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Index selection is one of the most important decisions to take in the physical design of relational
data warehouses. Indices reduce significantly the cost of processing complex OLAP queries, but
require storage cost and induce maintenance overhead. Two main types of indices are available:
mono-attribute indices (e.g., B-tree, bitmap, hash, etc.) and multi-attribute indices (join indices,
bitmap join indices). To optimize star join queries characterized by joins between a large fact
table and multiple dimension tables and selections on dimension tables, bitmap join indices are
well adapted. They require less storage cost due to their binary representation. However, selecting
these indices is a difficult task due to the exponential number of candidate attributes to be indexed.
Most of approaches for index selection follow two main steps: (1) pruning the search space (i.e.,
reducing the number of candidate attributes) and (2) selecting indices using the pruned search
space. In this paper, we first propose a data mining driven approach to prune the search space
of bitmap join index selection problem. As opposed to an existing our technique that only uses
frequency of attributes in queries as a pruning metric, our technique uses not only frequencies,
but also other parameters such as the size of dimension tables involved in the indexing process,
size of each dimension tuple, and page size on disk. We then define a greedy algorithm to select
bitmap join indices that minimize processing cost and verify storage constraint. Finally, in order
to evaluate the efficiency of our approach, we compare it with some existing techniques.
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1. INTRODUCTION

A data warehouse stores large volumes of aggregated and non volatile data across
entire organization. It is usually accessed through complex queries for key business
operations. Data warehouses are frequently modelled using relational schemas like
star and snowflake schemas. A star schema consists of a single large fact table
that is related to multiple dimension tables via foreign keys. Dimension tables
are relatively small compared to the fact table and rarely updated. They are
typically non normalized so that the number of needed join operations are reduced.
Operations in data warehouse applications are mostly read ones and are dominated
by large and complex queries. The typical queries on the star schema are called star
join queries. They are characterized by: (i) a multi-table join among a large fact
table and dimension tables, (ii) each one of the dimension tables involved in the join
operation has multiple selection predicates1 on its descriptive attributes, and (iii)
there is no join operation between dimension tables. Due to the interactive nature
of decision support applications, having a fast query response time is a critical
performance goal.

Without efficient optimization techniques, queries addressed to data warehouses
may take hours or days, which is unacceptable in most cases [Chatziantoniou and
Ross 2007]. In order to cope with complex and time-consuming decision support
queries, there is an urgent need for efficient and sophisticated physical design tech-
niques [Chaudhuri and Narasayya 2007]. The major bottleneck in evaluating such
queries is the join between a large fact table and the surrounding dimension tables
[Stöhr et al. 2000]. To optimize join operations in both OLTP and OLAP envi-
ronments, many techniques have been proposed that we can classify into two main
categories: (1) non redundant structures and (2) redundant structures. The first
category concerns different implementations of the join operation: nested loop, sort
merge join and hash join. These structures are efficient when (a) the size of joined
tables is reasonable, which is not the case of tables in relational data warehouses
and (b) join concerns two tables [Golfarelli et al. 2002]. Redundant structures, like
materialized views [Gupta 1999; Rizzi and Saltarelli 2003] and join indices [Val-
duriez 1987], are more efficient to speed up join operation involving many tables
[Oneil 1995]. Their main drawbacks are the extra storage requirement and the
maintenance overhead. However, such optimization techniques are inevitable in
data warehouse environments. The main peculiarity of indices is the fact that they
may be combined with other optimization techniques such as materialized views,
horizontal and vertical partitioning. In other words, any access path with a table
structure can be indexed.

This paper focuses on the selection of join bitmap indices (BJIs) and is organized
as follows. Section 2 provides a background on indices and data mining. Section
3 presents our formalization of the problem of selecting BJIs as an optimization
problem, and provides a description of the unique and most related work by showing
its limitations using a running example. Section 4 presents our two-step approach
for first generating BJI candidates using data mining based pruning algorithms, and

1A selection predicate has the following form: Di.Aj θ value, where Aj is an attribute of dimension
table Di and θ is one of the six comparison operators {=, <, >,≤,≥}, and value is a constant
belonging to the domain of attribute Aj).
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then selecting the final BJIs using a greedy algorithm. Section 5 validates our work
through experimentations. Finally, Section 6 concludes the paper by summarizing
the main results and suggesting new directions.

2. BACKGROUND

In the following, we review three key topics related to our proposal: (i) indexing
techniques, (ii) index selection problem, and (iii) frequent closed itemset computa-
tion.

2.1 Indexing Techniques

A number of indexing strategies have been suggested for data warehouses. They can
be classified into two categories: single-table indices and (b) multiple table indices.
In the first category, indices are defined either on one or several attributes of a
single table. An index may be either clustered or non-clustered. In the second one,
indices are defined on two or more tables. A number of indexing strategies belonging
to these two categories have been suggested for data warehouses: value-list index,
projection index [O’Neil and Quass 1997], bitmap index [Chan and Ioannidis 1998;
O’Neil and Quass 1997], bit-sliced index [Chan and Ioannidis 1998], data index
[Datta et al. 1999], join index [Valduriez 1987], star join Index [Systems 1997] and
bitmap join indices [O’Neil and Graefe 1995].

—Value-list index and Bitmap index. A value-list index consists of two parts. The
first part is a balanced tree structure and the second part is a mapping scheme.
The mapping scheme is attached to the leaf nodes of the tree structure and points
to the tuples in the table being indexed. The tree is generally a B-tree with
varying percentages of utilization. Oracle provides a B*-tree whose utilization
may go to 100%. Two different types of mapping schemes are in use. First, one
consists of a RowID (row identifier) list, which is associated with each unique
search-key value. This list is partitioned into a number of disk blocks chained
together. The second scheme uses bitmaps. A bitmap is a vector of bits whose
value depend on predicate values. A bitmap B lists all rows with a given predicate
P such that for each row r with ordinal number j that satisfies the predicate
P , the jth bit in B is set to 1. Bitmaps represent efficiently low-cardinality
data. However to make this indexing scheme practical for high-cardinality data,
compression techniques must be used. Value-list indices have been shown in
[O’Neil and Quass 1997] to outperform other access methods in queries involving
MIN or MAX aggregate functions, as well as queries that compute percentile
values of a given column. Bitmap indices can substantially improve performance
of queries with the following characteristics [Chee-Yong 1999]:
—The WHERE clause contains multiple predicates on low-or-medium-cardinality

columns (e.g., a predicate on Gender that has two possible values: female or
male or a predicate on city with three possible values as shown in Figure 1).

—Bitmap indices have been created on some or all of these low-or-medium-
cardinality columns.

Besides disk saving (due to the binary representation and possible compression
[Johnson 1999]), bitmap indices speed up queries having Boolean operations (such
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Figure 1. An Example of a bitmap index defined on City.Customer
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Figure 2. An Example of a projection index.

as AND, OR and NOT) and COUNT operations. They are supported by most
of commercial DBMSs (Oracle, SQL Server, etc.).

—Projection Index. A projection index is equivalent to the column being indexed.
If C is the column being indexed, then the projection index on C consists of a
stored sequence of column values from C in the same order as the ordinal row
number in the table from where the values are extracted (see Figure 2). It has
been shown in [O’Neil and Quass 1997] that projection indices outperform other
indexing schemes for the execution of queries that involve computation on two
or more column values, and seem to perform acceptably well in GROUP-BY
queries.

—Bit-sliced Index A bit sliced index represents the key values of the column to
be indexed as binary numbers and projects a set of bitmap slices, which are
orthogonal to the data, held in the projection index. This index has been shown in
[Chee-Yong 1999] to particularly perform well for computing sums and averages.
Also, it outperforms other indexing approaches for percentile queries when the
underlying data is clustered, and for range queries whose range is large.

—Join Index. A join index pre-computes a join operation between two relations
[Valduriez 1987]. It is the result of joining two tables on join attributes and
projecting the keys (or tuple IDs) of the two tables. A join index is used to find
the matching tuples from the tables to be joined. This index has been proposed
in the context of traditional databases in medium of 80’s, and was later extended
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Figure 3. An Example of a bitmap join index.

by Red Brick Systems [Systems 1997] to a multi-table join index in relational
data warehouses by concatenating columns from different dimension tables and
listing RowIDs in the fact table from each concatenated value.

—Data Index. A data index, like the projection index, exploits the positional
indexing strategy [Datta et al. 1999]. The Data index avoids duplication of data
by storing only the index and not the column being indexed. The data index
can be of two specific types: basic data index and join data index (for more
information, see [Datta et al. 1999]).

—Bitmap Join Index. It is a multi-table join index and a variant of join index. It
is defined as a bitmap index on a table R based on a single column of a table
S, where S commonly joins with R in a specific way. Bitmap join indices are
supported by most of commercial database/warehouse systems (e.g., Oracle, SQL
Server, etc.).

Example 1. To illustrate the use and interest of bitmap join indices, let us
consider the following data (see Figure 3) that will serve as a running example
throughout the paper. Suppose we have a relational data warehouse represented
by three dimension tables (TIME, CUSTOMERS and PRODUCTS) and one fact
table (SALES). Let Q be the query that the administrator would like to optimize:

SELECT Count(*)
FROM CUSTOMERS C, SALES S
WHEERE C.City=’Poitiers’
AND C.CID=S.CID
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To do so, he/she creates a bitmap join index SC IDX between the fact table
SALES and the dimension table CUSTOMERS based on City attribute as follows:

CREATE BITMAP INDEX SC_IDX
ON SALES(CUSTOMERS.City)
FROM SALES S, CUSTOMERS C
WHERE S.CID= C.CID

To execute the above query, the query optimizer just accesses the bitmap corre-
sponding to the column representing Poitiers, without joining SALES and CUS-
TOMERS tables.

This example shows the efficiency of bitmap join indices for executing this kind of
queries.

2.2 Index Selection

Index selection problem (ISP) has been studied since the early 70’s and its im-
portance is well recognized. It is one of the most important issues in physical
design of advanced database applications. The task of index selection consists in
automatically selecting an appropriate set of indices for a data warehouse and a
workload under resource constraints (storage, maintenance, etc.). It is a challeng-
ing problem for the following reasons [Chaudhuri 2004]: The size of a relational
data warehouse schema may be large (many tables with several columns) for real
applications, and indices can be defined on a set of columns from different tables
(multiple table indices). A large spectrum of research studies has been proposed
to deal with this problem. By exploring the state of the art, we believe that most
studies concentrate on single table index selection. To the best of our knowledge,
only two studies have been proposed for dealing with multiple table index selection
problem [Aouiche et al. 2005; Bellatreche et al. 2007]. On the industry side, several
index selection tools were developed (e.g., AutoAdmin [Chaudhuri and Narasayya
1998] for self-tuning and self-administering databases and data warehouses).

In single table index selection problem, most of existing approaches use two main
phases: (1) generation of attribute candidates and (2) selection of a final config-
uration. The first phase prunes the search space of index selection problem by
eliminating some non relevant attributes. In the second phase, the final indices are
selected using heuristics like greedy algorithms [Chaudhuri and Narasayya 1997],
linear programming algorithms [Chaudhuri 2004], etc. The quality of the final set
of indices depends essentially on the pruning phase. To prune the search space
of index candidates, many approaches were proposed [Chaudhuri and Narasayya
1997; Valentin et al. 2000; Chaudhuri 2004; Labio et al. 1997; Aouiche et al. 2005]
using enumeration-driven heuristics. For instance, [Chaudhuri and Narasayya 1997]
propose a greedy algorithm which uses the optimizer cost estimate in SQL Server
to decide the goodness of a given configuration of indices. The weakness of this
work is that it imposes the number of generated candidates. DB2 Advisor is another
example belonging to this category [Valentin et al. 2000], where the query parser is
used to pick up selection attributes used in workload queries. The generated can-
didates are obtained by a few simple combinations of selection attributes [Valentin
et al. 2000].
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007
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2.3 Frequent Closed Itemset Computation

Let I = {i1, i2, · · · , im} be a set of m distinct items (table attributes). A transaction
(tuple) T contains a set of items in I, and has an associated unique identifier called
TID. A subset X of I where k = |X| is referred to as a k−itemset (or simply an
itemset), and k is called the length of X. A transaction database (TDB), say D, is
a set of transactions. The number of transactions in D that contain an itemset X
is called the absolute support of X whereas the fraction of transactions is called its
relative support (both denoted by sup(X)). Thus, an itemset is frequent (or large)
when sup(X) reaches at least a user-specified minimum threshold called minsup.

One of the most frequently used technique in data mining is rule mining which
is conducted in Apriori-like algorithms [Agrawal and Srikant 1994] in two steps:
detection of all frequent itemsets, and utilization of frequent itemsets to generate
association rules (e.g., X ⇒ Y ) that have a confidence ≥ minconf. While the second
step is relatively easy and cost-effective, the first one presents a great challenge
because the set of frequent itemsets (FIs) may grow exponentially with the whole
set of items. To reduce the size of the FI set, some studies were conducted on
frequent closed itemsets FCIs and maximal frequent itemsets (i.e., itemsets for
which every superset is infrequent [Burdick et al. 2001]).

The Close algorithm [Pasquier et al. 1999] is one of the first procedures for FCI
generation. Like Apriori, it performs a level-wise computation within the powerset
lattice. However, it exploits the notion of generators of FCIs 2 to compute closed
itemsets. ChARM [Zaki and Hsiao 2002] is another procedure which generates
FCIs in a tree organized according to inclusion. The computation of the closure
and the support is based on a efficient storage and manipulation of TID-sets (i.e.,
the set of transactions per item). Closure computation is accelerated using diffsets,
the set difference on the TID-sets of a given node and its unique parent node in the
tree.

Closet [Han et al. 2000] and its variant Closet+ [Wang et al. 2003] both
generate FCIs as maximal branches of a FP-tree, a structure that is basically a
prefix tree (or trie) augmented with transversal lists of pointers.

In the next section, we follow the above mentioned steps to select bitmap join
indices: generation of attribute candidates and selection of a final configuration.
The first step will be based on the computation of frequent closed itemsets using
either Close or ChARM.

3. BITMAP JOIN INDEX SELECTION PROBLEM

To ease the understanding of our proposed approach, we provide a motivation and
a formulation of the BJI selection problem. Then, we present and discuss the most
related work.
As indicated earlier, a BJI is defined on one or several non key dimension attributes
with low cardinality 3 (called indexable columns) for joining dimension tables with
the fact table. An indexable attribute Aj of a given dimension table Di for a BJI
is a column Di.Aj such that there is a condition of the form Di.Aj θ Expression

2A generator of an FCI Y is a subset of that itemset such that its closure is equal to Y .
3The domain of this attribute should be an enumerated domain like gender, color, etc.
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in the WHERE clause. The operator θ must be among {=, <, >,≤,≥}.
Let A = {A1, A2, ,̇AK} be the set of indexed candidate attributes for BJIs. Then,

the possible number of BJIs with only one group of attributes, grows exponentially
with K, and is given by:

(
K
1

)
+

(
K
2

)
+ ... +

(
K
K

)
= 2K − 1 (1)

For K = 4, this number is 15. The possible number of BJIs with any combination
of attribute groups is given by:

(
2K−1
1

)
+

(
2K−1
2

)
+ ... +

(
2K−1
2K−1

)
= 22K−1 (2)

For K = 4, the number of possible cases is (215). Therefore, the problem of
efficiently finding the set of BJIs that minimizes the total query processing cost
while satisfying a storage constraint cannot be handled by first enumerating all
possible BJIs and then computing the query cost for each candidate BJI. As a
consequence, BJI selection problem can be formulated as follows:
Given a data warehouse with a set of dimension tables D = {D1, D2, ..., Dd} and
a fact table F , a workload Q of queries Q = {Q1, Q2, ..., Qm}, where each query
Qi (1 ≤ i ≤ m) has an access frequency, and a storage constraint S, the aim of
BJI selection problem is to find a set of BJIs among a pre-computed subset of all
possible candidates, which minimizes the query processing cost and satisfies the
storage requirements S.

The single work dealing with this problem using a data mining approach is the
one proposed by Aouiche et al. [Aouiche et al. 2005]. Intuitively, selecting bitmap
join indices means partitioning the set of indexable attribute A into disjoint groups.
This motivates the authors in [Aouiche et al. 2005] to propose an approach based
on data mining (and Close algorithm [Pasquier et al. 1999]) to prune the search
space by computing the set of frequent closed attribute groups rather than all the
possible combinations indicated above. The groups generated in the pruning step
are then used in the second step to select the final configuration of indices.

Aouiche et al.’s work has two main limitations: (1) no formalization is proposed,
(2) the proposed approach only uses frequencies of attributes to generate frequent
closed itemsets, where each one represents an attribute set to be indexed. The
frequency parameter is not sufficient to be a pruning metric. Since in the vertical
partitioning of databases 4 the frequency parameter is not sufficient in getting a
good fragmentation schema [Fung et al. 2003], we believe that a similar observa-
tion holds for the bitmap join index selection problem. Indeed, Fun et al. [Fung
et al. 2003] showed the weakness of affinity-based algorithms (that use only query
frequencies) in reducing the query processing cost. To get a better result, they
recommend the use of other parameters, like the size of tables, the length of each
tuple, the size of disk page, etc.

To overcome these limitations, we propose new pruning algorithms, called Dy-
naClose and DynaCharm that take into account the above parameters as part of
the pruning metric, since the cost of join operations depends heavily on the size of
joined tables [Getoor et al. 2001]. Once the pruning phase is processed, a greedy

4Each fragment contains a subset of attributes that are frequently used together.
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Table I. Query description.
(1) select S.channel id, sum(S.quantity sold) from S, C
where S.channel id=C.channel id and C.channel desc=’Internet’ group by S.channel id

(2) select S.channel id, sum(S.quantity sold), sum(S.amount sold) from S, C
where S.channel id=C.channel id and C.channel desc =’Catalog’ group by S.channel id

(3) select S.channel id, sum(S.quantity sold),sum(S.amount sold) from S, C
where S.channel id=C.channel id and C.channel desc =’Partners’ group by S.channel id

(4) select S.cust id, avg(quantity sold) from S, C
where S.cust id=C.cust id and C.cust gender=’M’ group by S.cust id

(5) select S.cust id, avg(quantity sold) from S, C
where S.cust id=C.cust id and C.cust gender=’F’ group by S.cust id

algorithm is executed to select a set of BJSs that reduces the query processing cost
and satisfies the storage constraint.

3.1 Illustration of Weakness of the Existing Pruning Approach

To show the limitations of Aouiche’s approach in pruning search space of bitmap
join indices, we consider the following example with a part of a star schema (used
in our experimental study) containing two dimension tables CHANNELS (denoted
by Ch) and CUSTOMERS (denoted by C) and a fact table SALES (denoted
by S). The cardinalities of these tables (number of instances) are: ||SALES|| =
16260336, ||CHANNELS|| = 5 and ||CUSTOMERS|| = 50000. Let us assume
that five queries are most frequently executed on the corresponding data cube (see
Table I). In the above queries, two main join operations are used: one between
SALES and CUSTOMERS (J1 : SALES 1 CUSTOMERS), and another one
between SALES and CHANNELS (J2 : SALES 1 CHANNELS). Basically, the
cost of J1 is higher than J2 since the size of CUSTOMERS (50 000 instances) is
larger than the size of CHANNELS (5 instances).

With minsup = 3 (in absolute value), the solution returned by [Aouiche et al.
2005] is a bitmap join index (that we call sales desc bjix) defined on CHANNELS
and SALES using channel desc attribute. This is due to the fact that there are
three occurrences of the same selection predicate defined on that attribute in the
five queries. However, no bitmap join index is proposed between SALES and CUS-
TOMERS since the cust gender attribute is not so frequent as minsup. As a
consequence, only the join J2 will be optimized, but not the global query set.

To overcome this limitation, we enrich the pruning function by considering other
parameters like the size of tables, the length of an instance of tables, and page size.

4. THE PROPOSED APPROACH

Given a star schema with a set of dimension tables {D1, D2, ..., Dl} and a fact table
F . Let ||Ti|| and LCi be the cardinality of a (dimension or fact) table Ti and the
length of an instance of Di, respectively. The number of disk pages occupied by a
table T , denoted by |T | is calculated as follows:

|T | =
⌈ ||T || × LT

PS

⌉
(3)

where PS represents the page size (in bytes) on disk.
Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007
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In order to select a set of bitmap join indices minimizing the overall query pro-
cessing cost and satisfying the storage constraint S, we consider an approach with
two steps commonly found in the classical index selection approaches: (1) genera-
tion of candidate attributes, and (2) selection of the final configuration and BJIs.
These steps will be described in the following subsections.

4.1 Generation of Candidate Attributes

The input of this step is the context matrix. It is constructed using the set of
queries Q = {Q1, Q2, ..., Qm} and a set of indexable attributes A = {A1, A2, ..., Al}.
The matrix has rows and columns that represent queries and indexable attributes,
respectively. A value of this matrix is given by:

Uses(Qi, Aj) =
{

1 if query Qi uses a selection predicate defined on Aj

0 otherwise

Example 2. Recall that the size of CUSTOMERS, CHANNELS and SALES is:
50 000, 5 and 16 260 33 instances, respectively. Instance length of CUSTOMERS,
CHANNELS and SALES is: 24, 24 and 36, respectively, and page size PS =
65536. We consider the same five queries as defined in Table 1. To facilitate the
construction of the context matrix, we rename the indexable attributes as follows:
Sales.cust id = A1, Customers.cust id = A2; Customers.cust gender = A3,
Channels.channel id = A4, Sales.channel id = A5; Channels.channel desc =
A6. The matrix is given below.

A1 A2 A3 A4 A5 A6

Q1 0 0 0 1 1 1
Q2 0 0 0 1 1 1
Q3 0 0 0 1 1 1
Q4 1 1 1 0 0 0
Q5 1 1 1 0 0 0

Support 2
5

2
5

2
5

3
5

3
5

3
5

To prune the search space of the BJI selection problem, we propose two algorithms:
DynaClose and DynaCharm which are an adaptation of Close [Pasquier et al.
1999] and ChARM [Zaki and Hsiao 2002], respectively. We used Close because it
has been exploited by Aouiche et al. [Bellatreche and Boukhalfa 2005] for the same
purpose (selecting BJIs), and hence will allow us to better compare the performance
of our approach against Aouiche’s approach (see Section 5 for more details). We
also used ChARM because it is a well-known and efficient algorithm for frequent
closed itemset generation. Our adaptation concerns especially the pruning metric
which is different from the one used in Close and ChARM, where only frequencies
of attributes are used. In order to prune the search space, we propose a new metric
Fitness(X), called fitness metric on a FCI X, that penalizes the FCIs defined on
small dimension tables.

Fitness(X) =
1
n
× (

n∑

i=1

supi × αi) (4)

where n represents the number of non-key attributes Ai in X, αi is equal to |Dj |
|F | ,

where |Dj | and |F | represent the number of pages needed by the dimension table
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Dj that includes Ai and the fact table F , respectively. The elements supi is the
support of Ai.

Given a minsup, minfit (minimal fitness value) can be computed as follows:

minfit =
minsup

|F | ×



(
d∑

j=1

|Dj |
d

)




(5)

Example 3. From our trivial example, two closed itemsets may be generated:
CFI1 = {A1, A2, A3} with a support equal to 0.4 and CFI2 = {A3, A5, A6} with 0.6
support. With minsup = 0.6, Aouiche’s approach will retain CFI2 = {A3, A5, A6}
and hence suggest a BJI on A6 to match the facts in Sales with records in Channels
according to the values of channel desc. To illustrate our pruning technique, we
first compute the fitness function for each one of the generated CFIs.

Fitness(CFI1) = sup(A3)× α3

=
2
5
×

⌈
50000×24

65536

⌉
⌈
||1626033||×36

65536

⌉

=
2
5
× 19

894
= 0.0085

One may notice that CFI1 contains only one non-key attribute which is A3, and
hence Fitness(CFI1) will take into account A3 only. Fitness(CFI2) is computed
based on A6 only and is equal to 0.00067. The value of minfit is 0.0067 (=
0.6
894 × 19+1

2 ). Our pruning metric will then select CFI1 rather than CFI2.

4.2 Elimination of Dirty FCIs

The set of the FCIs generated by DynaClose and DynaCharm must be purified to
avoid the erroneous bitmap join indices. Let us recall that a bitmap join index
is built between a fact table and dimension table(s) based on non-key attributes.
Therefore, in its definition, we should find key-attributes and non-key attributes.
There are two main requirements of bitmap join indices: (1) if a bitmap join index
is defined on k (k > 1) attributes of the same dimension table, it shall have only
one join operation between this table and the fact table. (2) if a bitmap join index
is defined on k (k > 1) attributes of distinct dimension tables, it shall have k join
operations between this table and the fact table. Based on these requirements, we
distinguish three scenarios that lead to a purification (i.e., the elimination of the
concerned FCI):

(1) The FCI contains only key attributes (of dimension tables) or only foreign keys
of the fact table.

(2) The FCI has a number of key attributes significantly higher than the number
of non-key attributes. For instance, the case of a FCI (customers.cust gender,
sales.cust id, customers.cust id, sales.prod id, products.prod id) having three
keys and one non-key attribute. For one non-key attribute, we only need two
key attributes for building BJIs. Generally, for N selection attributes, 2 × N
key attributes are required.
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(3) The FCI is composed of only non-key attributes.

After this elimination, we get a set of candidate dimension attributes for selecting
bitmap join indices, denoted by CA (CA ⊆ A), where A is the initial set of indexable
attributes. CA is the union of all attributes belonging to the purified FCIs. To select
the final configuration of bitmap join indices, we consider only CA as described in
the following section.

4.3 Selection of the Final Configuration

Now, we have the set of all candidate attributes needed to build the final config-
uration of BJIs using a greedy algorithm. The input of this algorithm covers: (a)
a star schema with a fact table and a set of dimension tables, (b) a set of queries:
Q = {Q1, Q2, · · · , Qp}, (c) CA and (d) a storage constraint S. Our algorithm starts
with a configuration having a bitmap index defined on an attribute of CA. Since
the cardinality of CA may be large, we choose the first attribute as the one with
the lowest cardinality, let say, Imin. This choice assumes a sort of elements in CA
according to their cardinality. Then, the procedure iteratively improves the initial
configuration by considering other attributes of CA while the constraint on S is
maintained and a further reduction in the total query processing cost is possible.
To measure efficiency of a configuration, we use a mathematical cost model, an
adaptation of an existing one [Aouiche et al. 2005] that computes the number of
disk page accesses (IO costs) when executing the set of queries. In order to estimate
storage cost required for a bitmap join index, we adapt our cost model developed
in [Bellatreche et al. 2000]. The main steps of our approach are given in Algorithm
1.

Algorithm 1 Greedy Algorithm for BJIs Selection
Input :

CA, Q, S(storage bound)
Output:

Config: set of selected BJIs.
Notations:

BJIj : a bitmap join index defined on attribute Aj .
Size(BJIj): storage cost required for BJIj

begin
SCA = SORT (CA); /* a sequence of attributes */
Config = BJImin;
S := S − Size(BJImin);
SCA := SCA−Amin; Amin is the attribute used to defined BJImin

WHILE (Size(Config) ≤ S) DO
FOR each next element Aj in SCA DO

IF (COST [Q, (Config ∪BJIj))] < COST [Q,Config])
AND ((Size(Config ∪BJIj) ≤ S)) THEN

Config := Config ∪BJIj ;
Size(Config) := Size(Config) + Size(BJIj);
SCA := SCA−Aj ; /* remove Aj from SCA */

end

Journal of Computing Science and Engineering, Vol. 1, No. 2, December 2007



A Data Mining Approach for Selecting Bitmap Join Indices 189

5. EXPERIMENTAL STUDY

To evaluate our approach, we first implemented all algorithms (Close, DynaClose,
Charm, DynaCharm and the greedy algorithm) using Java language and a Pentium
IV with 512 MB of memory. We conducted several experimentations using the same
dataset and the forty OLAP queries as in [Aouiche et al. 2005]. The star schema
of the data warehouse has one fact table SALES and five dimension tables: TIME,
CUSTOMERS, PRODUCTS, PROMOTIONS and CHANNELS (see Tables II).

Table II. Table cardinalities used in the experiments.
Tables Number of rows

SALES 16 260 336

CUSTOMERS 50 000

PRODUCTS 10 000

TIME 1 461

PROMOTIONS 501

CHANNELS 5

The experiments were conducted according to four scenarios: (1) identification
of the value of minsup that gives an important number of FCIs, (2) evaluation
of different approaches (Close, DynaClose, Charm and DynaCharm) by executing
the forty queries on non indexed tables without considering storage constraint, (3)
evaluation of different approaches by considering the storage constraint, and (4)
computation of CPU bound of different approaches.

First, we carried out experiments to set the appropriate value of minsup that
allows the generation of a large set of FCIs. The results show that the appropriate
minsup value should be set to 0.05.

5.1 Evaluation without Storage Constraint

Figure 4 shows how different indexing approaches reduce the cost of executing the
forty queries with an increasing number of minimum support. The main result is
that DynaClose outperforms approaches for almost all values of minsup. However,
its performance deteriorates (in the sense that no candidate indices can be gen-
erated) when the minsup value becomes high. We notice that for minsup values
exceeding 0.475, Close, Charm and DynaCharm stop generating new FCIs, and
hence the query processing cost remains stable.

A comparison between DynaCharm and DynaClose shows that they have a simi-
lar performance for small minsup values (ranging between 0.05 and 0.0175). These
results coincide with the experimental study of Zaki et al. [Zaki and Hsiao 2002].
However, as we increase minsup, the performance gap between DynaClose and
DynaCharm becomes larger. This is due to the fact that DynaCharm processes
branches in a depth-first fashion, and FCIs are formed only at the end of an itera-
tion.

5.2 Evaluation of DynaClose et Dynacharm with Storage Constraint

The set of BJIs generated by DynaClose and Dynacharm for a minsup=0.05 requires
storage of 146,88 MB (see Figure 6). This value is very high if we compare it with
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Figure 5. Behavior of our approaches according to storage constraint.

the size of the fact table which is 372,17 MB. Consequently, we execute our greedy
algorithm for selecting BJIs by considering various storage values with a fixed value
of minsup equal to 0.05. This value allows the generation of a large number of
index candidates. Figure 5 shows that Dynaclose and Dynacharm improve the
performance with a gain of 43% (compared to the solution without indexing) for
44 MB of storage (almost 3 times smaller than the initial space (146,88 MB)).
With the same storage, Charm and Close give a 33,56% gain. Therefore, our
proposed variants Dynaclose and Dynacharm provide a better performance than
the traditional approach for all the values of the considered storage, except for the
storage space 84 MB (where all approaches provide the same gain of 58,19%).
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5.3 Evaluation of Different Approaches based on CPU Bound

We have conducted experiments about the execution time of each algorithm (in
microseconds) according to a varying value of minsup. Table 3 shows that Dy-
naCharm and DynaClose need more execution time to prune the search space com-
pared to Charm and Close. This result was foreseeable since contrary to traditional
approaches (Closed and Charm) which prune according to the minsup, our two ap-
proaches take more time since the pruning phase involves the computation of the
fitness function for each generated FCI. The results show that DynaCharm is the
approach which requires the highest time for almost all minsup values that we con-
sider, but it remains stable for high minsup. This is due to the pruning phase of
DynaCharm since it is carried out only when we get maximized closed itemsets.

Table III. Execution Time (in milliseconds) of Different Approaches.

Minsup DynaClose Close Charm DynaCharm
0, 04 2794 3079 3424 2984
0, 075 2473 2518 3121 2961
0, 175 2403 2491 2708 3109
0, 225 2158 1574 1540 3865
0, 25 2210 1680 1504 3457
0, 275 2220 2063 1043 3830
0, 375 2113 1737 1046 4181
0, 45 2195 1730 683 4168
0, 475 1985 1319 288 4000
0, 5 1910 1294 303 3758
0, 7 1945 1294 303 3758
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6. CONCLUSION

In this paper, we have explored the problem of indexing in relational data ware-
housing, where we distinguish between two main categories: single table indices
and multiple table indices. Single table index selection problem has been largely
studied in traditional database compared to multiple table indices. We motivate
the use of multiple table indices in relational data warehouses to speed up complex
queries requiring join operations. We concentrate on bitmap join indices which are
a case of multiple join indices. First, we formalize the problem of selecting a set
of bitmap join indices subject to storage constraint. To deal with this problem,
we propose an approach based on rule mining, and more specifically on frequent
closed itemset generation. Our approach proceeds in two main steps: (1) it uses
data mining procedures, called DynaClose and DynaCharm (adaptations of Close
and Charm algorithms) to prune the search space of the bitmap join index selection
problem by identifying frequent closed itemsets that represent candidate indexable
attributes, and (2) it uses a greedy algorithm to select the final configuration of
indices. The main peculiarity of our pruning approach, compared to the existing
approaches where only frequency of dimension attributes (in queries) is used, lies
in the utilization of other parameters like table size, page size, and record size.
Once the pruning phase is executed, we exploit our greedy algorithm that uses a
cost model to generate the appropriate set of indices. Our approach was validated
through experimentation. Additional and large scale experiments are underway to
check our findings.

We plan to extend this work into two directions: (i) study the dynamic com-
putation of BJIs when significant changes occur in the input, and (ii) handle the
problem of view materialization in data warehouses using a similar approach based
on data mining and cost model estimation.
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