
Fast Conditional Independence-based Bayesian
Classifier

Estevam R. Hruschka Jr. and Sebastian D. C. de O. Galvao

Federal University of Sao Carlos

estevam @dc.ufscar.br

sebastian.david@gmail.com

Machine Learning (ML) has become very popular within Data Mining (KDD) and Artificial Intel-
ligence (AI) research and their applications. In the ML and KDD contexts, two main approaches
can be used for inducing a Bayesian Network (BN) from data, namely, Conditional Independence
(CI) and the Heuristic Search (HS). When a BN is induced for classification purposes (Bayesian
Classifier - BC), it is possible to impose some specific constraints aiming at increasing the compu-
tational efficiency. In this paper a new CI based approach to induce BCs from data is proposed
and two algorithms are presented. Such approach is based on the Markov Blanket concept in
order to impose some constraints and optimize the traditional PC learning algorithm. Experi-
ments performed with the ALARM, as well as other six UCI and three artificial domains revealed
that the proposed approach tends to execute fewer comparison tests than the traditional PC. The
experiments also show that the proposed algorithms produce competitive classification rates when
compared with both, PC and Naive Bayes.

Categories and Subject Descriptors: Software and Applications [Data Mining]:

General Terms: Bayesian Networks, Supervised Learning

Additional Key Words and Phrases: Bayesian Classifiers, Markov Blanket, Conditional Indepen-
dence

1. INTRODUCTION

Machine Learning (ML) [Mitchell 1997] is a field which has become very popular
within Data Mining (KDD - Knowledge Discovery from Databases) and Artificial
Intelligence (AI) research and their applications. ML development brought a great
variety of learning algorithms in terms of the nature of induction (supervised or un-
supervised learning), the knowledge representation formalism, the interaction with
the environment and other issues. In the last years, Bayesian Networks (BNs) have
been applied in many supervised and unsupervised learning successful applications.
Therefore, many new BNs learning algorithms have been proposed [Neapolitan

Copyright c©2007 by The Korean Institute of Information Scientists and Engineers (KIISE). Per-
mission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than KIISE must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permission to republish from: Publicity Office,
KIISE. FAX +82-2-521-1352 or email office@kiise.org.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007, Pages 162-176.



Fast Conditional Independence-based Bayesian Classifier 163

2003]. There are two main approaches, described in the literature, to the BN learn-
ing problem. The first one is based on dependency analysis and is called Conditional
Independence (CI), while the second approach searches for good network structures
according to a heuristic (or metric) and is called Heuristic Search (HS). The search
space for learning a BN from data, however, has an exponential dimension, thus,
this is a difficult problem. In this sense, approximate models can be induced and
consequently, the search space of this process is likely to be reduced. To do so,
some restrictions are usually imposed and often the algorithms obtain good results
with acceptable computational effort.

When a supervised learning task is conducted, the BN is usually called Bayesian
Classifier (BC). Considering that a BC has a known target class variable, additional
constraints can be imposed to the supervised learning of Bayesian Networks. There-
fore, extra computational efficiency gains can be derived. For instance, the Naive
Bayes (NB) classifier [Duda and Hart 1973] can be seen as a particular Bayesian
Network in which every attribute has its corresponding node connected only to
the node representing the class. The traditional NB has provided good results in
many domains [Friedman et al. 1997] and, consequently, it is widely used in many
applications.

In the literature, the Markov Blanket (MB) concept [Pearl 1988] has been applied
in conjunction with both, CI [Cheng et al. 2002] and HS [Hruschka Jr. et al. 2004]
learning methods as a feature selection strategy in order to reduce the number of
variables of a BC, as well as, reducing its complexity. In this sense, after inducing
a BN from data, the relevant variables to a specific query (class variable in a BC)
can be identified, thus, the model can be pruned.

In this work, the MB is also applied trying to reduce the model complexity. In-
stead of using it after the complete BN induction (as done in [Cheng et al. 2002]
and [Hruschka Jr. et al. 2004]), however, the algorithms proposed in this paper,
named MarkovPC and MarkovianPC, explore the MB of the class variable during
the BN induction process. Therefore, it is possible to simplify the model structure
(BC) while building it, and consequently, to reduce the learning algorithm com-
plexity. To do so, our method requires a supervised learning. In other words, both
MarkovPC and MarkovianPC are BNs learning algorithm designed to classifica-
tion problems. Thus, it is possible to define that MarkovPC and MarkovianPC are
Bayesian Classifiers (BCs) learning algorithms based on the CI approach.

Some preliminary experimental results of MarkovPC algorithm were reported in
a conference paper [Galvao and Hruschka Jr. 2007] at DaWaK’2007 (9th Interna-
tional Conference on Data Warehousing and Knowledge Discovery). The extended
version here presented provides detailed discussions of the main ideas, presents ex-
tended theoretical analysis and an extended version of MarkovPC, named Marko-
vianPC. The conducted experiments revealed that MarkovianPC can reduce the
computational effort needed to learn a BC while maintaining the accuracy (correct
classification rates) obtained when using MarkovPC.

The remainder of this work is structured as following; the next section gives
an overview of Bayesian Networks and Bayesian Classifiers foundations. Section 3
presents a classic CI BN learning algorithm named PC. Section 4 introduces the
proposed MarkovPC and MarkovianPC algorithms which can be seen as extensions

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



164 E. R. Hruschka Jr. and S. D. C. de O. Galvao

of the PC algorithm. Section 5 shows the performed experiments and discusses
the obtained results. Finally, Section 6 describes the conclusions and points out to
some future works.

2. BAYESIAN NETWORKS AND BAYESIAN CLASSIFIERS

A Bayesian Network (BN) [Pearl 1988] G has a directed acyclic graph (DAG)
structure. Each node in the graph corresponds to a discrete random variable in the
domain. An edge, Y → X in the graph describes a parent child relation, where Y is
the parent and X is the child. All parents of X constitute the parent set of X, which
is denoted by πX . Each node of the BN structure is associated to a conditional
probability table (CPT) specifying the probability of each possible state of the node,
given each possible combination of states of its parents. If a node has no parents,
its CPT gives the marginal probabilities of the variable it represents. In this work
we propose a BN supervised learning algorithm which is based on Definition 2.1
and Theorem 2.1 taken from [Neapolitan 2003]:

Definition 2.1. Let V be a set of random variables, P be their joint probability
distribution, and X ∈ V. Then a Markov Blanket MB(X) of X is any set of variables
such that X is conditionally independent of all the other variables given MB(X).

Theorem 2.1. Suppose a Bayesian Network G (G satisfies the Markov condition
given in [Neapolitan 2003]). Then for each variable X, the set of all parents of X,
children of X, and parents of children of X is a Markov Blanket of X (MB(X)).

The proof of Theorem 2.1 is straightforward and is given in [Neapolitan 2003], so
we will not replicate it here. Definition 2.1 and Theorem 2.1 motivates Corollary
2.1.

Corollary 2.1. Given a Bayesian Network G, the only nodes in G that have
influence on the conditional distribution of a given node X (given the state of all
remaining nodes) are the nodes that form the Markov Blanket of X (MB(X)).

Corollary 2.1 is a simple consequence of Definition 2.1 and Theorem 2.1. It is
proven in [Neapolitan 2003] and will not be proved here.

Definition 2.2. Instead of encoding a joint probability distribution over a set of
random variables, as done by a BN, a Bayesian Classifier (BC) is special case of
Bayesian Network that aims at correctly predicting the value of a discrete class
variable, given the value of a vector of attribute variables (predictors).

Taking into account Corollary 2.1 and Definition 2.2, it is possible to notice that,
in a BC, the Markov Blanket (Figure 1 shows a graphical example of a BN and
MB(X)) of the class attribute can be used as a criterion for selecting a subset of
relevant attributes for classification purposes. As it will be detailed in the sequel,
this concept plays an important role in our proposed method. Meanwhile, let us
address how Bayesian networks can be built.

BNs can be induced directly from domain knowledge or they can be automatically
learned from data. It is also possible to combine both strategies. Learning BNs
from data became an active research topic in the last decade [Neapolitan 2003],
and there are two main classes of methods to perform this task: methods based on
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



Fast Conditional Independence-based Bayesian Classifier 165

Figure 1. The shadowed nodes represent the Markov Blanket of X.

heuristic search and methods based on conditional independence tests. Bayesian
Network learning methods may be used to induce a BC and this is done in this
work. The BN learning algorithm used in the experiments described in Section 5
is based on the PC algorithm [Spirtes et al. 2001], which builds a BN from data
based on Conditional Independence tests as addressed in the next section.

3. THE PC ALGORITHM

The PC algorithm [Spirtes et al. 2001] (summarized in Figure 3) is based upon
statistical conditional independence tests. It works looking for a Bayesian Network
that represents the independence relationship among variables in a dataset. This
is done based on the conditional independence criteria I(X,Y|A) defined in [Pearl
1988] where A is a subset of variables, X and Y are variables. If I(X,Y|A) is true,
variable X is conditionally independent of Y given A (d-separation criterion).

To verify whether X and Y are conditionally independent given A, we compute
the cross entropy CE(X,Y|A) where the probabilities are their maximum likelihood
estimators extracted from the data (i.e. relative frequencies). Other measures can
also be used and the most common are based on statistical tests such as Chi-Squared
and InfoGain [Chickering and Meek 2006; Spirtes et al. 2001], for instance.

Having as input a list with all the independencies (I(X,Y|A)) and adjacencies of
each node (ADJX), PC first finds the graph skeleton (undirected graph) that best
represents the d-separations expressed by I(X,Y|A). Afterwards, it starts establish-
ing the orientation of the edges.

As stated in [Spirtes and Meek 1995], ”if the population, from which the sample
input was drawn perfectly fits a DAG C all of whose variables have been measured,
and the population distribution P contains no conditional independence except
those entailed by the factorization of P according to C, then in the large sample
limit the PC algorithm produces the true pattern” present in the data.

4. MARKOVPC AND MARKOVIANPC

MarkovPC can be seen as an extension of the traditional PC algorithm (described
in section 3). It is designed to explore the Class’ Markov Blanket (CMB) trying
to build more accurate and simpler classifiers. The main idea is excluding from
possible structures (DAGs) those having attributes out of the CMB.

Definition 4.1. Consider G a Bayesian Classifier, all the nodes in G present in
the Markov Blanket of the Class node form the Class’ Markov Blanket CMB.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



166 E. R. Hruschka Jr. and S. D. C. de O. Galvao

Figure 2. PC algorithm adapted from [Neapolitan 2003; Spirtes et al. 2001].

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



Fast Conditional Independence-based Bayesian Classifier 167

The use of the CMB allows the reduction of the computational effort needed to
build the classifier structure (DAG), as well as, the simplification of its structure.
Thus, MarkovPC can minimize the effort needed to both, build the classifier and to
use it as a class prediction tool. In addition, having a simpler classifier makes eas-
ier the data visualization and understanding, reduce the measurement and storage
requirements, reduce training and utilization times, and defy the curse of dimen-
sionality to improve prediction performance. Figure 3 summarizes MarkovPC in
an algorithmic fashion based on the PC algorithm description given by [Neapolitan
2003; Spirtes et al. 2001].

Observing figures 2 and 3 it is possible to verify that the main difference between
PC and MarkovPC are in lines 8 and 9 of Figure 3. These lines define the CMB’
test. In other words, the UNDIRECTED MB(CLASS) procedure represents a set
of nodes that may be contained in the CMB. It is important to say that the CMB’
created by the MarkovPC algorithm is an approximation of the CMB identified by
the PC algorithm. It happens because, at this point (lines 8 and 9 of the algorithm),
the graph is not oriented and, consequently, it is not possible identify the parents
and children of each node. Therefore, the exact CMB can not be defined yet. In
this sense, UNDIRECTED MB(CLASS) is regardless of graph orientation and it
means that this set contains all the nodes that can be reached from the Class node
in at most 2 edges. These nodes are eligible candidates to be part of the CMB
when the graph is directed (steps C and D of Figure 3).

Definition 4.2. Consider G a Bayesian Classifier having C as a Class node, if X
and Y are nodes in G, the distance from X to Y, written d(X,Y), is the minimum
length of any undirected path from X to Y. All the nodes X in G for which d(C,X)
< 3 form the extended Class’ Markov Blanket CMB’.

Theorem 4.1. Consider G a Bayesian Classifier having C as a Class node, if
X is a node in G and X ∈ CMB, then X ∈ CMB’.

Proof. According to Theorem 2.1, the set of all parents of a class node C (πC),
children of C (λC), and parents of children of C (λπC

) is a Markov Blanket of C
(MB(C)). Therefore, following Definition 4.1, MB(C)=CMB. Considering Defini-
tion 4.2 and considering also that ∀ X ∈ πC , d(C,X))=1; ∀ Y ∈ λC , d(C,Y))=1 and
∀ Z ∈ λπC

, d(C,Z))=2, it is possible to conclude that ∀ W ∈ CMB, W ∈ CMB’

Following this strategy of defining an extended CMB’ without considering the
arc direction, all nodes identified by the PC algorithm as part of the real CMB
will also be present in the CMB’ defined by MarkovPC. Some nodes present in the
CMB’ defined by MarkovPC, however, may not be present in the CMB defined by
the PC algorithm.

The resulting CMB’ induced by means of the strategy applied by the MarkovPC
algorithm can be summarized as follows: considering a consistent list of indepen-
dencies (IND), the CMB’ induced by the MarkovPC algorithm is not the minimal
CMB, but it contains at least all the relevant nodes (present in the CMB induced
by the traditional PC) to the Class variable.

When concerning the induced classifier complexity, as the MarkovPC algorithm
selects the most relevant variables, it tends to induce classifiers containing a reduced
number of variables. It is important to notice that, the variable selection is based

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



168 E. R. Hruschka Jr. and S. D. C. de O. Galvao

Figure 3. MarkovPC algorithm.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



Fast Conditional Independence-based Bayesian Classifier 169

on an approximate CMB (CMB’), thus the number of selected variables depends
upon the CMB’ size. Considering the characteristics described in the MarkovPC
algorithm, on one hand it is possible to say that, when working with domains
having a high number of features and a small CMB’, the MarkovPC effort tends
to be smaller than the one done by the traditional PC. On the other hand, in
a situation where a domain has a CMB’ containing a high number of variables,
MarkovPC tends to lead to no variable elimination, and, thus, its effort can be
higher than the one needed by the traditional PC.

Considering that testing whether a variable is present in the CMB’ has the same
complexity present in line 10 of PC algorithm (Figure 2), it is possible to analyze
the above situation in an extreme case, in which a domain with N variables (all
present in the CMB’) and a list of independencies sets (IND) having cardinalities
from 0 to M (see [Spirtes et al. 2001] for a more detailed description of independency
cardinality) are given. In such a situation, the MarkovPC algorithm will need (N
* (M+1)) tests more that the Traditional PC algorithm. It happens because, for
each independency cardinality set, the MarkovPC will test whether each variable is
present in the CMB’ or not. In most of the domains, however, this aforementioned
extreme situation does not happen, thus, the MarkovPC tends to need less effort
than the traditional PC.

Another difference between Figure 2 and Figure 3 is present in the ”until” clause
(line 19 in Figure 2 and line 25 in Figure 3). This clause in MarkovPC has an
”or” operator which is not present in the original PC algorithm. The motivation
for inserting this ”or” operator is to eliminate unnecessary tests. This modification
is not necessary to the Markov Blanket strategy proposed in MarkovPC, but it is
implemented trying to reduce the computational complexity of the algorithm. It
is important to observe that this modification (inserting the ”or” operator) do not
change the algorithm behavior in terms of the classifier to be induced.

Taking into account the Average Correct Classification Rates (ACCRs), the
MarkovPC algorithm should produce results consistent to the ones produced by
the traditional PC.

Based on the algorithm depicted in Figure 3 (MarkovPC algorithm) another
implementation is proposed in this work. This new implementation is named
MarkovianPC and uses the same main ideas already presented in MarkovPC. The
only difference between the MarkovPC and the MarkovianPC algorithms is re-
lated to the UNDIRECTED MB(CLASS) function. In the MarkovianPC algo-
rithm, instead of using the extended CMB’ proposed in Definition 5, the UNDI-
RECTED MB(CLASS) works with the Markov Blanket of a Markov Network. The
following definitions help in the MarkovianPC algorithm understanding.

Definition 4.3. Consider an undirected graph G = (V,E). If G is a Markov Net-
work, then each node X ∈ V represents a random variable in a set of random
variables and each edge (X,Y) ∈ E represents a dependency between the random
variables X and Y.

Definition 4.4. Consider G a Markov Network, if X and Y are nodes in G, the
Markov Blanket of X (here called Markovian Markov Blanket of X MMB(X)) is
defined to be formed by all Y such that d(X,Y)=1.

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



170 E. R. Hruschka Jr. and S. D. C. de O. Galvao

As mentioned before, the UNDIRECTED MB(CLASS) function is called in the
MarkovPC algorithm in line 9. At this point, the algorithm is working with an
undirected graph (UG) structure. In this sense, the UG can be seen as a Markov
Network. Therefore, the extended Class’ Markov Blanket (CMB’) can be defined
based on Definition 4.4 as showed in Definition 4.5.

Definition 4.5. Consider G a Markov Network having C as a Class node, all
the nodes in G present in the Markov Blanket of the Class node form the Class’
Markovian Markov Blanket CMMB.

Following along these lines, it is possible to verify that the only difference,
between the MarkovPC and the MarkovianPC algorithms, is that the first uses
the CMB’ and the later uses the CMMB to define the output of the UNDI-
RECTED MB(CLASS) function. This single difference, however, may have great
impact in the induced classifier structure. It happens because when using CMMB,
the obtained Markov Blanket tends to be smaller than the one obtained using
CMB’. Therefore, the MarkovianPC algorithm tends to induce simpler and faster
BCs.

It is important to notice that, as happens with the MarkovPC algorithm, the out-
put of the MarkovianPC algorithm is a Bayesian Classifier (special case of Bayesian
Network) and not a Markov Network. The CMMB concept, however, is defined
for Markov Networks, thus, using the CMMB in the MarkovianPC algorithm is a
heuristic solution employed to reduce the computational effort needed by the learn-
ing algorithm. In this sense, it is not possible to prove that all X ∈ CMB is also
present in CMMB. Next section describes the conducted experiments and analyzes
the obtained results.

5. EXPERIMENTS AND RESULTS

Trying to verify the soundness of the proposed MarkovPC and MarkovianPC al-
gorithms, when compared to the traditional PC algorithm, a number of empirical
classification experiments were conducted. The main aspects to be considered when
concerning the MarkovPC, as well as, the MarkovianPC behaviors are twofold: the
Average Correct Classification Rates (ACCRs) and the classifier (structure) com-
plexity. The remaining of this section initially describes the knowledge domains
used in the experiments as well as the experimental methodology adopted. The
results from the experiments are then presented and analyzed.

Ten domains were used in our simulations. A well-known Bayesian Network
domain, namely ALARM [Beinlich et al. 1988]; six benchmark problems from the
U. C. Irvine repository [Asuncion and Newman 2007], namely, Car, kr-vs-kp, Lung
Cancer (Lung), Postoperative-Patient-Data (Patient), Solar-flare 1 (Flare 1) and
Solar-flare2 (Flare 2); and finally, three synthetic domains namely, Synth1, Synth2
and Synth3. Table I summarizes datasets characteristics.

The ALARM network has 8 prediction variables and, in this work, all these
variables are used as classes. In this sense, 8 different experiments were conducted
with the ALARM domain; in each one, a different class is assumed. Table II shows
the prediction variables (classes) names and their domain size.

The description of each UCI domain can be downloaded from the UCI Repository
site [Asuncion and Newman 2007]. The artificial domains were simulated in order to
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



Fast Conditional Independence-based Bayesian Classifier 171

Table I. Datasets Description with dataset name (Data), number of attributes plus class (AT),
number of instances (IN) and number of classes (Cl).

Domain #Attributes #Instances #Classes

Alarm 38 10000 See Table II
Car 7 1728 4

Kr-vs-kp 37 3196 2
Lung 57 32 3

Patient 9 90 3
Flare 1 13 323 7
Flare 2 13 1066 7
Synth1 32 10000 2
Synth2 32 10000 2
Synth3 32 10000 2

Table II. ALARM prediction variables and the number of possible values each one can assume.
Variable #possible states

Anaphylaxis 2
Intubation 3

KinkedTube 2
Disconnect 2

Hypovolemia 2
InsuffAnesth 2
LVFailure 2

PulmEmboulus 2

verify the behavior of the proposed method. Such simulations were performed man-
ually building Bayesian Networks (BNs) to encode a joint probability distribution
over a set of random variables and, thus, reproducing hypothetical circumstances.
Next, the BNs were used to generate synthetic datasets (SDs) containing 10,000
records (instances) which are representative of each BN.

There are two main benefits in working with datasets representing previous
known circumstances. The first one is that it is possible to a priori know the
truth dataset probability distribution and its characteristics. Hence, the results
obtained in the experiments can be analyzed in a more consistent way. Second, it
is possible to inspect the behavior of an algorithm in a very specific situation of
interest.

In this sense, three synthetic BNs, namely, Synth1, Synth2 and Synth3 were
built and their network structures are depicted in Figure 4. The Synth1 network
represents a domain, having 32 variables, in which only one variable directly influ-
ences the class variable (the CMB has a single variable forming it) and all variables
(nodes in the graph) have at most one parent. Therefore, the Synth1 structure
represents a polytree. In real world applications problems polytrees hardly ever are
suitable to model the probability distribution of the variables [Pearl 1988], thus, it
is not common to have problems with these characteristics in practice. Polytrees,
however, are suitable structures to verify the behavior of a classifier in problems
where the variables have simple interdependencies relationships.

The Synth2 BN describes a domain, having 32 variables, in which 14 variables
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



172 E. R. Hruschka Jr. and S. D. C. de O. Galvao

directly influence the class variable. In this BN, each variable can have at most 3
parents and it allows more complex interdependency relationships among variables
than polytrees structures. Therefore, Synth2 is a less restrictive model than Synth1
and problems that can be represented by such a BN (Synth2) are more common in
practical Data Mining and Machine Learning problems.

The last synthetic BN (Synth3) also describes a domain with 32 variables. In
this BN, however, the variables can have at most seven parents. Furthermore, all
variables are present in the CMB.

Intending to perform a more robust comparative analysis, besides presenting
classification results (ACCRs) obtained using the proposed MarkovPC and Marko-
vianPC algorithms, this section also shows the performance of the traditional PC
and Naive Bayes Classifier [Duda and Hart 1973] when applied to all the 10 de-
scribed domains. The Naive-Bayes classifier implementation can be found in the
WEKA environment [Witten and Frank 2005]. The PC, MarkovPC and Marko-
vianPC were also implemented in the WEKA’s framework and are available for
research purposes upon request. Besides, all the experiments were conducted in
the WEKA environment.

In all the performed classification a 10-fold cross validation strategy was applied,
and the same training and test files were used by all algorithms. Table III presents
the average obtained results (ACCRs).

Table III reveals that, considering the aforementioned domains, the computa-
tional effort (number of tests) required to induce a BC from data using both pro-
posed methods was lower than that of the PC algorithm. In addition, on average,
using the MarkovPC was possible to induce a BC using only 43.36% of the com-
putational effort required by PC. Also, using the MarkovianPC it was possible to
induce a BC using only 36.40% of the computational effort required by MarkovPC.

Only with the Patient domain, the MarkovPC and the MarkovianPC executed
more comparative tests than the traditional PC. It happened, because both methods
did not eliminate any variable form the model and considered all them forming the
CMB’. This is a very interesting result to illustrate the extreme situation described
in Section 4. As the Patient domain has 9 attributes and its independency list
(IND) has two cardinalities sets (cardinality 0 and cardinality 1), the MarkovPC
and the MarkovianPC performed (9 * 2) tests more than the traditional PC.

Trying to get more robust conclusions (when analyzing the ACCRs) the Wilcoxon
statistical test [Hays 1994] was applied to compare the results obtained using the
proposed algorithms as well as the PC and the Naive Bayes. The Wilcoxon test
is a nonparametric procedure employed in a hypothesis testing situation involving
a single sample in order to determine whether or not a sample is derived from a
population in which the median θ is equal to a specified value. If the Wilcoxon
signed-ranks test yields a significant result, the researcher can conclude there is a
high likelihood the sample is derived from a population with a median value other
than θ [Sheskin 2004].

On one hand, the achieved results allow concluding that the use of the PC, as well
as the MarkovPC and the MarkovianPC algorithms brought no significant difference
regarding the obtained ACCRs. On the other hand, results revealed that the Naive-
Bayes classifier performance was significantly lower when compared to the other
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



Fast Conditional Independence-based Bayesian Classifier 173

Figure 4. Bayesian Networks representing Synth1, Synth2 and Synth3 domains. The graphical
representations were created using GeNie Software.

employed algorithms. Therefore, it is possible to consider that, besides needing
less computational effort, MarkovPC, as well as, MarkovianPC performed as good
as the traditional PC when the ACCRs are concerned. In addition, considering
the particular domains presented in Table I, both proposed algorithms performed
better than the Naive Bayes classifier.

When concerning the classifier complexity, it is possible to state that PC and
Naive Bayes generate classifiers containing all variables present in the dataset do-

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



174 E. R. Hruschka Jr. and S. D. C. de O. Galvao

Figure 5. a) ACCRs obtained using the Naive-Bayes, the PC, the MarkovPC and the Marko-
vianPC algorithms. b) the average computational effort needed to induce a BC using the PC, the
MarkovPC and the MarkovianPC algorithms.

Table III. Number of steps and the Average Correct Classification Rates obtained with each
domain using PC, MarkovPC (MrkvPC), MarkovianPC (MrvnPC) and Naive Bayes (NB) algo-
rithms.

Domain Computational Effort (steps) ACCR(%)

PC MrkvPC MrkvnPC PC MrkvPC MrkvnPC NB

ALARM Hypov. 2758 1121 330 97.98 98.38 98.420 96.55
ALARM LVFail. 2758 1135 379 98.95 99.03 99.038 96.41

ALARM Anaphyl. 2758 1052 183 98.98 98.98 98.989 97.26
ALARM Ins. An. 2758 1442 415 81.85 84.77 86.327 63.34
ALARM Pulm. 2758 1160 528 99.21 99.42 99.427 97.30
ALARM Intub. 2758 1458 502 97.55 98.46 98.471 84.96

ALARM Kinked. 2758 1327 430 98.87 98.91 98.918 85.30
ALARM Disconn. 2758 1145 437 96.16 98.74 98.749 92.95

Synth1 1663 797 445 89.16 89.16 89.160 83.42
Synth2 823 599 136 93.20 93.20 93.200 93.20
Synth3 908 610 123 85.30 86.74 87.320 83.16

Car 76 34 34 89.81 93.57 93.86 85.64
Kr-vs-kp 6129 2127 1386 96.08 94.08 94.023 87.76

Lung-Cancer 5881 2151 452 75.00 75.00 75.000 46.87
Patient 36 54 54 71.11 71.11 71.111 68.88

Solar-flare 1 418 176 70 72.75 73.06 72.755 66.25
Solar-flare 2 342 238 156 75.23 74.85 74.766 73.92

Average 2255.2 977.94 356 89.25 89.86 90 82.54

Standard Dev. 1787.1 643.45 315.72 10.33 10.38 10.38 14.28

mains. MarkovPC and MarkovianPC, however, tended to reduce the number of
variables present in the induced classifiers. Considering the 17 simulations reported
in Table III, on average, PC and Naive Bayes classifiers produced models having
31.52 variables. MarkovPC, on the other hand, produced classifiers having 7.52
variables on average while MarkovianPC reduced even more the classifiers com-
plexity; on average, MarkovianPC produced classifiers having 3.58 variables. Thus,
the classifiers induced by MarkovPC have only 23.85% of the variables present in the
classifiers induced by the PC algorithm and the Naive Bayes approach. In addition,
the classifiers induced using MarkovianPC have only 47.6% of the variables present
in the classifiers induced by MarkovPC. Figure 5 summarizes the results obtained
in the conducted experiments in terms of accuracy (Figure 5 a) and complexity
(Figure 5b).

Analyzing Figure 5 one can observe that, on average, considering the conducted
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



Fast Conditional Independence-based Bayesian Classifier 175

experiments, the MarkovianPC algorithm tends to produce the higher ACCRs while
needing less computational effort than the other employed algorithms. It is impor-
tant to notice that the Naive Bayes is not present in Figure 5b because such a
classifier do not need to build a model from data, thus, its computational effort to
be induced can be considered zero.

6. CONCLUSIONS AND FUTURE WORK

This paper proposes and discusses a new CI BC learning approach based on the
Markov Blanket concept. Two algorithms were implemented, namely the MarkovPC
and the MarkovianPC, to induce BCs from data. Instead of using the Markov Blan-
ket concept to select variables after the BN induction, as done in other works de-
scribed in the literature, the proposed approach uses the Markov Blanket concept in
order to impose some constraints and optimize the traditional PC algorithm while
inducing the BC. It is important to state that this approach is designed specifically
to classification tasks.

Experiments performed with a number of domains revealed that both, the Markov-
PC and the MarkovianPC algorithms tend to be more accurate (in terms of ACCRs)
than the traditional PC and Naive Bayes. In addition, both proposed algorithms
produced simpler classifiers demanding less comparison tests, during the learning
procedure, than the PC algorithm. Also, the MarkovianPC algorithm tends to
be faster than MarkovPC. The approximate CMB’ found by MarkovPC is proved
to be consistent with CMB. And the CMMB found by the MarkovianPC can be
considered a consistent and promising heuristic approach.

Authors intend to continue along this line of investigation and plan to introduce
the main ideas present in MarkovPC as well as in MarkovianPC in other CI learning
algorithms. Another interesting future work is to use the proposed Markov Blanket
strategy when performing CI statistical tests.

7. ACKNOWLEDGMENTS
Authors acknowledge the Brazilian research agency FAPESP for its financial sup-
port.

REFERENCES

Asuncion, A. and Newman, D. 2007. UCI machine learning repository -
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Beinlich, I., Suermondt, J., Chavez, M., and Cooper, G. 1988. The alarm monitoring system:
A case study with two probablistic inference techniques for belief networks. In Second European
Conference on Artificial Intelligence in Medicine.

Cheng, J., Greiner, R., Kelly, J., Bell, D., and Liu, W. 2002. Learning bayesian networks
from data: an information-theory based approach. Artificial Intelligence 137, 1-2, 43–90.

Chickering, D. M. and Meek, C. 2006. On the incompatibility of faithfulness and monotone
dag faithfulness. Artificial Intelligence 170, 8, 653–666.

Duda, R. O. and Hart, P. E. 1973. Pattern Classification and Scene Analysis. Wiley, New
York.

Friedman, N., Geiger, D., and Goldszmidt, M. 1997. Bayesian network classifiers. Machine
Learning 29, 2-3, 131–163.

Galvao, S. and Hruschka Jr., E. R. 2007. A markov blanket based strategy to optimize the
induction of bayesian classifiers when using conditional independence learning algorithms. In

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007




