
A Clustered Dwarf Structure to Speed up Queries

on Data Cubes

Yubin Bao, Fangling Leng, Daling Wang and Ge Yu

School of ISE, Northeastern University, P.R.China

{baoyb, lengfangling, dlwang, yuge}@mail.neu.edu.cn

Dwarf is a highly compressed structure, which compresses the cube by eliminating the semantic
redundancies while computing a data cube. Although it has high compression ratio, Dwarf is
slower in querying and more difficult in updating due to its structure characteristics. We all know
that the original intention of data cube is to speed up the query performance, so we propose two
novel clustering methods for query optimization: the recursion clustering method which clusters
the nodes in a recursive manner to speed up point queries and the hierarchical clustering method
which clusters the nodes of the same dimension to speed up range queries. To facilitate the
implementation, we design a partition strategy and a logical clustering mechanism. Experimental
results show our methods can effectively improve the query performance on data cubes, and the
recursion clustering method is suitable for both point queries and range queries.

Categories and Subject Descriptors: E.1 [DATA STRUCTURES]: ; E.2 [DATA STORAGE

REPRESENTATIONS]:

General Terms: Data Cube, Clustering

Additional Key Words and Phrases: clustered Dwarf, hierarchical cluster, logical clustering, query
optimization, recursion cluster

1. INTRODUCTION

Dwarf [Y. Sismanis and Kotidis. 2002] is a highly compressed structure, which com-
presses the cube by eliminating the prefix and suffix redundancies while computing
a data cube. What makes Dwarf practical is the automatic discovery of the prefix
and suffix redundancies without requiring knowledge of the value distributions and
without having to use sophisticated sampling techniques to figure them out. But
the structure of Dwarf (see Fig.1) has the following characteristics. (1) It is a tree
structure if ignoring the suffix coalition, which has a common root and some nodes
derived from the root. (2) The node cells store the node location information of
the next dimension, which is similar to an index. (3) The nodes have different
size. These characteristics make it inefficiently to store a Dwarf into a relational
database. Of course, we can model the node structure by ER model and disassem-

Copyright c©2007 by The Korean Institute of Information Scientists and Engineers (KIISE). Per-
mission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than KIISE must be honored. Abstracting with credit is

permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permission to republish from: Publicity Office,
KIISE. FAX +82-2-521-1352 or email office@kiise.org.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007, Pages 195–210.



196 Y. B. Bao et al.

ble the nodes and store them into the database. (The relationship between Dwarf
and its nodes, between the node and its cells are both one-to-many.) But it causes
the performance to be reduced, because reading each node will cause the join op-
erations. So Dwarf is usually stored in a flat file, which has a good performance of
the construction [Y. Sismanis and Kotidis. 2002]. However, due to not considering
the characteristics of queries and the high cost of maintaining files, it brings a low
query performance and is hard to be updated. In order to solve the query perfor-
mance problem, [Y. Sismanis and Kotidis. 2002] gave a clustering algorithm, which
clusters nodes according to the computational dependencies among the group-by
relationships of the cube. This method can improve the query performance in a
certain degree. For a cube, point queries and range queries are two important types
of queries on it. We note that for point queries and range queries, the access order
to nodes is according to the relationship between parents and children of the nodes
from root to leaves instead of the group-by relationships. Therefore, we propose
two novel clustering algorithms to improve the query performance on Dwarf. As
the data increase in complexity, the ability to refresh data in a data warehouse
environment is currently more important than ever. The incremental update pro-
cedure in [Y. Sismanis and Kotidis. 2002] expands nodes to accommodate new cells
for new attribute values (by using overflow pointers), and recursively updates those
sub-dwarfs which might be affected by one or more of the delta tuples. The frequent
incremental update operations slowly deteriorate the original clustering feature of
the Dwarf structure, mainly because of creating the overflow nodes. Since Dwarf
typically performs updates in periodic intervals, a process in the background pe-
riodically runs for reorganizing the Dwarf and transferring it into a new file with
its clustering restored [Y. Sismanis and Kotidis. 2002]. To avoid reorganizing the
Dwarf and maintaining the clusters, we design a partition strategy and a logical
cluster mechanism.

In [W. Wang and Yu. 2002], three algorithms are described for discovering tuples
whose storage can be coalesced: MinCube guarantees to find all such tuples, but the
computation consumption is very high, while BU-BST and RBU-BST are faster,
but only discover fewer coalesced tuples. Much research work has been done on
approximating data cubes through various forms of compression such as wavelets
[J. S. Vitter and Iyer. 1998] or by sampling [Gibbons and Matias. 1998] [S. Acharya
and Poosala. 2000] or data probability density distributions [J. Shanmugasundaram
and Bradley. 1999]. While these methods can substantially reduce the size of the
cube, they do not actually store the values of the group-bys, but rather approximate
them, thus not always providing accurate results. Relatively Dwarf is a promising
structure to be discussed deeply.

The rest of this paper is organized as follows: Section 2 presents two clustering
methods for Dwarf, the recursion clustering method and the hierarchical clustering
method. Section 3 describes the physical structure of the clustered Dwarf, the
paging partition strategy, and the logical clustering mechanism. Section 4 presents
the experiments and the result analysis. The conclusion is given in Section 5.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



A Clustered Dwarf Structure 197

2. CLUSTERING DWARF

Currently the disk management system of computer architecture is organized by
disk-cylinder-sector. The basic storage unit is the sector, and the size of each sector
is 512 bytes. Because of the limited capability of sectors, I/O will consume a great
deal of time when operating system reads and writes the disk using the sector
as the unit. To solve the problem the unit of I/O in current system is set to a
cluster, which is constituted with several amounts fixed, sequential sectors. And
the amount of the sector is decided when formatting the disk. The default cluster
size of Windows NT system is 4 KB, which consists of 8 sectors.

Operating system usually reads the disk using a cluster as a unit. When a certain
disk is read, the whole cluster will be read to the buffer. For example, when a byte
with the offset 5000 bytes from the start position in the data area is read, the whole
second cluster (physical address is between 4097 and 8192 bytes) will be read to
the buffer. This will bring the pre-fetch function, and it is an application of locality
principle.

With this function, if we can write the possible sequential access nodes to the
neighbor location (to the same cluster if allowable) when the Dwarf is constructed.
Then the I/O cost will be reduced by the cluster-read characteristic of operating
system, and the query performance will be improved obviously. And the above-
mentioned process is clustering.

In [Y. Sismanis and Kotidis. 2002] a clustering algorithm was proposed, which
clustered the nodes according to the computational dependencies between the group-
bys of the cube. But this method may not improve the performance, because it
ignores the characteristics of queries on Dwarf. When querying on Dwarf, the access
orders are according to the relationships between predecessor and successor of the
nodes from root to leaf whether in point queries or in range queries. The method
breaks the relationship.

For the following explanation, we give a sample data set in Table I. Fig.1 shows
the Dwarf structure of the sample data in Table I according to the method in
[Y. Sismanis and Kotidis. 2002], where node (5) is stored behind node (7) according
to the computational dependencies, and the parent of node (5) is node (2).

Table I. A sample data set.
Store Customer Product Price

S1 C2 P2 70
S1 C3 P1 40
S2 C1 P1 90
S2 C1 P2 50

When querying from node (2) to node (5), one more time I/O operation (node
(7)) will be executed in order to read node (5). Therefore, we propose to cluster the
Dwarf according to the relationship between parents and children of the nodes. Two
clustering methods are designed to optimize Dwarf for improving the performance
of point queries and range queries.

Suppose that the example query is :

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



198 Y. B. Bao et al.

Product Dimension
- �(3)

P2:70 70

- �
(4)

P1:40 40

?
-

???
(5)

P1:40 P2:70 110
(7)

P1:90 P2:50 140
(9)

P1:130 P2:120 250

? ? ?
(2)

C2 C3

(6)
C1

(8)
C1 C2 C3

Customer Dimension

(1)
S1 S2

Store Dimension

Figure 1. The Dwarf structure of the sample data set.

SELECT price
FROM example cube
WHERE (store=S1) AND (customer=ALL) AND (product=P1).

2.1 Recursion Clustering

Recursion clustering is an optimization of the point query on Dwarf. Often we can
see that when a point query is performed, the results must be in the sub-Dwarf
pointed by the corresponding cell. That is a lengthways access manner. For the
example query, when the condition store = S1 is executed, the results must be in
the sub-Dwarf pointed by cell S1, i.e. node (2)(3)(4)(5). So if we can store the four
nodes on the same cluster, the query performance will be improved.

In Fig.1, the root node has three sub-trees, rooted by node (2), node (6), and
node (8). So they should be stored together. Furthermore, node (2) also has three
sub-trees, rooted by (3), (4), (5), and they should be stored together too. When
answering the point queries with this method, the distance between the related two
nodes in the path will become smaller and smaller with the query going ahead to
the leaves. So it is an incremental shrinking method. These clustering steps are in
the recursive manner. So we call our method as the recursion clustering method
(see Algorithm 1).

For the Hierarchical Dwarf [Y. Sismanis 2003], we treat the roll-up relation (node
(2) and node (5) in Fig.2) as a relationship between predecessor and successor too
(the sub-Dwarf with the root node (5) is a sub-Dwarf of node (2)). So we can
extend the above-mentioned cluster method to the hierarchical Dwarf. The node
tags in Fig.2 show the storage order of the node on the disk under this clustering
method.

Apart from the leaf nodes, all internal nodes of a Dwarf contain ALL cells to
indicate the summary information on the corresponding dimensions. [Y. Sismanis
and Kotidis. 2002] designed the recursion suffix coalition algorithm to compute the
ALL cells. But it makes the clustering feature lost. We improve it by eliminating
the recursive operations. Fig.3 gives an example of suffix coalition. Here the suffix
coalition occurs at the ALL cell of node (1), and the following nodes are constructed
with it. The node sequence writing to the disk in Fig.3 should be (5)(3)(6)(4)(2)(1).

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



A Clustered Dwarf Structure 199

Algorithm 1: Recursion Clustering Algorithm.

1: initialize the stack S

2: push the begin node and its sub-Dwarf into S

3: while S is not empty do
4: pop the top element n in S

5: if n has non-computed units then
6: go to the first non-computed unit c of n

7: compute the sub-Dwarf of c using the sub-Dwarf of n

8: push n into S

9: if c can be suffix coalition//not require creating new nodes
10: write c’s suffix coalition position into top element unit
11: else //require creating new nodes
12: create the new node n1 using the sub-Dwarf of c

13: push the n1 and its sub-Dwarf into S

14: end if

15: end if

16: end while

Product

- �(3)
P2:70 70

- �(4)
P1:40 40

? ?
-

? ?
��

6

(6)
P1:40 P2:70 110

(8)
P1:90 P2:50 140

? ?
-- - -(2)

C2 C3

(5)
T2

(7)
C1

(9)
T1

(10)
C1 C2 C3

(11)
T1 T2

Customer

?
(12)

P1:130P2:120 250

(1)
S1 S2

Store

Figure 2. The Dwarf structure with concept hierarchies.

We use a stack to implement the recursion clustering algorithm. The elements in
the stack are the nodes to be closed and their sub-Dwarfs. According to Algorithm
1, the suffix coalition of the Dwarf is in Fig.2 and the stack changing are shown in
Table II.

2.2 Hierarchical Clustering

A range query often accesses several child nodes of a node, and the sibling nodes
of the node will be accessed together. Because the sibling nodes are of the same
dimension, we suggest the nodes of the same dimension should be clustered together.

Algorithm 2 shows the hierarchical clustering algorithm, which also supports
the suffix coalition. Different from the recursion clustering, a queue is used in it.
The elements of the queue are the nodes to be closed and the sub-Dwarfs rooted
by these nodes. The process is similar to the breadth-first searching of graph.
Table III shows the node sequence and the changing of the assistant queue of Fig.3
according to the Algorithm 2. The storage sequence of the nodes in Fig.3 should
be (1)(2)(3)(4)(5)(6) according to the hierarchical clustering. Contrast with the

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



200 Y. B. Bao et al.

Table II. The stack changing in recursion clustering.
action elements action computing

1 (1) PUSH(1) initialize the stack
2 (1)(2) PUSH(2) top element (1) is unfinished, create (2)
3 (1)(2)(3) PUSH(3) top element (2) is unfinished, create (3)
4 (1)(2)(3)(5) PUSH(5) top element (3) is unfinished, create (5)
5 (1)(2)(3) POP(5) compute and write (5) back
6 (1)(2) POP(3) compute and write (3) back
7 (1)(2) compute the cell B2 in top element (2)
8 (1)(2)(4) PUSH(4) top element (2) is unfinished, create (4)
9 (1)(2)(4)(6) PUSH(6) top element (4) is unfinished, create (6)
10 (1)(2)(4) POP(6) compute and write (6) back
11 (1)(2) POP(4) compute and write (4) back
12 (1) POP(2) compute and write (2) back
13 NULL POP(1) compute and write (1) back

Algorithm 2: Hierarchical Clustering Algorithm.

1: initialize the queue Q, and put the begin node into Q

2: while Q is not empty do
3: get a node n from Q

4: if n is the leaf node then
5: compute all the units of n

6: write n to the disk
7: continue
8: end if

9: create the child nodes n1, n2, · · ·, nk of n and their sub-Dwarfs, and write
nodes numbers into the corresponding units of n

10: put the child nodes into Q by the creation time
11: write n to the disk, and add n to the node index table
12: end while

recursion clustering, it has the following problems. Before the next layer nodes
being written to the disk, i.e. the location of the next layer nodes is unknown,
the node should finish writing to the disk. For example, if node (3) and node (4)
have not been written to the disk, i.e. the values of cell B1 and B2 of node (2)
are unknown, node (2) has to be written to the disk first to satisfy the cluster
characteristics.

To solve this problem, we propose a node index approach. It assigns a distinct
index number to each node, and the cell in a node stores the index number but
not the location on the disk of the next layer node. At the same time a node index
table is used to maintain the mapping between the index number and the physical
location of the node. For example, when writing node (2) to the disk, we only need
to construct node (3) and node (4), and fill the index number of them into the cells
of node (2). When the child nodes are written to the disk, their addresses will be
filled into the node index table. Such index enables to write the parent node before
its child nodes.

Restricting the impact of the update of a Dwarf is another advantage of the node
index approach. The update is very difficult because of the nodes with unequal
size. When updating a Dwarf, some cells or nodes will be created or deleted. The

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



A Clustered Dwarf Structure 201

? ?

Dimension D

(5)
D2:10 10

? ?
(6)

D2:10 D3:20 30

?

Dimension C

(3)
C1

?
C1

(4)

?

Dimension B

(2)
B1 B2

�
suffix coalition

to the closed nodes

Dimension A

(1) A1 A2

Figure 3. An example of suffix coalition.

Table III. The queue changing in hierarchical clustering.
action elements action action
number in queue of queue of queue

1 (1) IN(1) initialize the queue
2 NULL OUT(1) establish (2), and write the ALL cell of (1)
3 (2) IN(2) write (1) to the disk
4 NULL OUT(2) establish (3) and (4), and write all the cell of (2)
5 (3)(4) IN(3)(4) write (2) to the disk
6 (4) OUT(3) establish (5), and write all the cell of (3)
7 (4)(5) IN(5) write (3) to the disk
8 (5) OUT(4) establish (6), and write all the cell of (4)
9 (5)(6) IN(6) write (4) to the disk
10 (6) OUT(5) compute (5), and write (5) to the disk
11 NULL OUT(6) compute (6), and write (6) to the disk

Dwarf is usually stored in a flat file, and the frequent node insertion or deletion
operations will produce many file fragments. Compared with deletion, inserting
a new node or a new cell is very hard to deal with. To the adjoining nodes on
the disk, the increase of a node may not be simple as the increase of an array in
memory. Since the long time of disk operation, we have to abandon the original
node space and add a new updated node at the end of the file. If there is no node
index, the operations will lead the parent node of the updated node to be updated
passively because the corresponding cell of the parent node stores the offset of the
updated child node in the file. (In Fig.3, the update of node (3) will cause the cell
B1 of node (2) updated.) Since Dwarf only hold the mapping from the father node
to its child nodes, the update of the father node becomes more trouble. After using
the node index, the problem of updating scope is restricted within the child node.
If the location of the child node is changed, we only need to update the node index
of the child node, and other nodes will not be affected. But the changing of the
node location should be avoided in order to maintain the cluster feature.

According to the hierarchical clustering algorithm, the storage sequence of the
nodes in Fig.1 should be (1) (2) (6) (8) (3) (4) (5) (7) (9). To the hierarchical Dwarf,
the extended hierarchy should be regarded as the same hierarchy, and should be
stored in the same cluster. To the hierarchical Dwarf in Fig.2, the storage sequence

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



202 Y. B. Bao et al.

should be (1) (2) (5) (7) (9) (10) (11) (3) (4) (6) (8) (12).
In hierarchical clustering, the suffix coalition of node (2) in Fig.1 is executed

before node (1). If the nodes are always written to the end of the file, node (2)
and node (8), which should be put together, will be separated by node (3)(4)(5).
Hence, the physical organization structure should be considered further.

3. PHYSICAL STRUCTURE OF DWARF

3.1 Paging Partition Strategy

To solve the above clustering problem, we propose a partition organization strategy
for Dwarf files. Firstly, allocate a certain space (called a dimension partition) on
the disk for the node cluster of each dimension, which uses the idea of chunk in
[Y. Zhao 1997]. Secondly, a dimension partition only stores the corresponding
dimension nodes. When the remaining space cannot contain a new node, a new
partition for that dimension will be appended to the end of the file. In this way,
when the node is written to the disk, it may not be appended to the end of the file,
but be written to its dimension partition. In this case, the hierarchical clustering
feature is guaranteed.

Generally, we can extend the concept to the recursion clustering. The unit of the
disk I/O of current operating system is a disk cluster. So the amount of the cluster
produced by different clustering methods should be an integer, at the same time a
node if and only if belongs to a cluster, i.e. the node spanning two clusters are not
allowed, the intension of which is reducing the additive I/O operations.

Generally speaking, the size of the memory page equals to the size of the disk
cluster (the two values are all 4 KB in Windows NT), which is convenient for
reducing the cost of memory management because a disk cluster can just fill a
memory page. So our partition management of Dwarf is designed as the paging
storage management. Several pages consist of a partition, and a node is not allowed
to span the pages. When clustering, a certain amount of pages is pre-allocated for
each cluster, and a new partition is added at the end of the file only if a partition
cannot contain the new nodes. Since a node is not allowed to span the pages, the
fragments occur. But they can be used to save the broken cluster by updating
operations from another point of view. This will be addressed in the next section.

How many pages should we pre-allocate for a cluster? The amount should be
neither small nor big. Too few pages will cause the frequently adding the new
partitions, which will break the clusters to a certain extent. And too many pages
will cause the waste of the space because some pages may not be used forever. So
the pre-allocation of the recursion clustering and the hierarchical clustering should
be taken with different strategies. But the basic idea is the same that pre-allocating
many more pages for the bigger cluster.

(1) For the recursion clustering, a cluster is corresponding to a sub-Dwarf tree
actually. In Fig.3, the cluster of nodes (2)(3)(4)(5)(6) is related with the sub-tree
of ALL cell of node (1), and the cluster of node (3)(5) is related with the sub-tree
of cell B1 of node (2). Obviously, the cluster size is related with the height of
the sub-tree. So when we pre-allocate the pages, we only need pre-allocate enough
pages for each sub-tree of the root, and the low layer sub-trees recursively get the
space through partitioning the pages. Suppose that there is a D-dimensional cube,

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007







A Clustered Dwarf Structure 205

we have to append a new page after the end of the file to store the updated node.
After updating the records of the logical cluster are shown in Fig.9. We can see
that L[1] = 4, which tells us page (4) is the neighbor of page (1) in logic but not
physically.

1 2 3 -1

L[0] L[1] L[2] L[3]

Figure 8. The records of logical clustering.

1 4 3 -1 2

L[0] L[1] L[2] L[3] L[4]

Figure 9. The records after updating.

When the current storage layout seriously affects the query performance, the
pages in a cluster in logic need to be adjusted together at once. At that time, the
logical cluster record will work as a navigator. Since the node index approach is
used, the cell values of the nodes need not be changed when moving the pages, and
we only need to modify the page numbers of the relative nodes in the node index
table, which is another benefit of the node index approach.

4. PERFORMANCE EXPERIMENTS

Compared with the other semantic compression algorithms, Dwarf has the highly
compression advantage [Y. Sismanis and Kotidis. 2002]. Dwarf is not sensitive to
the data sizes and the dimension numbers. Especially, Dwarf has a considerable
expression ratio for the high dimensional, super large-scale data. The experimental
route of this paper differs from [Y. Sismanis and Kotidis. 2002]. We focus on
the query performance. Because we all know that the original intention of data
cube is to speed up query performance. Since Dwarf already has high compression
ratio, we consider that it is worthy to get better query performance at the cost of
construction time and storage of Dwarf.

In our experiments, the final Dwarf is stored by file, but other inputs and outputs
are stored by the relational database system, which facilitates the management but
slows the speed down. We will see that in the following experiments.

We generate a data set with 10 dimensions and 4× 105 tuples. The cardinalities
of each dimension are 10, 100, 100, 100, 1000, 1000, 2000, 5000, 5000, and 10000,
respectively. The aggregation function is SUM. All the experiments are running on
a single Pentium IV with 2.6GHZ processor running Windows XP plus SP2 with
512MB of DDR RAM. The disk is 80GB, and able to read at about 22MB/s and
write at about 12MB/s. We use ODBC connection to the Microsoft SQL Server
2000 plus SP4. In the following, non-clustering represents non-clustering Dwarf,
Dwarf represents computational dependencies between the group-by relationships,
R-Dwarf represents recursion clustering, and H-Dwarf represents hierarchical clus-
tering.

4.1 Construction of Dwarf

Test 1: In this part, we want to test the relationship between the construction time,
the storage space and the dimension numbers. We test 7 to 10 dimensions with
4 × 105 tuples data set, respectively. We compare our algorithm with the original
Dwarf [Y. Sismanis and Kotidis. 2002] to construct the cube. The construction
time costs are shown in Fig.10 and Fig.11.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



206 Y. B. Bao et al.

From the experimental results, we find that the construction time of our algorithm
is about one time more than the original one. The storage space of our algorithm
is about 0.3 times more than the original one. But our goal is to improve the query
performance, and each part of our method is designed toward the goal. The main
reasons are as follows: a) Sorting the dimensions by their cardinalities from small to
big, which will speed up the query response but weaken the effect of suffix coalition.
It is the main reason that the space of our Dwarf becomes bigger. b) A certain
internal idle space is reserved by the page-manner partition storage strategy, which
will facilitate holding the cluster feature during the update but will increase the
space consumption of the final file. c) The node index technique and the logical
clustering mechanism speed up the update and facilitate the maintaining of the
clusters after updating. But they bring additional time and space cost. From our
observation, 40% of the construction time is used to work on the database, which is
the main reason that our construction time is much more than the original method.
d) It is very interesting that the space utilization is around 95%. In the beginning,
we forecast the space utilization decrease with the increasing of the number of the
dimensions. The possible reason is the sparseness of the data. e) Our method is
sensitive with the number of the dimensions, and the space increases fast with the
increasing of the dimensionality. The main reason should be the ordering manner
of the dimension. But the original intention is speeding up the query performance.

 200

 400

 600

 800

 10 9 8 7

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

Dimensions

Dwarf
R-Dwarf

Figure 10. Time vs. Dims (4 × 105 Tuples).

 200

 300

 400

 500

 10 9 8 7

S
to

ra
g
e
 S

p
a
c
e
 (

M
B

)

Dimensions

Dwarf
R-Dwarf

Figure 11. Space vs. Dims (4 × 105 Tuples).

Test 2: In this part, we want to test the relationship between the construction
time, the space and the size of the data sets. Set the dimension is 10, and we
separately test the data sets with 100000, 200000, 300000, and 400000 tuples. The
results are shown in Fig.12 and Fig.13.

From the result, we can see that the performance of our method is still behind
the original method. The reason is similar with test 1. But it is noticeable that our
performance can maintain a linear changing with the increasing of the tuples.

4.2 Query on Dwarf

The focus of our tests is about the query performance since it is our original in-
tention. We make several experiments on different kinds of queries under different
strategies.

Test 3: In this part, we test the relationship between the point queries and
the clustering styles including the non-clustering, the computational dependencies

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



A Clustered Dwarf Structure 207

 200

 400

 600

 800

 40 30 20 10

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

Tuples (10
4
)

Dwarf
R-Dwarf

Figure 12. Time vs. Tuples (10 dimensions).

 100

 200

 300

 400

 500

 40 30 20 10

S
to

ra
g

e
 S

p
a

c
e

 (
M

B
)

Tuples (10
4
)

Dwarf
R-Dwarf

Figure 13. Space vs. Tuples (10 dimensions).

between the group-bys, the recursion clustering, and the hierarchical clustering.
The data cubes are the four Dwarfs used in Test 1 with 4×105 tuples. We generate
1000 point queries randomly and run them continuously. Fig.14 shows the time
cost.

 60

 90

 120

 150

 10 9 8 7

T
im

e
 (

s
)

Dimensions

non-clustering
Dwarf

R-Dwarf
H-Dwarf

Figure 14. Point query time vs. Dims.

 100

 200

 300

 400

 10 7 4 1

T
im

e
 (

s
)

Dimensions

non-clustering
Dwarf

R-Dwarf
H-Dwarf

Figure 15. Range query time vs. Dims.

In this test, the recursion clustering aiming at the point query outperforms the
computational dependencies method by 10%. Hierarchical clustering behaves too
badly, and it drops behind far from others, even the non-clustering method. Because
the hierarchical clustering method clusters the nodes of each dimension, and the
query on each dimension will produce an I/O cost. To a point query, the average I/O
number of hierarchical clustering method should be equal to the dimension number
in theory. Here it is less than the dimension number because of the contributions
of the high-speed buffer in Windows NT.

Test 4: In this part, we test the relationship between the range queries and
the clustering styles mentioned in Test 3. The cube we used is the biggest one
of 10 dimensions and 4 × 105 tuples. We want to validate the positive effects of
the improved dimension ordering method to the range queries by this test. The
sorting order is from small to big. To be fair, the query conditions are on the 1st,
4th, 7th, and 10th dimensions with the cardinalities are 10, 100, 2000, and 10000,
respectively. Suppose each range query covers one dimension by the ratio 20%.
We create 100 queries on each of the four dimensions, and use the four clustering
methods mentioned in Test 2 to answer the queries. Fig.15 shows the response time
vs dimension. The I/O times are shown in Fig.16 and Fig.17.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



208 Y. B. Bao et al.

The results are very interesting. The former two methods sort the dimensions
with the cardinalities changing from big to small when constructing the Dwarf, and
the size of Dwarf is small. But in this test, we can see that with the conditions
are pushed near to the root with the maximal cardinality, the time cost is growing
fast. On the contrary, the sizes of the latter two methods are large, but the query
response times do not fluctuate as much as the former two methods. And it seems
that there exists a certain theory similar to negative feedback. We will analyze the
reason of it behind.

 4

 6

 8

 10

 12

 10 9 8 7

I/
O

 T
im

e
s

Dimensions

non-clustering
Dwarf

R-Dwarf
H-Dwarf

Figure 16. Point query I/O times vs. Dims.

 50

 100

 150

 200

 250

 10 7 4 1

I/
O

 T
im

e
s

Dimensions

non-clustering
Dwarf

R-Dwarf
H-Dwarf

Figure 17. Range query I/O times vs. Dims.

It is obvious that for the query covering a dimension by a fixed proportion, the
query time will increase with the increase of the cardinality, which is formed by
the special tree structure of Dwarf. When querying at the 10th dimension with
10000 cardinality, the original method has to read about 10000 × 20% = 2000
nodes of the next dimension to decide whether or not to go on, because the 10th
dimension is the root. Since the data is sometimes sparse, the tuples matching the
conditions are few. So most of the 2000 nodes read will be abandoned, which waste
many I/O operations. Here the order is opposite to the original Dwarf, the 10th
dimension is set to the leaf nodes. We only need to read a few leaf nodes to answer
the queries. That is the reason why the I/O times using hierarchical clustering are
close to the dimension number under this condition. In addition, we can see that
in our experiments, when query on the root, the performance is still good, because
the root has a small fan-out (only 10 cardinalities). To the query covering 20%
range, we only need to judge 2 nodes but not the 2000 nodes of the next dimension
at most. We call it query negative feedback of reversed dimension ordering. This
negative feedback makes the performances of the range query using the recursion
clustering and the hierarchical clustering fluctuates not much.

Generally, our clustering methods bring the construction and compression of
Dwarf negative effect, but the effect is endurable. And our methods can remark-
ably improve the query performance on Dwarf. Since we have to maintain some
additional structures, the performance of the update operations will be slow down,
but it is endurable according to the simplicity of our structures. In the future, we
will do some research on updating.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



A Clustered Dwarf Structure 209

5. CONCLUSION

In this paper we propose and implement two novel clustering algorithms on Dwarf
to speed up querying and design a partition strategy and a logical clustering mech-
anism to facilitate updating and maintain the clusters. Experimental results and
theoretic analysis show that the recursion clustering is the best for point queries,
and the hierarchical clustering is the best for range queries. In general, the recursion
clustering is suitable for both queries.

In the future, we will study the support of the iceberg cube [Beyer and Ramakr-
ishnan. 1999] [D. Xin and Wah. 2003]. Compared with point queries and range
queries, the iceberg query is a special type of query. The former searches aggre-
gations from dimension values essentially, but the latter is opposite. Because the
aggregations are all stored in the leaf nodes, an iceberg query will access almost all
the nodes, which has no significance.

In addition, the high capability and the pre-fetch function of the high-speed
memory buffer of Windows NT disk I/O system can reduce the I/O times, which
gives us the idea that whether it is effective for the high randomization Dwarf file.

ACKNOWLEDGMENTS

The research reported here is supported by the National Natural Science Foundation
of China under Grant No.60773222.

REFERENCES

Beyer, K. and Ramakrishnan., R. 1999. Bottom-up computation of sparse and iceberg cubes.
In SIGMOD , 359–370.

Chen, S. and Rundensteiner., E. A. 2005. Gpivot: Efficient incremental maintenance of complex
rolap views. In ICDE , 552–563.

D. Xin, J. Han, X. L. and Wah., B. W. 2003. Star-cubing: Computing iceberg cubes by top-down
and bottom-up integration. In VLDB , 476–487.

Gibbons, P. B. and Matias., Y. 1998. New sampling-based summary statistics for improving
approximate query answers. In SIGMOD , 331–342.

H. He, J. Xie, J. Y. and Yu., H. 2005. Asymmetric batch incremental view maintenance. In

ICDE , 106–117.

J. S. Vitter, M. W. and Iyer., B. 1998. Data cube approximation and histograms via wavelets.
In CIKM , 96–104.

J. Shanmugasundaram, U. F. and Bradley., P. S. 1999. Compressed data cubes for olap
aggregate query approximation on continuous dimensions. In KDD , 223–232.

N. Folkert, A. Gupta, A. W. e. a. 2005. Optimizing refresh of a set of materialized views. In

VLDB , 1043–1054.

S. Acharya, P. B. G. and Poosala., V. 2000. Congressional samples for approximate answering
of group-by queries. In SIGMOD , 487–498.

W. Wang, J. Feng, H. L. and Yu., J. X. 2002. Condensed cube: An effective approach to
reducing data cube size. In ICDE , 155–165.

Y. Sismanis, N. Roussopoulos, A. D. and Kotidis., Y. 2002. Dwarf: Shrinking the petacube.
In SIGMOD , 464–475.

Y. Sismanis, A. Deligiannakis, Y. K. N. R. 2003. Hierarchical dwarfs for the rollup cube. In

DOLAP , 17–24.

Y. Zhao, P. M. Deshpande, J. F. N. 1997. An array-based algorithm for simultaneous multidi-
mensional aggregates. In SIGMOD , 159–170.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007




