x will at least affect an indirect border element Zi ∈ Bd+|2X . In this
case, A′ (X)+Min

{
w′ (Zi) |Zi ∈ Bd+|2X ∧ x ∈ Zi

}
gives the sum of the compulsory

impact on the direct border and the minimal impact on the indirect border. Also,
because the weight of a border element and the impact I (u) increase monotonically
during the iterations, the impact on the indirect border is at least I(u0) − A (x).
With the compulsory impact A′ (x) on the direct border, we have the value V2.
According to the definition of the left bound, the value should be Max {V1, V2} .
Before the first time that I (u) > i (x) .Il happens, we can only guarantee the impact
on the direct border with value A′ (X) .

For i′ (x) .Ir, according to our definition, it is always updated as
∑

w′ (Yi) where
Yi ∈ Bd ∧ x ∈ Yi.

4.3 Algorithm Demo

Now we demonstrate how our approach works in the running example.
From our previous discussion, Bd− and Bd+ are {abd, bc} and {ab, bd, acd, cde} ,

respectively. Specifically, we want to make Sup (abd) = 1 and Sup (bc) = 2. (Some-
times, it is better to decrease the support of sensitive itemsets to different levels.
Otherwise it may cause suspicions when many itemsets are with the same support
σ − 1. The proposed algorithm is applicable to either case.)

We consider abd first as it is longer than bc. The direct border and indirect border
of abd are {ab, bd} and {acd, cde} , respectively. The initial weight of each border
element is shown on Figure 5 (which is the value on the left most column). The
impact intervals for items a, b, and d are [1, 2] ,

[
3
2 , 3

2

]
, and

[
1
2 , h + 3

2

]
, respectively.

According to the order º, item a is selected. Λ (abd) = {T1, T3, T5} . The impact of
each tuple is calculated as follows: I ((a, T1)) = w (ab) + w (acd) = 2, I ((T3, a)) =
I ((T5, a)) = w (ab) = 1. T3 is selected and hiding candidate (T3, a) is deleted.
Then, we update w (ab) to h and Λ (abd) to {T1, T5}. For the next iteration, the
impact intervals for item a, b, and d are [h, h + 1] ,

[
h + 1

2 , h + 1
2

]
, and

[
1
2 ,h + 3

2

]
,

respectively. Item d is selected. Because I ((T1, d)) = h+ 3
2 and I ((T5, d)) = 1

2 , we
select T5 and delete (T5, d) .

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

88 X. Sun and P. S. Yu

Now we consider the second sensitive frequent itemset bc. The direct border and
indirect border of bc are φ and {ab, bd, acd, cde} , respectively. Both impact intervals
for b and c are [0,h + 1] . We can select either b or c. It is ideal to select c as it
will cost zero impact on the border. Suppose that item b is selected. The impact
for the hiding candidate for transactions T1, T4, T6, and T7 are h + 1, 1, 1, and h,
respectively. We can select T4. Note that I ((T4, b)) = 1 > i(b).Il = 0. So we have
i′(b).Il = Min{w′ (ab) , w′ (bd)}. The intervals of b, and c are updated to [h, 2h]
and [0,h + 1] , respectively. Finally, we delete (T6, c) with no impact on the border.

5. EXPERIMENT RESULTS

In this section, we evaluate the effectiveness and the efficiency of our border-based
approach by comparing it with a heuristic-based approach, which is referred as Al-
gorithm 2.b in [Verykios et al. 2004]. The heuristic in Algorithm 2.b for selecting
a hiding candidate is straightforward. Give a sensitive frequent itemset, for all the
transactions containing this itemset, Algorithm 2.b first identifies the transaction
with the shortest length. In such a transaction, the candidate item with the maxi-
mal support value is deleted to decrease the support of the sensitive itemset. This
approach hides the frequent sensitive itemsets efficiently and meanwhile demon-
strates good effectiveness on minimizing the side effect on the result database. In
the rest part of this section, we denote it as the heuristic approach.

Table I. Characteristics of datasets.
Dataset |T | |I| |L| |D| N Size in Megabytes

T10I6L1.5K 10 6 1.5K 100K 1K 5.8

T10I6L1K 10 6 1K 100K 1K 5.8

T20I8L2K 20 8 2K 100K 1K 10.44

We evaluate our border-based approach on three synthetic datasets, which are
created by IBM synthetic data generator [Agrawal and Srikant 1994]. The charac-
teristics of datasets are given in Table I (The description of each parameter can be
found in [Agrawal and Srikant 1994]).

5.1 Effectiveness Evaluation

Recall that our goal is to maintain the aggregated quality of the result dataset D′.
It is natural to compare the set of non-sensitive frequent itemset Lr with the set
L′ of frequent itemsets in D′. As our approach does not introduce new frequent

itemsets in D′, the quality of the result dataset D′ could be measured as: Q = |L′|
|Lr| .

Apparently, the percentage of over-hidden non-sensitive frequent itemsets is 1−Q.
For each given dataset, we evaluate the quality Q of the result dataset under

different sets of sensitive frequent itemsets. Now we first look at the characteristics
of the set 4L of sensitive frequent itemsets. As discussed before, for 4L, we only
need to consider its lower border Bd− during the hiding process. Thus, given a
set 4L of sensitive frequent itemset in a dataset D, we define the following three
characteristics of 4L in terms of Bd−:

(1) Number of sensitive itemsets in Bd−, denoted as |Bd−| .
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

Hiding Sensitive Frequent Itemsets by a Border-Based Approach 89

(a) T10I6L1.5K. σ
100K

:
0.6%, Avg len : 3, Avg Difsup :
10 ∼ 12

(b) T10I6L1K. σ
100K

: 0.8%, Avg len :
3, Avg Difsup : 49 ∼ 52

(c) T20I8L2K. σ
100K

: 0.8%, Avg len :
5, Avg Difsup : 20 ∼ 24

(d) T10I6L1.5K. σ
100K

:
0.6%, Avg len : 3,

∣∣Bd−
∣∣ : 4

(e) T10I6L1K. σ
100K

: 0.8%, Avg len :
3,

∣∣Bd−
∣∣ : 5

(f) T20I8L2K. σ
100K

: 0.8%, Avg len :
4,

∣∣Bd−
∣∣ : 5

Figure 6. Effectiveness evaluation.

(2) Average support difference, formally defined as:
Avg Difsup =

∑
(Supp(Xi)−σ+1)

|Bd−| , where Xi ∈ Bd− and σ is the support threshold.

(3) Average length of itemsets in Bd−, defined as:
Avg len =

∑
len(Xi)
|Bd−| , where Xi ∈ Bd− and len(Xi) returns the length of Xi.

For example, if Bd− is {a : 10, bc : 8, def : 6} and the support threshold σ is 5,
we have |Bd−| = 3, Avg Difsup = 4, and Avg len = 2.

In our experiments, for each dataset, we evaluate the quality Q of result dataset
in terms of the size of the lower border (|Bd−|) and the average support difference
(Avg Difsup) of 4L. Figure 6 gives the complete results of effectiveness evaluation

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

90 X. Sun and P. S. Yu

by comparing with the heuristic approach. Figure 6(a)˜6(c) show the impact of
|Bd−| on the quality of the result dataset. Let us take Figure 6(a) as an example.
The corresponding experiments are performed on dataset T10I6L1.5K with the
percentage of support threshold (i.e., σ

100K) always set as 0.6%. We intentionally
create multiple sets of sensitive frequent itemsets such that in each set, the average
length is 3 and the average support difference is controlled within the range from 10
to 12. In this case, we can evaluate how |Bd−| impacts the quality Q. This result
shows that the quality of the result dataset is well maintained with over 98% of non-
sensitive frequent itemsets preserved. In general, the quality of the result dataset
decreases with the increase of |Bd−| . In Figure 6(d)˜6(f), the impact of Avg Difsup
on Q is shown on the condition that |Bd−| and Avg len are constant in each dataset.
It is also clear that the quality Q degrades with the rise of Avg Difsup (the reason
is that the increase on Avg Difsup requires to delete more hiding candidates, thus,
leads to more impact on Q).

Based on the experiment results, we have the following observations. First, our
approach outperforms the heuristic approach in terms of the quality of the re-
sult dataset (i.e., protecting more non-sensitive frequent itemsets from being over-
hidden). In all these figures, the maximum improvement by the border-based ap-
proach is around 5%, i.e., up to an additional 5% of the non-sensitive frequent
items could be oven-hidden by the heuristic approach. Note that |Lr| is often a
large number (it is roughly ranged from 1000 to 2000 in our experiments). So,
little difference in the percentage indicates more significant difference in the actual
number. Also, the over-hidden non-sensitive frequent itemsets are close to the bor-
der, which often carry more significant information than the itemsets at the lower
level of the lattice. In general, our border-based approach achieves the considerable
improvement, which also proves the correctness of our consideration on maintain-
ing the border. In addition, we observe that the characteristics of databases have
impact on the effectiveness of our approach. Let us consider datasets T10I6L1.5K
and T10I6L1K. According to the meaning of parameter |L| (i.e., the number of
maximal potentially frequent itemsets), frequent itemsets in T10I6L1K are more
strongly correlated than those in T10I6L1.5K. Considering the quality of the result
dataset, the experiment result on the “denser” database T10I6L1K is not as good as
that of T10I6L1.5K. This is because the following two reasons. First, in a strongly
correlated dataset, over-hidden cases are very likely to occur. Some of them are
unable to avoid. For example, if Supp(abd) = Supp(ab) = Supp(ad), hiding abd will
unavoidably hide either ab or ad. So, the actual number of non-sensitive frequent
itemsets in the optimal situation is often less (sometime, far less) than |Lr| . Thus,
the actual quality of the result dataset should be better than what is displayed in
the figures. Secondly, considering our approach, if a border element is hidden dur-
ing the hiding process, it is ideal to immediately replace the old border by the new
one. However, finding a new border for every such case is very time-consuming, so,
we only recompute the border after one sensitive frequent itemset is hidden. This
approximation leads some tradeoff between the effectiveness and the efficiency.

5.2 Efficiency Evaluation

The efficiency of our approach is studied in terms of the response time. All exper-
iments are performed on a PC with an Intel Pentium III 500MHz CPU and 256M
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

Hiding Sensitive Frequent Itemsets by a Border-Based Approach 91

(a) T20I8L2K. σ
100K

: 0.8%, Avg len :
5, Avg Difsup : 20˜24

(b) T20I8L2K. σ
100K

: 0.8%, Avg len :
4,

∣∣Bd−
∣∣ : 5

(c) T20I8L2K (D400K). σ
|D| :

0.8%,
∣∣Bd−

∣∣ : 1

Figure 7. Efficiency evaluation.

main memory, running Microsoft Windows XP.
Figure 7 shows the efficiency of the border-based approach on the basis of the

dataset T20I8L2K. Particularly, Figure 7(a) and Figure 7(b) depict the performance
of hiding frequent itemsets in terms of |Bd−| and Avg Difsup respectively. From
both figures, we can see that while the heuristic approach takes less time than our
border-based approach, their performance curves are very close. This is because the
most time-consuming step of hiding sensitive frequent itemsets lies in the dataset
scan. Both approaches require the same number of dataset scan, i.e., |Bd−| . Al-
though our border-based approach is more complex in the step of selecting hiding
candidates, the heuristics introduced in Section 4.2 offers an innovative algorithm
which effectively reduces the computational cost. Note that to improve the per-
formance, the work in [Oliveira and Zaiane 2003a] uses a inverted file to reduce
the number of dataset scans. This technology can be applied in our border-based
approach as well.

Further, we look at the scalability of our border-based approach. Figure 7(c)
shows the response time of hiding one sensitive itemset with respect to the number
of transactions in the dataset. We can see that our approach is linearly scalable.

6. RELATED WORK

Privacy preserving data mining [Verykios et al. 2004] has become a popular research
direction recently. The goal of this research includes two aspects. First, sensitive
raw data should be protected from the original database, in order to preserve the

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

92 X. Sun and P. S. Yu

individual privacy. Second, sensitive knowledge, which can be extracted by data
mining algorithms should be trimmed out from the database. Our research in this
paper targets on the second aspect.

The problem of hiding frequent itemsets (or association rules) was firstly studied
in [Atallah et al. 1999] by Atallah et al. In this work, finding the optimal sanitization
solution to hide sensitive frequent itemsets was proved as a NP-hard problem.
Also, a heuristic-based solution was proposed to exclude sensitive frequent itemsets
by deleting items from the transactions in the database. The subsequent work
[Dasseni et al. 2001] extended the sanitization of sensitive frequent itemsets to
the sanitization of association rules. The work prevented association rules from
being discovered by either hiding corresponding frequent itemsets or reducing their
confidence below the threshold. The work provided some heuristics to select the
items to be deleted, with the consideration of minimizing the side effect under the
assumption that sensitive frequent itemsets were disjoint. The later work [Saygin
et al. 2001; Saygin et al. 2002] further discussed the problem of hiding association
rules by changing items to “unknown” instead of deleting them.

Also, substantial work [Oliveira and Zaiane 2002; 2003a; 2003b; Oliveira et al.
2004] has been done in this area by Oliveira and Zaiane. Generally, their work
focused on designing a variety of heuristics to minimize the side effect of hiding
sensitive frequent itemsets. Particularly, in [Oliveira and Zaiane 2002], the Item
Grouping Algorithm (IGA) grouped sensitive association rules in clusters of rules
sharing the same itemsets. The shared items were removed to reduce the impact on
the result database. In [Oliveira and Zaiane 2003b], a sliding window was applied to
scan a group of transactions at a time and sanitized the sensitive rules presented in
such transactions. In recent work [Oliveira et al. 2004], they considered the attacks
against sensitive knowledge and proposed a Downright Sanitizing Algorithm (DSA)
to hide sensitive rules while blocking inference channels by selectively sanitizing
their supersets and subsets at the same time.

In summary, the challenge of hiding sensitive itemsets (or association rules) is
to minimize the side effect on the result database. In previous work, a variety of
approaches have been proposed based on different heuristics. However, during the
hiding process, none of them really evaluates the impact of each modification on
the database.

A preliminary version of this paper appeared in [Sun and Yu 2005]. In this
paper, we extend the work in following ways. First, we comprehensively discuss
the problem of hiding frequent itemsets. Second, we present the more detailed
algorithms with examples and proof. Importantly, we introduce the algorithm for
updating the impact interval in Section 4.2.2.

7. CONCLUSIONS

In this paper, we have studied the problem of hiding sensitive frequent itemsets,
with a focus on maintaining the aggregated quality of the result database. The
originality and contributions of our work include the following aspects: 1) We
considered the aggregated quality not only based on the number of non-sensitive
frequent itemsets preserved in the result database, but also in terms of their rel-
ative frequency. 2) Most importantly, to minimize the side effect on the result
Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

Hiding Sensitive Frequent Itemsets by a Border-Based Approach 93

database, we provided the first efforts to evaluate the impact of any modification
to the database during the hiding process. Thus, the quality of database can be
well maintained by controlling modifications according to the impact on the result
database. 3) We applied the border as an appropriate representation of the set of
non-sensitive frequent itemsets in the context of frequent itemset hiding problem.
A border-based approach was proposed to efficiently select the modification with
minimal side effect. 4) We study the performance of the proposed approach and
the results were superior to the previous work in effectiveness, at the expense of a
small degradation in efficiency.

REFERENCES

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. In Proc. of
the 20th VLDB. 487–499.

Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., and Verykios, V. 1999. Disclosure
limitation of sensitive rules. In Proc. of KDEX’99. 45–52.

Clifton, C. and Marks, D. 1996. Security and privacy implications of data mining. In Workshop
on Data Mining and Knowledge Discovery. Montreal, Canada, 15–19.

Dasseni, E., Verykios, V. S., Elmagarmid, A. K., and Bertino, E. 2001. Hiding association
rules by using confidence and support. In Proc. of the 4th Information Hiding Worshop. 369–
383.

Mannila, H. and Toivonen, H. 1997. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1, 3, 241–258.

Oliveira, S. and Zaiane, O. 2002. Privacy preserving frequent itemset mining. In Proc. ICDM
Workshop on Privacy, Security, and Data Mining. 43–54.

Oliveira, S. and Zaiane, O. 2003. Algorithms for balancing privacy and knowledge discovery
in association rule mining. In 7th Proc. of the IDEAS. 54–63.

Oliveira, S. and Zaiane, O. 2003. Protecting sensitive knowledge by data sanitization. In Proc.
of the 3rd ICDM. 613–616.

Oliveira, S., Zaiane, O., and Saygin, Y. 2004. Secure association rule sharing. In Proc. of the
8th PAKDD. 74–85.

Saygin, Y., Verykios, V. S., and Clifton, C. 2001. Using unknowns to prevent discovery of
association rules. ACM SIGMOD Record 30, 45–54.

Saygin, Y., Verykios, V. S., and Elmagarmid, A. K. 2002. Privacy preserving association rule
mining. In Proc. of RIDE.

Sun, X. and Yu, P. S. 2005. A border-based approach for hiding sensitive frequent itemsets. In
Proc. of the 5th ICDM. 426–433.

Verykios, V. S., Bertino, E., Fovino, I. N., Provenza, L. P., Saygin, Y., and Theodoridis,
Y. 2004. State-of-the-art in privacy preserving data mining. ACM SIGMOD Record 33, 50–57.

Verykios, V. S., Elmagarmid, A. K., Bertino, E., Saygin, Y., and Dasseni, E. 2004. Associ-
ation rule hiding. TKDE 16, 434–447.

Journal of Computing Science and Engineering, Vol. 1, No. 1, September 2007

