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Data Warehousing and OLAP (On-Line Analytical Processing) have turned into the key technol-
ogy for comprehensive data analysis. Originally developed for the needs of decision support in
business, data warehouses have proven to be an adequate solution for a variety of non-business
applications and domains, such as government, research, and medicine. Analytical power of the
OLAP technology comes from its underlying multidimensional data model, which allows users to
see data from different perspectives. However, this model displays a number of deficiencies when
applied to non-conventional scenarios and analysis tasks.

This paper presents an attempt to systematically summarize various extensions of the original
multidimensional data model that have been proposed by researchers and practitioners in the
recent years. Presented concepts are arranged into a formal classification consisting of fact types,
factual and fact-dimensional relationships, and dimension types, supplied with explanatory exam-
ples from real-world usage scenarios. Both the static elements of the model, such as types of fact
and dimension hierarchy schemes, and dynamic features, such as support for advanced operators
and derived elements. We also propose a semantically rich graphical notation called X -DFM that
extends the popular Dimensional Fact Model by refining and modifying the set of constructs as to
make it coherent with the formal model. An evaluation of our framework against a set of common
modeling requirements summarizes the contribution.
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1. INTRODUCTION

OLAP (On-line Analytical Processing) [Codd et al. 1993] emerged in the 90s as
a new technology for providing all the key people in the enterprise with access to
whatever level of information they need for decision making. OLAP is employed
on top of data warehouse systems. Data warehouse provides a separate database
that integrates the data extracted from various operative systems and external
sources and rearranges it into multidimensional views to enable simple but powerful
aggregation. Applicability of OLAP is by no means restricted to business scenarios.
Its universality bears on the concept of data “analyzability”: the data should be
homogenized, integrated, and preprocessed to enable efficient and goal-oriented
analysis [Bauer 2004]. The need for this kind of analysis is encountered in virtually
any application domain dealing with large data volumes accumulated over time. In
the last years, deployment of data warehouses has reached out for a multitude of
non-business domains and rather unconventional applications, such as government,
academia, life sciences, bio-informatics, education, research, medicine, etc.

Even though data warehousing is an established and widely adopted practice in
modern information technology platform, there exist numerous open research issues
in this area [Hümmer et al. 2002]. Many of those issues arise due to the attempts
to apply the business performance oriented OLAP techniques to non-conventional
application scenarios. The causes of deficiencies and failures are manifold, from the
underlying conceptual model to frontend “bottle-necks”.

The universality of OLAP should not be taken for absolute, but should rather
be considered in the context of quantitative analysis, based on aggregating large
data volumes and applying data mining algorithms for extracting additional knowl-
edge. Other types of analysis may require domain-specific models and approaches
adequately capturing the semantics of the respective domain.

1.1 Contribution and Outline

Challenged by the limitations of the conventional OLAP approach, data warehouse
researchers dedicate tremendous efforts to extending its flexibility and adaptability
to novel application domains and analytical tasks. In the context of our research,
the term “complex data” refers to data domains that cannot be adequately cap-
tured by the standard model. The standard model requires the data to be available
in form of rigidly structured facts consisting of numeric measures as the focus of
analysis and their descriptive dimensions as the context of the analysis. Examples
of data scenarios violating this model are non-balanced or ragged dimension hi-
erarchies [Jagadish et al. 1999; Niemi et al. 2001; Malinowski and Zimányi 2006;
Mansmann and Scholl 2007], many-to-many mappings between facts and dimen-
sions [Pedersen et al. 2001; Song et al. 2001], absence of pre-defined measures [Park
et al. 2005; Mansmann et al. 2007b], and inadequacy of standard aggregation func-
tions and operators [Ravat et al. 2007; Jensen et al. 2002]. The aim of this work is
to collect and systematically classify a wide palette of extensions to the multidimen-
sional data model proposed in the recent years. We also clarify some ambivalent
and contradicting definitions found in the literature and propose a consistent ter-
minological framework.

For modeling the illustrative examples that accompany formal concepts through-
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out the paper, we adopt the popular Dimensional Fact Model [Golfarelli et al. 1998]
and extend it whenever the original notation is unable to adequately capture the
semantics. We call the resulting extended conceptual model X -DFM.

In a multidimensional scheme, the entire data is shaped into cubes consisting of
facts and dimensions. This fundamental observation coined the structure of our
classification framework and, consequently, the structure of this paper. Section 2
sets the stage by providing an overview of the OLAP fundamentals. Related work
in the field of overcoming the limits of the classical OLAP approach is described in
Section 3. In Section 4 we formulate the modeling requirements of comprehensive
data analysis. Section 5 contains a formalized presentation of our proposed multi-
dimensional model. In Section 6 we proceed by providing a categorization of facts
types and their relationships, followed by definition of various dimension schemes
and dimension hierarchy types as well as relations within and across dimension
hierarchies in Section 7. In Section 8 we evaluate the concepts and approaches
proposed in this work against a set of commonly stated multidimensional proper-
ties. In the concluding Section 9 our contribution is summarized and directions for
future research are identified.

2. OLAP FUNDAMENTALS

2.1 Multidimensional Data Model

OLAP technology draws its analytical power from the underlying multidimensional
data model. The data is shaped into cubes of uniformly structured facts, consisting
of analytical values, normally of numeric type, referred to as measures, uniquely
determined by descriptive values drawn from a set of dimensions [Pedersen and
Jensen 2001]. Each dimension forms an axis of a cube, with dimension members
as coordinates of the cube’s cells storing the respective measure values. Figure 1
shows a strongly simplified example of a 3-dimensional data cube that stores stu-
dent enrollment numbers (measure NumPersons) determined by dimensions Country,
Degree, and Semester. In real-world applications, data cubes may have arbitrarily
many dimensions, and are therefore denoted hypercubes.

The values within a dimension are further organized into classification hierar-
chies to support additional aggregation levels. Attributes whereupon the hierarchy
is defined are called dimension levels, or categories. Dimension levels along with
their partial order are referred to as the dimension’s intension, or schema, whereas
the hierarchy of its members forms the dimension’s extension, or instance. The hi-
erarchical property on which the hierarchy is based is called the analysis criterion.
Multiple hierarchies may be defined within a dimension, based on the same or to
different analysis criteria. Hierarchies defined upon the same criterion are called
multiple alternative, with time dimension as a classical example, as date values
within a query may be summarized by week or by month, but not by any combi-
nation of the two. Hierarchies based on various criteria are called parallel, with a
corresponding example of Degree dimension depicted in Figure 2: one classification
is based on the attribute Degree Type while the other draws upon Subject. In con-
trast to multiple alternatives, parallel hierarchies can be explored in combination,
as their aggregation paths are not related to each other.

In addition to the analysis criterion itself, dimension categories may include non-
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007









Extending the Multidimensional Data Model to Handle Complex Data 131

the cube’s dimensionality, is also known as the PROJECT operation.
—SLICE&DICE selects a sub-cube by specifying selection conditions on multiple

dimensions in the drill path.
—RANKING outputs the top/bottom n cube cells with respect to the aggregate’s

value.
—PIVOT changes dimensional orientation of the view, e.g., swaps columns and

rows in a pivot table.

A number of extended drilling operators are provided by some vendors:

—DRILL-THROUGH shows the original fact entries behind the aggregates.
—DRILL-WITHIN drills down to a different classification hierarchy of the same

dimension.
—DRILL ANYWHERE increases dimensionality by drilling down into a dimension

not yet in the drill path.
—DRILL-ACROSS joins multiple related data cubes along their shared dimensions

to combine or compare their measures.

Another group of operators perform filtering, i.e., reduction of the subset of
interest, and are variants of SLICE&DICE :

—SLICE reduces dimensionality of the data set by filtering one of the dimensions
in the drill path to a single value.

—DICE specifies the values to be excluded from a dimension in the drill path.
—SELECT reduces a dimension in the drill path to a set of values or to a certain

value range.
—FILTER specifies selection conditions on dimensions outside of the drill path, thus

resulting in changed aggregated values.
—CONDITIONAL HIGHLIGHTING marks the aggregates satisfying a specified con-

dition in the context of the original data set.

A view reordering operator SWITCH allows users to manually rearrange the ele-
ments in the visual presentation.

Finally, there exist two advanced operators, defined in [Pourabbas and Rafanelli
2000], which enable dynamic manipulation of the cube’s scheme:

—PUSH allows to specify a measure from an arbitrary dimension category.
—PULL is the converse of PUSH that allows to convert a measure into a dimension.

OLAP operations differ in their complexity: some result in a new database query
(e.g., DRILL-DOWN) or generation of new metadata (e.g., PUSH and PULL ), others
can be computed in-memory from the original query result (e.g., ROLL-UP and
DICE ) or require simple rearrangement on the display (e.g., SWITCH).

3. RELATED WORK

Deficiencies of the original multidimensional data model and proposals of extended
models have become an active data warehousing research issue in the last decade.
The necessity to develop novel concepts was emphasized [Zurek and Sinnwell 1999]
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and a series of extensions have been proposed in the literature. Most of the propos-
als were coined by a set of requirements drawn from specific application scenarios
and, thus, do not claim to be ultimate or universal. Disclosure of novel applica-
tions continues to impose new modeling challenges and will undoubtedly continue
to encourage further contributions.

[Pedersen et al. 2001] formulated 11 requirements of comprehensive data analy-
sis and evaluated 14 state-of-the-art data models for data warehousing from both
the research community and commercial systems against those requirements. As
none of the models appeared to provide more than 6 of the 11 features, the authors
proposed their own extended model for capturing and querying complex multidi-
mensional data. Evaluation criteria specified in [Pedersen et al. 2001] are by no
means universal as those were drawn from a specific case study. Nevertheless, the
proposed extended model, supporting such features as non-summarizable hierar-
chies, many-to-many relationships between facts and dimensions, handling tempo-
ral changes and imprecision, is one of the most powerful among existing models. A
similar attempt to classify and evaluate the state of the art in the multidimensional
modeling is presented in [Abelló et al. 2001]. However, the authors used two or-
thogonal sets of classification criteria, namely, the kind of constructs/concepts they
provide and the design phase at which they are employed. Another assessment of
conceptual models is provided in [Luján-Mora et al. 2006], in which six prominent
multidimensional models are evaluated against an exhaustive set of requirements
regarding facts, dimensions, measures, operators, etc. The model is capable of
handling advanced concepts, such as derived measures, many-to-many mappings,
measure additivity properties, and multiple dimension hierarchies.

[Trujillo et al. 2001] propose an O-O multidimensional modeling (OOMD) ap-
proach that provides a theoretical foundation for the use of object-oriented features
in data warehousing and OLAP applications. This approach introduces a set of
minimal constraints and extensions to the UML for representing multidimensional
modeling properties for these applications. In [Luján-Mora et al. 2002], the authors
propose to use UML package diagrams for facilitating the data warehouse design.
The proposed approach benefits from the package grouping mechanism of UML
to group classes into higher-level units and create different levels of abstraction.
Furthermore, a UML extension based on the self-extensibility mechanisms of UML
by means of package stereotypes is provided.

Major research efforts in the field of multidimensional modeling are focused on
handling complex dimensions [Niemi et al. 2001; Pedersen et al. 2001; Hurtado and
Mendelzon 2002; Malinowski and Zimányi 2006; Mansmann and Scholl 2007]. It is
but comprehensible: traditional models enforce homogeneity, completeness, strict-
ness, and balancedness in dimension hierarchies, which appears to be a too rigid
setting for many real-world scenarios. This rigidness comes from the requirement
of summarizability for all dimensional hierarchies. The concept of summarizability,
coined in [Rafanelli and Shoshani 1990] and further explored by other authors [Lenz
and Shoshani 1997; Hurtado and Mendelzon 2001], requires distributive aggregate
functions and dimension hierarchy values, or informally, that 1) facts map directly
to the lowest-level dimension values and to only one value per dimension, and 2)
dimensional hierarchies are balanced trees [Lenz and Shoshani 1997]. In practice,
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007
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summarizability guarantees correct aggregation and optimized performance, as any
aggregate view is obtainable from a set of pre-computed views defined at lower
aggregation levels. However, data hierarchies in many real-world applications are
not summarizable and, therefore, inadequate as OLAP dimensions. In a survey on
open issues in multidimensional modeling [Hümmer et al. 2002] identified unbal-
anced and irregular hierarchies and missing data as the most pressing challenges of
dimensional modeling.

[Hurtado and Mendelzon 2001] proposed integrity constraints for inferring sum-
marizability in heterogeneous dimensions and defined a formal framework for const-
raint-conform hierarchy modeling [Hurtado and Mendelzon 2002]. An approach to
modeling dimension hierarchies with no enforcement of balancedness or homogene-
ity along with the corresponding SQL extensions called SQLpHq is described in
[Jagadish et al. 1999]. [Niemi et al. 2001] analyzed unbalanced and ragged data
trees and demonstrated how dependency information can assist in designing sum-
marizable hierarchies. [Lehner et al. 1998] relaxed the condition of summarizability
to enable modeling of generalization hierarchies by defining a generalized multidi-
mensional normal form (GMNF) as a yardstick for the quality of multidimensional
schemata. [Lechtenbörger and Vossen 2003] pointed out the methodological de-
ficiency in deriving multidimensional schema from the relational one and extend
the framework of normal forms proposed in [Lehner et al. 1998] to provide more
guidance in the data warehouse design process. A remarkable contribution to the
conceptual design was made by Malinowski and Zimányi who presented a com-
prehensive classification of dimensional hierarchies including those not addressed
by current OLAP systems [Malinowski and Zimányi 2004] and formalized their
conceptual model and its relational mapping [Malinowski and Zimányi 2006].

To the best of our knowledge, most of the extensions proposed in the above con-
tributions have not been implemented by any existing data warehouse systems. In
a previous work [Vinnik and Mansmann 2006], we presented a prototypical analysis
interface capable of supporting a subset of irregular dimension hierarchies and allow-
ing interactive data exploration using hierarchical visualization techniques. A more
recent work [Mansmann and Scholl 2007] builds upon the classification framework
of [Malinowski and Zimányi 2006] and extends it by providing a more formal and
comprehensive categorization of dimension hierarchy types. All enumerated classes
are inspected for summarizability and a two-phase transformation algorithm for
deriving a logical schema is proposed. As a proof of concept, all introduced model
extensions were implemented in a visual interface with a schema-based dimensional
navigation structure for exploring data cubes along complex dimension hierarchies.

A few works in the multidimensional modeling are concentrated on the challenges
other than complex dimensions. These other issues address non-conventional re-
quirements concerning facts, measures, and fact-dimensional mappings. The ex-
tended model of [Pedersen et al. 2001] accounts for such features as symmetric
treatment of dimensions and measures, many-to-many relationships between facts
and dimensions, aggregation semantics awareness, and variable granularity of facts.
[Song et al. 2001] analyzed existing approaches to handling many-to-many relation-
ships between facts and dimension and identified 4 additional approaches tailored
towards various analysis requirements. [Abelló et al. 2001] clarify some concepts
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related to multidimensionality in general and fact modeling in particular. The
authors demonstrate the convertibility of fact and dimension roles in multi-fact
multidimensional schemes.

[Ravat et al. 2007] demonstrated how OLAP can be applied for analyzing semi-
structured data, such as XML documents. As this data type is non-additive and
non-numeric, the whole analysis framework needs to be adapted. The authors
proposed a conceptual model based on a “factless multi-dimension” representation
and define a set adapted multidimensional operations and aggregation functions
relevant for this type of analysis. A novel framework for multidimensional analysis
of XML documents, denoted XML-OLAP, in which the multidimensional data is
actually stored in the XML format, is presented in [Park et al. 2005]. XML cubes
contain either numeric or text data and are queried using a new multidimensional
expression language XML-MDX, which supports conventional OLAP operations as
well as specialized text mining operators.

In [Mansmann et al. 2007b] we applied the data warehousing approach to busi-
ness process analysis. The requirement to store the original process execution data
rather than pre-defined performance measurements helped us identify new types of
fact structures, factual and fact-dimensional relationships, and aggregation behav-
iors. Besides, absence of explicitly specified measures in the scheme raises the issue
of enabling dynamic measure specification at query time.

4. REQUIREMENTS OF COMPREHENSIVE DATA ANALYSIS

An abundance of multidimensional models proposed in recent years is a result of
specifying different sets of requirements a model has to meet. In this section,
we integrate the requirements and properties proposed by various authors with
respect to comprehensive multidimensional analysis over complex data into a unified
framework. This framework serves as a reference for specifying an extended data
model for OLAP. The requirements can be subdivided into two major classes: 1)
static properties dealing with the structuring of the multidimensional data space,
and 2) dynamic properties dealing with the supported analysis tasks.

In the literature [Pedersen et al. 2001; Luján-Mora et al. 2006; Abelló et al. 2001]
including our previous works [Mansmann and Scholl 2006; 2007; Mansmann et al.
2007b], the following major static properties of multidimensional modeling have
been identified:

(1) Explicit separation of the cube structure and its data instances. The structure
of a data cube is modeled as a fact-dimensional scheme. The actual content
is crucial for refining the scheme as to identify irregular hierarchies, partial
containment, etc.

(2) Facts with no measures. Some applications rely on storing the original data,
i.e., without pre-defined measure attributes. According to one of Kimball’s
laws, any many-to-many relationship should be modeled as fact [Kimball 1996].
Therefore, it is necessary to allow storage of any type of many-to-many relations
in form of facts.

(3) Complex measures. The model should support structured and derived measures
as well as specification of measure’s additivity, i.e., aggregation semantics.
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(4) Complex facts. The model should be capable of handling deviating patterns
within the facts, such as heterogeneity, variable granularity, and missing values.

(5) Multi-fact structures. It should be possible to model application scenarios com-
prising multiple related fact types. Inter-fact relationships result in case of
sharing common dimensions, consequently, it should be possible to model di-
mension sharing.

(6) Fully and partially shared dimensions. Facts may be compatible to each other at
non-bottom granularity levels. This happens when they have a pair of partially
shared dimensions, i.e., whose hierarchy schemes converge at a category, non-
bottom for at least on of them. To recognize partial sharing, it is imperative
to explicitly specify the overlap between related fact schemes.

(7) Multiple roles of dimension categories. In multi-fact schemes, the same dimen-
sion or its category may be used in multiple roles (e.g., time dimension may be
used as start time and end time characteristic of a fact). Therefore, it should
be possible to specify multiple roles of the same category.

(8) Many-to-many fact-dimensional relationships. Many-to-many mappings be-
tween facts and dimensions are common in practice and, therefore, should be
manageable by the model.

(9) Explicit hierarchies in dimensions. Dimension hierarchies should be presented
explicitly by the schema that distinguishes between dimension level attributes
and property attributes belonging to a particular level.

(10) Multiple hierarchies. A single dimension can have multiple aggregation paths
that may or may not converge at some upper level.

(11) Complete hierarchies. In a complete hierarchy, all child-level members fully
roll-up to the same parent level and the extension of the latter consists of
those child members only [Luján-Mora et al. 2006]. The model should provide
constructs to specify the completeness, i.e., non-expandability, of a hierarchy.

(12) Distinction between alternative and parallel hierarchies. Multiple alternative
hierarchies refer to the same analysis criterion and thus may not be used in
combination as grouping conditions within a query. Parallel hierarchies are
based on various criteria and may be used in combination.

(13) Complex dimensions. To support complex dimensions, the model should be
able to capture the causes of complexity, such as non-covering, non-onto, and
non-strict mappings, heterogeneity, etc.

(14) Partial roll-up behaviors. A “rolls-up-to” relationship between a fact and a
dimension or between dimension categories may be full (each member partici-
pates in the relationship) or partial (members are allowed not to participate in
the relationship). Partial containment may be a result of optionality, hetero-
geneity or specialization. The model should distinguish between various kinds
of roll-up relationships.

(15) Totally ordered hierarchies. A dimension hierarchy is normally defined in
term of partial ordering (parent-child relationships within pairs of members).
However, in some hierarchies, members of the same hierarchy level may have
to be ordered to enable sorting according to this ordering.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007
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As for dynamic properties supported by the multidimensional model, we propose
the following ones:

(1) Symmetric treatment of facts and dimensions. In a connected multi-fact scheme,
a fact may act as a dimension of another fact, or a dimension may turn into a
fact of a specific query.

(2) Symmetric treatment of measure and dimension attributes. Any attribute within
a fact scheme may be turned into a measure of an analytical query.

(3) Measure used as dimension. Some queries may need to use the measure as a
dimension of another measure within the same fact scheme.

(4) Drill-across. Drill-across operator enables combinations of multiple related
data cubes in order to explore their measures in parallel or derive new measures.

(5) Dynamic measure derivation. Measures, not originally included into the scheme,
can be added at query time by specifying their derivation formulae.

(6) Dynamic dimension derivation. Dimensions, derivable from the existing di-
mensions, but not originally included into the scheme, can be added at query
time by specifying their derivation formula.

(7) Dynamic hierarchy derivation. Users should be able to arrange dimensional
values into ad-hoc hierarchies of user-defined categories.

(8) Resolution of many-to-many mappings. In the presence of non-strict hierar-
chies, users should be prompted to resolve multi-parent relationships to ensure
correct aggregation.

5. CONCEPTUAL MODEL: PRESENTATION AND FORMALIZATION

The aim of the conceptual model is to capture relevant data and relationships
in the application domain in a semantically rich and implementation-independent
fashion. Two major components of the semantic multidimensional model are the
formalization and the graphical notation. Most of the existing models focus either
of this components, but not both. Formal models tend to adopt some existing
notation (e.g., ER, UML or their variants) or do not employ any.

In our opinion, the graphical notation should be fully aligned with the formal
model in order to correctly capture its semantics. Therefore, we opt for a popular
Dimensional Fact Model (DFM)proposed in [Golfarelli et al. 1998]. DFM is based
on a pragmatic scientific approach, in which the graphical framework emanates from
the formal conceptual framework. Besides, in the abundance of notations proposed
in the literature, DFM stands out for its simplicity, elegance, and expressiveness
for representing the concepts introduced in this paper.

In part of the formalization, our model adopts and modifies the notation used
in our previous works [Mansmann and Scholl 2007; Mansmann et al. 2007a]. In
its basics, the formalization relies on that of [Pedersen et al. 2001], [Jensen et al.
2002], and [Golfarelli et al. 1998] since those models have the necessary flexibility
for handling complex dimensions. However, modifications become necessary as we
address new requirements.
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007
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case with invoice number in Figure 5. However, that contradicts our fact scheme
definition. Therefore, fact properties should be modeled as non-hierarchical dimen-
sions. Kimball describes such properties as degenerate dimensions, i.e., consisting
of a single key attribute [Kimball 1996].

With respect to the requirements specified in the previous section, DFM displays
a number of deficiencies, such as the following ones:

—Facts are allowed to have non-dimension attributes. However, by definition, facts
are composed solely of measures and dimensions.

—There is no construct for modeling many-to-many and one-to-one relationships
between elements.

—Directed (i.e., many-to-one) relationships between the nodes are shown by non-
directed edges. This seems to undermine the intuitiveness of the resulting scheme,
especially when directed and undirected edges are used as alternative notations
for the same concept.

—There is no distinction between hierarchy and non-hierarchy relationships be-
tween attributes: a “rolls-up-to” relationship between a pair of dimension cate-
gories does not visually differ from an association with a non-dimension property.

—There is no distinction between optional properties and partial rollup behavior.
—There is no construct for modeling heterogeneous rolls-up-to relationships.
—The scheme does not show the abstract top-level dimension categories that serve

as root nodes of their hierarchies.
—DFM does not distinguish between multiple alternative and parallel hierarchies.

However, the distinction is crucial for automatic recognition of valid aggregation
paths. Multiple alternative hierarchies like the ones given by week and month
offer alternative, i.e., mutually exclusive, aggregation paths for date. Parallel
hierarchies, such as the ones given by manager and project group are defined on
independent project characteristics and can thus be used as aggregation axes in
arbitrary order. Parallel hierarchies behave like various dimensions of a fact.

—Measures inside a fact node are presented as plain text. However, each attribute
is a node of the scheme and should be visually identifiable as such.

—There is no concept for presenting derived elements (facts, dimensions, measures).

We propose to resolve the above listed issues by applying the following logic:

—Non-dimension attributes of a fact should be modeled as degenerate dimensions.
—The box of the fact node should hold any attributes which exist only inside the

fact entry. These attributes can be of type measure or a degenerate dimension.
—A dimension attribute with one-to-one relationship to the fact (i.e., fulfilling the

primary key property w.r.t. the fact) is double-underlined.
—Measure attributes may be considered as a special kind of dimensions residing

inside the fact. This assumption provides a basis for handling the requirements
of interchangeability of measure and dimension roles. Measure’s label is supplied
with a black-colored circle.

—Different types of edges should be used for modeling different types or relation-
ships. Edge types corresponding to various relationships (association, general-
ization, containment, etc.) can be adopted from the UML.
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A dimension scheme is a connected, directed graph, in which each vertex corre-
sponds to an aggregation level and each edge represents a full or partial “rolls-up-to”
relationship between the level, or, formally:

Definition 5.3. A dimension scheme is a quadruple D � pC ,�D,JD,KDq, where
C � tCk, k � 1, . . . , pu is set of category types, or dimension levels, in D, �D is a
partial order in C , whereas JD and KD are distinguished as the top and the bottom
element of the ordering, respectively.

KD corresponds to the finest grain of D, i.e., the one at which D is connected
to the fact scheme. JD corresponds to an abstract root node of the dimension’s
hierarchy that has a single value referred to as ALL: JD � tALLu.

Relation �D captures the containment relationships between category types.
This containment may be full, denoted �(full)

D , or partial, denoted �(part)
D . There-

fore, relation �D indicates the union of the two orders �(full)
D and �(part)

D . Admis-
sion of partial containment, also known as partial rolls-up-to relationship, between
category types is crucial for specifying heterogeneous dimension hierarchies.

Predicates � and �� specify direct and transitive containment relationship, re-
spectively, between a pair of category types in C . Partial and full direct containment
predicates are denoted �(part) and �(full), respectively. Therefore, predicates � and
�� without fullness/partiality indication imply that the containment is either full
or partial, or formally: C � C1 ô pC �(full) C1 _ C �(part) C1q. Partial containment
between any two categories C and C1 (C �(part) C1) occurs when members of C are
not required to have parent members in C1. A pair of partial containment relation-
ships of the same category C (i.e., C �(part) C1 ^ C �(part) C2) are exclusive if any
member of C rolls-up either to C1 or C2, but never to both. A set of exclusive partial
“rolls-up-to” relationships is denoted C �part pC1|C2q.

The following properties hold for the partial order relation �D and its predicates:

(1) Antireflexivity: ECj P C : Cj � Cj .
(2) Antisymmetry: EpCi, Cjq P C : pCi � Cj ^ Cj � Ciq.
(3) Transitivity: @pCi, Cj , Ckq P C : pppCi � Cj _ Ci �� Cjq ^ pCj � Ck _ Cj ��

Ckqq ñ Ci �� Ckq.
The first of the above properties implies that there is no support for reflexive “rolls-
up-to” relationships, i.e., of a category with itself. A classical example of such
reflexive relationship could be a supervisor hierarchy within a category employee.
The second property disallows a bi-directional “rolls-up-to” relationship between
any pair of categories as those would result in cyclic aggregation paths. Thereby,
properties (1) and (2) guarantee acyclic termination of all aggregation paths. The
property of transitivity defines recursive “rolls-up-to” relationships within a hier-
archy. For instance, if date is contained in month and month is contained in year,
then date is transitively contained in year.
Cj is said to be a category type in C , denoted Cj P C . Dimension scheme defines

a skeleton of the associated data tree, for which the following conditions hold:

(1) @Cj P C ztJDu : Cj ��(full) JD (each non-top category type is fully contained
in the top category type).
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(1) @em P Ci,@en P Cj : em � en ñ Ci � Cj (connectivity). This condition
ensures, that the containment relationship between a pair of categories results
from the containment relationship between the members of those categories and
disallows “rolls-up-to” relationships between members of unrelated categories.

(2) Eem P Ci, Een P Cj : em � en ^ Ci � Cj (disjointness of categories). Prohibiting
any value to be a member of multiple category types enforces category sharing
as well as disjointness of any pair of categories referring to different types.

(3) @Ci : pEem P Ci, Een P Ci : em �� ejq (stratification, i.e. disallowance of
containment relation between the members of the same category).

(4) pTypepCjq � JDq ñ |Cj | � 1 ^ Cj � tALLu (top category consists of a single
value ALL).

6. FACT TYPES AND FACTUAL RELATIONS

Classical designation of facts is to contain relevant measures of a business process.
Normally, facts are modeled by specifying the measures of interest and the context
(dimensions) for their analysis.

Definition 6.1. A fact scheme F is measurable if it has a non-empty set of mea-
sures, i.e., MF � H.

Kimball subdivides measurable facts into three classes: 1) transactional, 2) periodic
snapshots, and 3) cumulative snapshots [Kimball 1996].

Technically, a fact type is given by a many-to-many relationship between a set of
attributes. According to Kimball’s laws, any many-to-many relationship is a fact by
definition [Kimball 1996]. Some scenarios require storing many-to-many mappings
in which no attribute qualifies to be a measure. Typical cases include recording of
some events, where an event is given by a combination of simultaneously occurring
dimensional characteristics. Such scenarios result in so called factless fact tables – a
term introduced in [Kimball 1996]. However, fact table is a logical design construct
corresponding to the concept of a fact type. Therefore, there is a need to define a
conceptual equivalent of factless fact tables.

Definition 6.2. A fact scheme F is non-measurable if its set of measures is empty,
i.e., MF � H.

Major usage scenarios of non-measurable facts are event tracking and coverage
tables [Kimball 1996]. The former model events as a robust set of many-to-many re-
lationships between multiple dimensions, while the latter is used to track events that
were eligible but did not happen (e.g, product items not bought by any customers).
Another difference is that event tracking facts are primary, i.e., not derivable or
dependent on other facts, while coverage facts are secondary as the latter are always
related to some primary fact table.

To exemplify the concepts defined in this section, we borrow a case study con-
cerned with surgical workflow analysis from [Mansmann et al. 2007a]. A data
warehouse is used for storing the records of executed surgical interventions. A
surgical process is decomposed into activities, or work steps, describing the ac-
tions of the surgeons and other participants, and into events describing discrete
occurrences. Surgical process executions themselves can also be viewed as events,
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Identifier(D): Degenerate(D)^p@pei, ejq P KD : e1 � e2q.
InvoiceNumber and PurchaseID are examples of a degenerate and a fact identifier

dimension of scheme PURCHASE in Figure 15, respectively.
Hierarchical dimensions can be recursively decomposed into their constituent

sub-dimensions by recursively stripping off the bottom-level category. For example,
building � city � Jproject and city � Jproject are sub-dimensions of project.

Definition 7.4. Dimension D1 is a sub-dimension of D if its scheme D1 is a sub-
graph of D and each �H1 , H 1 P D1, is a restriction of �H , H P D, to the corre-
sponding categories.

7.1 Dimension Hierarchy Types

Dimension hierarchies are categorized along two orthogonal properties of strictness
and homogeneity.

Strictness means that each member of a lower level of a hierarchy belongs to only
one member of a higher level. A hierarchy is strict if it disallows many-to-many
cardinalities in its “rolls-up-to” relationships:

Strict(H):@pCi � Cjq P H,@e1 P Ci,@pe2, e3q P Cj : ppe1 � e2 ^ e1 � e3q ñ e2 � e3q.
A non-strict hierarchy has at least one many-to-many “rolls-up-to” relationship:

Non-strict(H):DpCi � Cjq P H, De1 P Ci, Dpe2, e3q P Cj : pe1 � e2 ^ e1 � e3 ^ e2 � e3q.
In our example, such relationship exists between project and project group where a
project may be associated with multiple project groups. Non-strict mappings are
not summarizable. However, there exist two augmented non-strict hierarchy types
that guarantee correct summarization3:

—Weighted non-strict hierarchy restores summarizability by specifying each ele-
ment’s degree or probability of belonging to each of its parent elements. The re-
lation between project group and section is an example of such mapping, supplied
with an obligatory “degree-of-belonging” attribute degree in Figure 15. Further
details on this type may be found in [Mansmann and Scholl 2007].

—Fuzzy hierarchies is a very special type of non-strict mapping in which child
elements are assigned to parent elements dynamically using some rules, so that
the belonging relationship may very from one query to another [Laurent 2001].
However, at any single point in time, the mapping is strict. Consider an example
of a fuzzy category expensiveness in Figure 15. Members of price are assigned to
the members of expensiveness based on complex rules, e.g., analysis the overall
price scale of the products already purchased.

Homogeneity of a hierarchy is assessed by testing it for existence of partial con-
tainment relationships. Dimension project contains a homogeneous hierarchy project
� manager � Jproject. However, the hierarchy project �part poffice | city q, office �
building � city � Jproject is heterogeneous as project values are allowed to roll-up

3Neither of these hierarchy types are implemented by standard OLAP systems.
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either to office or to city. This behavior is the result of including both internal
projects, i.e., with an office location, and external ones situated in other cities.

A hierarchy is homogeneous if all “rolls-up-to” relationships within it are full:

Homogeneous(H): EpCi, Cjq P H : Ci �(part) Cj .

A heterogeneous hierarchy admits multiple exclusive paths, i.e., related partial
“rolls-up-to” relationships, between its categories:

Heterogeneous(H): DpCi, Cjq P H : Ci �(part) Cj .

Homogeneous hierarchies should be tested for symmetry and completeness. A hier-
archy is symmetric, or onto, if all its levels are mandatory, i.e., if each non-bottom
member has at lease one descendant element at the bottom level:

Onto(H): (Homogeneous(H) ^@Ci P H,TypepCiq � KD,@e1 P Ci : pDe2, T ypepe2q � KD : e2 �� e1q).
A hierarchy is asymmetric, or non-onto, if it tolerates childless members in non-
bottom categories:

Non-onto(H): De1 P Ci, TypepCiq � KD : pEe2, T ypepe2q � KD : e2 �� e1q.
The hierarchy office � building � city is symmetric. A non-onto mapping occurs in
administrative staff � administrative division, as a division may appear to have no
staff in purchaser role.

Completeness means that all child-level members fully roll-up to the same par-
ent category and that the extension of the parent category consists of those child
members only [Luján-Mora et al. 2006]. The mapping between month and quarter
is complete.

Heterogeneous hierarchies occur whenever members of the same category roll-
up along different paths. A term frozen dimension is introduced in [Hurtado and
Mendelzon 2002] to denote minimal homogeneous dimension instances representing
different structures, which are implicitly combined in a heterogeneous dimension.
Typically, heterogeneous hierarchies result from generalization / specialization re-
lationship between some categories.

Generalized hierarchy contains categories that can be represented by a general-
ization relationship. The categories at which the alternative paths split and join are
called splitting and joining levels, respectively. Dimension purchaser is an example
of a generalized hierarchy with the bottom category purchaser as the splitting level
and teaching unit as the joining level. We distinguish between specialization and
generalization hierarchies:

—Generalization hierarchy uses superclasses for uniting multiple categories to treat
their members as one category in part of their common characteristics. For
example, teaching unit is introduced to treat the members of chair, faculty, and
department as one class. The actual members belong to the subclass categories
and the superclass is introduced upon it.

—Specialization hierarchy emerges when a category, originally treated as a single
class, is divided into subclasses to refine its characteristics for the analysis, as
can be observed at the example of staff category, which is subdivided into teach-
ing staff and administrative staff. The actual members belong to the superclass
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Figure 17. Multidimensional scheme of a surgical process with shared dimension categories.

be observed in project dimension: 1) location hierarchy (office � building � city),
2) manager hierarchy, and 3) subject hierarchy (project group � section).

Multiple hierarchies are converging, or dependent, if their paths meet at some
upper level, as is the case with the time dimension whose paths converge in year.

7.3 Types of Dimension Sharing

Our approach allows to construct a universal data model that comprises multiple
facts linked to each other via shared dimensions. The resulting multi-fact scheme,
commonly known as a fact constellation or a galaxy, reveals the true structure of the
multidimensional space showing all valid aggregation paths and drill-across options.
Moreover, in the logical design phase, shared dimensions can be implemented in a
non-redundant fashion, thus facilitating the maintenance of the data warehouse.

The smallest shareable unit is a dimension category type. Our formalization
distinguishes between a dimension category type C and an actual category of that
type C, denoted TypepCq � C. This distinction allows us to achieve the highest
level of sharing in a whole multidimensional scheme, i.e., inside and across fact
schemes, within and between dimensions. To recognize different associations of a
category type, the role of each usage may be placed as a label of the respective
incoming edge. Figure 17 shows a variant of a surgical process scheme modeled
with the highest degree of dimension sharing. We identify three levels of dimension
sharing, namely i) full, ii) partial, and iii) inclusion.

Full sharing occurs when a pair of dimensions D and D1 have identical dimen-
sion schemes (D � D1). In that case, a single dimension scheme is modeled, whose
bottom-level category is referenced by two incoming fact-dimensional relationships.
As an example, consider the use of time dimension as start and stop dimensions
of SURGERY fact as well as of ACTIVITY fact. Notice how different usages of the
same dimension level node are distinguished by means of labeled incoming edges.
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A special case of full sharing is a fact scheme acting as a dimension, e.g., fact
ACTIVITY as dimension of its satellite fact ACTIVITY-DATA.

Inclusion occurs when the entire dimension scheme of D is contained in the
scheme of D1 (D � D1), i.e., when D1 rolls-up to D. For example, patient dimension
of SURGERY is included into treated structure hierarchy of ACTIVITY.

Partial sharing occurs when a pair of dimension schemes D and D1 converge at
a category, non-bottom for either of them (DCi P DztKDu, DCj P D1ztKD1u : Ci � Cj).
Partial sharing is possible within the same dimension incase of multiple alternative
or parallel hierarchies (year category in time), between two dimensions of the same
fact scheme (city category in patient and location of SURGERY), or between two
dimensions of different fact schemes (position category in recorder of RECORD and
participant of SURGERY-PARTICIPANT).

Notice how presence of distinct top-level categories helps distinguish between
seemingly and truly converging paths. The former result in case of category sharing
between dimensions. For instance, even though country is the highest aggregation
level in both location and participant, each of these dimensions ends at its own top-
level node. True path convergence occurs within the same dimension, as in the case
of time, where multiple paths converge in year.

Explicit modeling of shared categories at the conceptual level does not impose
any particular logical design scheme. On contrary, it is beneficial for generating
rich metadata for a proper navigation hierarchy irrespective of the implementation.

8. EVALUATION

We evaluated the concepts proposed in this paper against an extensive set of prop-
erties and requirements found in the state-of-the-art literature on multidimensional
modeling. The results are presented in Table II. The enumerated multidimensional
properties are grouped into five categories (separated by a double line in the ta-
ble) to enable a more systematic overview, namely, 1) the level of sharing, 2) facts
and measures, 3) dimensions and hierarchies, 4) dynamic features, and 5) imple-
mentation. The properties chosen for the evaluation essentially correspond to the
requirements formulated in Section 4. However, they were adjusted in accordance
with insights gained in subsequent formalization sections.

Not surprisingly, our classification and the proposed graphical notation achieve a
full coverage of the defined requirements. After all, the objective of this work was to
study and systematize a wealth of scattered concepts related to the conceptual data
warehouse design, proposed by various researchers in the last years. To the best of
our knowledge, our proposed formalization, classification, and graphical notation
are the most comprehensive and coherent among the existing ones.

The issue of the implementation remains the subject of future work and has to
be preceded by a more exhaustive evaluation and verification.

9. CONCLUSIONS

In this work we presented the results of an exhaustive effort on a systematic summa-
rization and categorization of various extensions of the original multidimensional
data model proposed by researchers and practitioners in the recent years. The
aim of those extensions is to overcome the rigidness of the model with respect to
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complex data and non-conventional application domains. First, we formulated the
modeling requirements and presented the two element of the conceptual framework
– graphical notation and formalization. The terminology was clarified and a for-
mal description of the model’s constructs was provided in form of a classification
framework. Our proposed classification evolved in two successive phases: 1) clas-
sification of fact types, their roles and interrelationships, and 2) classification of
dimension and hierarchy types. The classification is concluded by examining the
types of dimension sharing in multi-fact schemes.

All presented concepts were supplied with illustrative examples from two real-
world applications. Last not least, we proposed a semantically rich graphical nota-
tion X -DFM, which extends the existing and widely used Dimensional Fact Model
(DFM). The construct set of X -DFM is complete and unambiguous in representing
all multidimensional model properties introduced in this paper.

Our future work will be focused on developing a framework for the logical data
warehouse design, capable of handling the full set of conceptual extensions described
in this work.
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