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There is general agreement that the problem of data semantics has to be addressed for XML
data to become machine-processable. This problem can be tackled by defining a semantic

mapping between an XML schema and an ontology. Unfortunately, creating such mappings is
a tedious, time-consuming, and error-prone task. To alleviate this problem, we present a
solution that heuristically discovers semantic mappings between XML schemas and ontologies.
The solution takes as input an initial set of simple correspondences between element attributes
in an XML schema and class attributes in an ontology, and then generates a set of mapping
formulas. Once such a mapping is created, it is important and necessary to maintain the
consistency of the mapping when the associated XML schema and ontology evolve. In this
paper, we first offer a mapping formalism to represent semantic mappings. Second, we present
our heuristic mapping discovery algorithm. Third, we show through an empirical study that
considerable effort can be saved when discovering complex mappings by using our prototype
tool. Finally, we propose a mapping maintenance plan dealing with schema evolution. Our
study provides a set of effective solutions for building sustainable semantic integration systems
for XML data.
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1. INTRODUCTION

There is explosive growth in the amount of XML data published on the Web since
XML is becoming a standard format for information exchange on the Web. However,
because of the heterogeneity in structures and vocabularies, XML does not support
well data integration. To resolve the heterogeneity problem, we need to understand
the semantics of XML data. Formal ontologies, as shared conceptualizations of
specific domains, carry precise semantics. Capturing the semantics of XML data in
terms of ontologies therefore provides a means for integrating heterogeneous XML
data sources. For many XML documents satisfying patterns expressed in DTD or
XML schema, the semantics can be captured in a formal way, through a semantic
mapping relating parts of the schema with logical formulas over predicates
introduced by an ontology. In this paper, we study a heuristic solution to defining
and maintaining complex semantic mappings from XML schemas to ontologies.

Although mappings from XML schemas to ontologies could be as simple as one-to-
one correspondences between their constituent parts, in most applications, complex
expressions are needed to relate non-trivial structures within corresponding XML
schema and ontology. For example, mappings in [Amann et al. 2002; Lakshmanan
and Sadri 2003] essentially connect paths in XML to chains of properties in an
ontology. Moreinteresting applications of complex mappings can be found in areas
such as data integration, as well as peer-to-peer data management systems [Halevy
et al. 2003]. Until now, it has been assumed that humans specify these complex
mapping formulas - a highly non-trivial process, especially since the specifier must be
familiar with both the XML schema and the ontology. Since many XML schemas
and ontologies are very complicated artifacts, often containing thousands of terms,
the entire process is time-consuming and error-prone, and hence calls for support in
the form of automated tools.

In this paper, we describe in detail a tool [An et al. 2005a] that assists users in the
construction of complex mapping formulas between XML schemas and ontologies,
expressed in a subset of First Order Logic. We are motivated by a number of
important problems on XML data management including annotating XML data in
terms of ontologies, translating XML data into ontologies, and integrating
heterogeneous XML data on the Semantic Web. A typical scenario is that the owner
of a website (e.g., an online bookstore) wants to make the XML data (e.g., book
catalogs) published in the website to be understandable by a software agent (e.g., a
book search engine) committed to an existing ontology. A solution is to map the
XML data to the ontology used by the software agent.

In an open, dynamic, and distributed information environment such as the Web,
information sources are constantly evolving. After semantic mappings between XML
schemas and ontologies have been created, it is important and necessary to maintain
the consistency of the semantic mappings when schemas or ontologies evolve. In this
paper, we extend our ealier work [An et al. 2005a] by proposing strategies for
maintaining the mappings under the evolution of XML schema.
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1.1 Illustrative Examples

Inspired by the success of the Clio tool [Miller et al. 2000; Popa et al. 2002], our tool
takes three inputs: an ontology, an XML schema (actually, its unfolding into tree
structures that we will call element trees), and simple correspondences between
XML attributes/“leafs”  and ontology datatype properties, of the kind possibly
generated by already existing tools (e.g., [Dhamankar et al. 2004; Madhavan et al.
2001; Melnik et al. 2002]). The output is a list of complex formulas representing
semantic mappings. The following example illustrates the input/output of the
proposed tool. 

Example 1.1. Consider an XML document containing information about articles,
authors, and contact authors of articles as shown in Figure 1. The document satisfies
the XML Schema specification given in Figure 2 (omitting the definition for the docs
element). We want to discover and express the semantic of the XML schema in terms
of the ontology in Figure 3. The ontology is described as a UML class diagram.

Our goal is to produce a logic formula that defines the semantics encoded in the
structure of the XML schema. This semantics is expressed by the concepts, attributes,
and associations in the ontology. To increase the likelihood of discovering the correct
semantics, we assume that some extra information is available as part of the input.
This information is specified as a set of simple correspondences between attributes1

in the XML schema and datatype properties/attributes in the ontology. The
correspondences can be specified by a user or generated by schema matching tools.

Specifically, we use the following notation to represent the simple correspondences
between attributes of the XML schema and datatype properties of the ontology, where
the prefixes X and O distinguish terms in the XML schema and the ontology.
1Include simple type elements, see Section 3.1.

Fig. 1. An XML document.
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X:article.@title O:Article.hasTitle

X:article.author.@id O:Author.hasID

X:article.author.name.@fn O:Author.hasFirstname

X:article.author.name.@ln O:Author.hasLastname

X:article.contactauthor.@authorid O:Author.hasID

The expression on the left-hand side of a correspondence is a path from the root to an
attribute in the XML schema, while the right-hand side indicates a datatype property
of a concept in the ontology. We will give a formal definition of a correspondence in
Section 3.

Having as input the XML schema, the ontology, and the set of such simple corre-
spondences, we expect our tool to generate a set of logical formulas which includes
the following one, expressing a possible semantics of the XML schema in terms of the
ontology:

 article(@title = x1)[
 author (@id = x2)[

 name (@fn = x3, @ln = x4)],
 contactauthor(@authorid = x5)]]         →�� Article(Y1), hasTitle(Y1, x1),

Author(Y2), hasID(Y2, x2),
hasAuthor(Y1, Y2),
hasFirstname(Y2, x3),
hasLastname(Y2, x4),
Author(Y3), hasID(Y3, x5),
Contactauthor(Y1, Y3).

In the above mapping formula, the left-hand side expression is a tree-pattern for-
mula which is defined in Section 3.3. 

The following example illustrates the problem of maintaining a semantic mapping
when the associated XML schema evolves and provides a glimpse of our maintenance
plan.

Example 1.2. A semantic mapping such as the one created in the previous example
relates a subgraph of an XML schema with a subgraph of an ontology graph. These
two subgraphs should be semantically consistent, i.e., the constraints specified among
a set of elements in the XML schema are consistent with the constraints specified
among the corresponding set of elements in the ontology. 

Once such a mapping is created, it is important to maintain the consistency when
the related schema or ontology evolves. Changes to schemas and ontologies include
deletion and addition of elements, restructuring, and constraint update. We aim at
incrementally maintaining the consistency of a semantic mapping instead of redis-
covering a new semantic mapping when changes happen. For example, for the schema
in Figure 2, if a new element @title is added under the article element and the @title

attribute becomes an attribute of the title element, we only need to update the left-
hand side of the existing semantic mapping formula and keep the right-hand side
intact. There is no need to execute the mapping discovery algorithm to generate a new
mapping formula. A systematic mapping maintenance strategy is presented later.
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1.2 Overview

The main contributions of this work are as follows: (i) we propose a mapping
formalism to capture the semantics of XML schemas based on tree-pattern formulas
[Arenas and Libkin 2005a]; (ii) we propose a heuristic algorithm for finding semantic
mappings, which are akin to a tree connection embedded in the ontology; (iii) we
enhance the algorithm by taking into account information about (a) XML Schema
features such as occurrence constraints, key and keyref definitions, (b) cardinality
constraints in the ontology, and (c) XML document design guidelines under the

Fig. 2. An XML schema definition.

Fig. 3. An ontology.
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hypothesis that an explicit or implicit conceptual model existed during the process of
XML document design; (iv) we adopt the accuracy metric of schema matching
[Melnik et al. 2002] and evaluate the tool with a number of experiments; (v) we
develop strategies for maintaining the consistency of a semantic mapping when
associated XML schema evolves.

The rest of the paper is organized as follows. Section 2 discusses related work,
while Section 3 presents formal notations used later on. Section 4 describes some
principles, as well as the mapping discovery algorithm. Section 5 reports on empirical
studies. Section 6 studies how to maintain the consistency of a semantic mapping
under schema evolution. Finally, Section 7 summarizes the results of this work and
suggests future directions.

2. RELATED WORK

Much research has focused on converting and storing XML data into relational
databases [Shanmugasundaram et al. 1999]. It is natural to ask whether we could
utilize the mapping algorithm we have developed in [An et al. 2005b] – for dis-
covering mappings from relational schemas to ontologies – by first converting XML
DTDs/schemas into relational tables. Unfortunately, this approach does not work.
Among others, the algorithms that generate a relational schema from an XML DTD
use backlinks and system generated id s in order to record the nested structure, and
these confuse the algorithms in [An et al. 2005b], which rely heavily on key and
foreign key information.

The schema mapping tool Clio [Miller et al. 2000; Popa et al. 2002] discovers
formal queries describing how target schemas can be populated with data from
source schemas, given sets of simple value correspondences. The present work can be
viewed as extending Clio to the case when the target schema is an ontology treated
as a relational schema consisting of unary and binary tables. However, as argued in
[An et al. 2005b], the chase algorithm of Clio would not produce the desired mapp-
ings due to several reasons: (i) the chase only follows nested referential constraints
along one direction, while the intended meaning of an XML element tree may follow
a binary relationship along either direction (see also Section 4.1); (ii) Clio does not
exploit occurrence constraints in the XML schema. These constraints carry impor-
tant semantic information in searching for “reasonable” connections in the ontology.

The Xyleme [Delobel et al. 2003] project is a comprehensive XML data integration
system which includes an automatic mapping generation component. A mapping
rule in terms of a pair of paths in two XML data sources is generated based on term
matching and structural, context-based constraints. Specifically, terms of paths are
first matched syntactically and semantically. Then the structural information is
exploited. Our work difiers from it significantly in that we propose to discover the
mappings between tree structures in XML data and that in ontologies. The dis-
covery is guided by a forward engineering process.

The problem of reverse engineering is to extract a conceptual schema (UML
diagram, for example) from an XML DTD/schema [Jensen et al. 2003]. The major
difierence between reverse engineering and our work is that we are given an existing
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ontology, and want to interpret the XML data in terms of it, whereas reverse
engineering aims to construct a new one.

Schema Matching [Dhamankar et al. 2004; Madhavan et al. 2001; Melnik et al.
2002] identifies semantic relations between schema elements based on their names,
data types, constraints, and structures. The primary goal is to find the one-one
simple correspondences which are part of the input for our algorithm.

Finally, our earlier work [An et al. 2005a] develops and presents the main ideas of
the mapping discovery algorithm. However, it does not consider the mapping
maintenance problem.

3. FORMAL PRELIMINARIES

In this section, we define some formal notations used in later sections.

3.1 XML Data Model and XML Schema

An XML document is typically modeled as a node-labeled graph. For our purpose,
we assume that each XML document is described by an XML schema consisting of a
set of element and attribute type definitions. Specifically, we assume the following
countably infinite disjoint sets: Ele of element names, Att of attribute names, and
Dom of simple type names including the built-in XML Schema datatypes. Attribute
names are preceded by a “@” to distinguish them from element names. Given finite
sets E⊂Ele and A⊂Att, an XML schema S = (E, A, τ, ρ, κ) specifies the type of
each element � in E, the attributes that � has, and the datatype of each attribute in
A. Specifically, we use the following abstract syntax to define an XML schema. An
element type τ is defined by the grammar τ ::= ε|Sequence[�1 : τ1, ... �n : τn]|Choice

[�1 : τ1, ..., �n : τn] for �1, ..., �n ∈ E, where ε stands for the empty type, and Sequence

and Choice are complex types. Each element has associated two occurrence con-
straints: minOccurs, indicating the minimum number of occurrence, and maxOccurs,
indicating the maximum number. (We mark with * multiply occurring elements.)
The set of attributes of an element � ∈ E is defined by the function ρ : E → 2A; and
the function κ : A →�Dom specifies the datatypes of attributes in A. Each datatype
name associates with a set of values in a domain Dom. In this paper, we do not
consider the simple type elements (corresponding to DTD’s PCDATA), assuming
instead that they have been represented using attributes2. As usual in XML, attri-
butes are single-valued. Furthermore, a special element  ∈ E is the root of each
XML schema, and we assume that for any two element �i, �j ∈ E, ρ(�i) ∩ ρ(�j) = ∅.

For example, the XML schema describing articles and authors in Figure 2 has the
following specification, where (�)τ represents the type of an element �: 
E ={article, author, contactauthor, name}, 
A ={@title, @id, @authorid, @fn, @ln}, 
(article)τ = Sequence[(author)* :(author)

τ, contactauthor:ε],
(author)τ = Sequence[name:ε ],
ρ(article) = (@title), ρ(author) = (@id), ρ(contactauthor) = (@authorid),

r

2Multivalued PCDATA elements are encoded by adding an additional element with one
attribute
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ρ(name) = (@fn,@ln), κ(@title) = String, κ(@authorid) = Integer, κ(@id)= Integer,
κ (@fn)= String, κ (@ln)= String, and the element article is the root. Note that for
the article element, contactauthor only occurs once, while author may occur many
times. For the author element, name occurs once. The XML Schema Language
[Fallside and Walmsley 2004] is an expressive language that can also express key

and keyref constraints.
Unlike relational databases where data are stored in relations comprising tuples of

values, data in XML documents are organized in graph (tree) structures. An XML
document X = (N, <, , , η) over (E, A) consists of a set of nodes N, a child relation
< between nodes, a root node , and two functions:

—a labeling function :N → E ∪ A such that if (v) = � ∈ E, we say that v is in the
element type �; if (v) = @a ∈ A, we say that v is an attribute @a;

—a partial function η:N → Dom for every node v with (v) = @a ∈ A, assigning
values in domain Dom that supplies values to simple type names in Dom.

An XML document X = (N, <, , , η) conforms to a schema S = (E, A, τ, ρ, k),
denoted by X |= S, if:

(1) for every node v in X with children v1, ..., vm such that (vi) ∈ E for i = 1, ..., m,
if λ(v) = �, then (v1),..., (vm) satis˙es τ (�) and the occurrence constraints.

(2) for ever node v in X with children u1, ..., un such that (ui) = @ai ∈ A for i = 1,
..., n, if (v) = �, then (ui) = @ai ∈ ρ(�), and η(ui) is a value having datatype
k(@ai).

An XML schema can be viewed as a directed node-labeled graph called schema
graph consisting of the following edges: parent-child edges e = � → �i for elements �,
�i ∈ E such that if τ(�)= Sequence[...�i : τi...] or Choice[...�i : τi...]; and attribute edges
e = � ⇒�α for element � ∈ E and attribute α ∈ A such that α ∈ ρ(�). For a parent-
child edge e = � → �i, if the maxOccurs constraint of �i is 1, we show the edge to be
functional, drawn as � ⇒ �i. Since attributes are single-valued, we always draw an
attribute edge as � ⇒ α. The schema graph corresponding to the XML schema in
Figure 2 is shown in Figure 4. In the figure, a single-line arrow pointing to a child
element from a parent element represents a parent-child relationship where the
maxOccurs constraint of the child element is multiple, while a double-line arrow

r
r

r

Fig. 4. An XML schema graph.
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indicates that the maxOccurs constraint of the child element is 1.
Elements and attributes as nodes in a schema graph are located by path expre-

ssions. For our purposes, we use a simple path expression Q = ε |�.Q and introduce
the notion of element tree.

A semantic mapping from an XML schema to an ontology consists of a set of
mapping formulas each of which is from an element tree (not a graph!) to a
conjunctive formulas in the ontology. An element tree can be constructed through a
depth first search (DFS), for every node in the element graph. The DFS process first
creates an empty element graph, and creates a new node for each unmarked node
during the traversal of the original schema graph. Mark each node in the schema
graph as “visited” when it is reached the first time and unmarked when all of its
descendent’s have been traversed. (This has the efiect of duplicating subgraphs
pointed at from multiple nodes.) Regular edges are created in the element graph
whenever there is a traversal from a DFS parent node to its unmarked children in the
original schema graph. If an already marked node is reached, then a “back” edge
(using dashed line) is added in the element graph from the DFS parent to this
marked child, but the DFS does not follow this edge. For example, Figure 5 (a)
shows a schema graph with a cycle and a node with multiple parents. Figure 5 (b),
(c), and (d) are the element graphs created by the DFS process starting at the
elements controls, employee, and manager, respectively. In the figure, a dashed-line
arrow represents a back edge created in the DFS process. 

Next, we convert the element graphs into element trees by ignoring or unfolding
the back edges, depending on our needs. To unfold a back edge from a node �i to a
node �j, we connect �j and all the contents descending �j until �i to �i, and then
remove the back edge. The occurrence constraint of the newly created edge from �i to
�j is the same as that of the back edge. Figure 6 (c) and (d) are the element trees
obtained from the element graphs in Figure 5 (c) and (d), respectively, by unfolding
the back edges, while Figure 6 (b) is the element tree obtained from the element
graph in Figure 5 (b) by ignoring the back edge. For the sake of simplicity, we specify
each element tree as rooted at the element from which the tree is constructed,
ignoring the path from the root to the element in the original schema graph.

Fig. 5. Schema graph and element graphs.
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3.2 Ontologies and Ontology Graphs

In this paper, we do not restrict ourselves to any particular language for describing
ontologies. Instead, we use a generic conceptual modeling language (CML), which
contains common aspects of most semantic data models, UML, ontology languages
such as OWL, and description logics. Specifically, the language allows the repre-
sentation of classes/concepts (unary predicates over individuals), object properties/
relationships (binary predicates relating individuals), and datatype properties/attri-
butes (binary predicates relating individuals with values such as integers and strings);
attributes are single valued in this paper. Concepts are organized in the familiar ISA

hierarchy, and subclasses of a superclass can be either disjoint or overlapping. Relation-
ships, and their inverses (which are always present), are subject to constraints such
as specification of domain and range, plus cardinality constraints, which here allow 1
as lower bounds (called total relationships), and 1 as upper bounds (called functional
relationships).

We shall represent a given ontology using a labeled directed graph, called an
ontology graph. We construct the ontology graph from an ontology as follows: We
create a concept node labeled with C for each concept C, and an edge labeled with p
from the concept node C1 to the concept node C2 for each object property p with
domain C1 and range C2; for each such p, there is also an edge in the opposite
direction for its inverse, referred to as p−. For each attribute f of concept C, we create
a separate attribute node denoted as Nf,C, whose label is f, and add an edge labeled f
from node C to Nf,C. For each ISA edge from a subconcept C1 to a superconcept C2,
we create an edge labeled with ISA from concept node C1 to concept node C2 with
cardinality 1..1 on the C2 side (a C1 must be a C2), and 0..1 on the C1 side. For the
sake of succinctness, we sometimes use UML notations, as shown in Figure 3, to
represent the ontology graph. Note that in such a diagram, instead of drawing
separate attribute nodes, we place the attributes inside the rectangle concept nodes;
and relationships and their inverses are represented by a single undirected edge. The
presence of such an undirected edge, labeled p, between concepts C and D will be
written in text as  ---p--- . It will be important for our approach to distinguish
functional edges – ones with upper bound cardinality of 1, and their composition:

C D

Fig. 6. Schema graph and element trees.
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functional paths. If the relationship p is functional from C to D, we write  ---p->--
 . For expressive CMLs such as OWL, we may also connect C to D by p if we find

an existential restriction stating that each instance of C is related to some instance or
only instances of D by p.

3.3 The Mapping Formalism

In this paper, we attempt to discover a semantic mapping from an XML schema to
an ontology, given a set of simple correspondences. A correspondence X:P:@c
O:D.f relates the attribute “@c” of an element � reached by the simple path P in an
element tree to the datatype property f of class D in an ontology. A simple path P is
always relative to the root of a tree. For example, we can specify the following
correspondences for the element tree in Figure 6 (c):

X:employee.@eid1 O:Employee.hasId,
X:employee.manager.@mid O:Employee.hasId.
X:employee.manager.employee.@eid2 O:Employee.hasId

where Employee is a concept in an ontology and hasId is an attribute of the concept
Employee. Formally, a correspondence L will be a mathematical relation L(P, @c, D,
f, Nf,D), where the first two arguments determine unique values for the last three.

We now turn to the mapping language relating a formula representing an element
tree with a conjunctive formula in an ontology. On the XML side, the basic components
are attribute formulas [Arenas and Libkin 2005b], which are specified by the syntax
α ::= �|�(@a1 = x1, ..,@an = xn), where � ∈ E, @a1, ..,@an ∈ A; E and A are element
names and attribute names, respectively, while variables x1, .., xn are the free variables
of α. Tree-pattern formulas over an XML schema S = (E, A, τ, ρ, κ) are defined by
ψ ::= α|α[ϕ1, .., ϕn], where α ranges over attribute formulas over (E,A). The free
variables of a tree formula ψ are the free variables in all the attribute formulas that
occur in it. For example, 

employee(@eid1 = x1)[manager(@mid = x2)[employee(@eid2 = x3)]]
is the tree formula representing the element tree in Figure 6 (c).

A mapping formula between an element tree and an ontology then has the form
Ψ(X) →�Φ(X, Y), where Ψ(X) is a tree formula in the XML schema and Φ(X, Y) is
a conjunctive formula in the ontology. For example, given an ontology containing a
concept Employee, with an attribute hasId, and a functional property hasManager

(whose inverse is manages, which is not functional), the following mapping formula
ascribes a semantics of the element tree in Figure 6 (c):

employee(@eid1 = x1)[
 manager (@mid = x2)[

 employee (@eid2=x3) ]]      →  Employee(Y1),hasId(Y1, x1),
Employee(Y2), hasId(Y2, x2),
hasManager(Y1, Y2), Employee(Y3),
hasId(Y3, x3), manages(Y2, Y3).

C

D
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Since we maintain the unique name assumption for attributes, we can drop the vari-
able names xis, and just use attribute names in formulas. The variables Yj s are impli-
citly existentially quantified and refer to individuals in the ontology.

3.4 The Mapping Discovery Problem

Having the formalism for specifying mappings between XML schemas and ontologies,
we now turn to the problem of discovering such mappings.

Semantic Mapping Discovery Problem (X-to-O problem). Given an XML
schema S = (E, A, τ, ρ, κ), an ontology O, and a set of correspondences L from attri-
butes of elements in S to attributes of concepts/classes in O. For an element tree T,
find an association δτ in the ontology O such that T and δτ are “semantically similar”
in terms of modeling a subject matter.

The input of the X-to-O problem is an XML schema, an ontology, and a set of
correspondences from attributes of elements in the schema to attributes/datatype
properties of concepts in the ontology. An XML document stores attribute values
organized into a graph, while an ontology specifies concepts, attributes of concepts,
and relationships between concepts. Our solution for discovering the semantic mapp-
ing from an XML schema to an ontology exploits the principles that convert a
conceptual model into a “good” XML schema. Focusing on semantics discovery, we
assume the input XML schema has been transformed into element tree(s).

4. MAPPING DISCOVERY ALGORITHM 

Now we turn to the algorithm for discovering semantic mapping from an element tree
to an ontology. The algorithm assumes a set of correspondences have been given.
First, we analyze the structure of an XML element tree to lay out several principles
for the algorithm.

4.1 Principles

We start from a methodology presented in the literature [Embley and Mok 2001;
Kleiner and Lipeck 2001] for designing XML DTDs/schemas from a conceptual model
(CM). We begin with the basic modeling constructs for concepts, attributes, and binary
relationships.

4.1.1 Basic Conceptual Models. As with relational schemas, there is a notion of XML
normal form (XNF) for evaluating the absence of redundancies and update anomalies
in XML schemas [Embley and Mok 2001]. The methodology in [Embley and Mok
2001] claims to develop XNF-compliant XML schemas from conceptual models (CMs).
It turns out that these “good” XML schemas are trees embedded in the graph repre-
sentations of the CMs. Using the term “element tree” instead of “schema tree” in
[Embley and Mok 2001], we briey describe the algorithm of [Embley and Mok 2001]
(called EM-algorithm).

Example 4.1. A CM containing only binary relationships between concepts is re-
ferred to as a “binary and canonical hypergraph” in [Embley and Mok 2001]. For
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such a CM H, the EM-algorithm derives an element tree T such that T is in XNF
and every path of T reflects a sequence of some connected edges in H. For example,
starting from the Department node of the CM in Figure 7 the following element tree
(omitting attributes) T is obtained by the EM-algorithm:

Department[
(FacultyMember[

(Hobby)*, (GradStudent[
Program, (Hobby)*])*])*],

where we use [ ] to indicate hierarchy and ( )* to indicate the multiple occurrences of
a child element (or non-functional edges) in element trees.

In essence, EM-algorithm recursively constructs the element tree T as follows: it
starts from a concept node N in CM, creates tree T rooted at a node R correspond-
ing to N, and constructs the direct subtrees below R by following nodes and edges
connected to N in CM. Finally, a largest hierarchical structure embedded within CM
is identified and an edge of T reflects a semantic connection in the CM.

Given an XNF-compliant element tree T and the CM from which T was derived,
we may assume that there is a semantic tree S embedded in the CM graph such that
S is isomorphic to T. If the correspondences between elements in T and concepts in
the CM were given, we should be able to identify S.

Example 4.2. Suppose elements in the element tree T of Example 4.1 correspond to
the concepts (nodes) in Figure 7 by their names. Then we can recover the semantics
of T recursively starting from the bottom. For the subtree T ′ 

GradStudent[
Program, (Hobby)*],

the edge X:GradStudent3 ⇒ X:Program in T ′ is functional and X:GradStudent →
X:Hobby is non-functional. In the CM graph, we can take the concept GradStudent as
the root. Then we seek for a functional edge from the concept GradStudent to the
concept Program and a 1 : N or M : N edge from GradStudent to the concept Hobby.

Fig. 7. A Sample CM graph.

3We use the notation X:Element to distinguish an element in an XML schema.
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The result is the semantic tree S ′ consisting of two edges: --->--
 and  ----- .

Having identified S ′, we now move one layer up to search for a semantic tree S ′′

corresponding to the following subtree T ′′

FacultyMember[
(Hobby)*, (GradStudent[

Program, (Hobby)*])*].

The edge X:FacultyMember → X:Hobby in T ′′ is non-functional, and the edge from
X:FacultyMember to X:GradStudent, the root of tree S ′, is non-functional as well.
Hence, in the CM, we build the tree S ′′ using the M : N edge from the concept Facul-

tyMember to the concept Hobby and the 1 : N edge from FacultyMember to the concept
GradStudent.

Finally, we are ready to build a semantic tree S corresponding to the entire tree T

Department[
(FacultyMember[

(Hobby)*; (GradStudent[
Program, (Hobby)*])*])*].

Since we have identified a semantic tree S ′′ corresponding to T ′′, what we have to do
now is to connect the concept Department to the root of S ′′, which is the concept Fac-

ultyMember. The connection should be a 1 : N or N : M edge according to the occurrence
constraint of the FacultyMember element.

Figure 8 shows the final semantic tree S identified from the CM in Figure 7, where
we use a line with arrow to indicate a functional edge. Notice that the shared concept
Hobby gets duplicated in the CM graph.

In an element tree T, attributes are the leaves of T and often correspond to the
datatype properties of concepts in a CM. Our algorithm assumes that the user speci-
fies the correspondences from XML attributes to datatype properties in an ontology,
i.e., a CM, manually or using some existing schema matching tools. Given an element

GradStudent

Program GradStudent Hobby

Fig. 8. The identified semantic tree.
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tree, an ontology, and a set of correspondences, the algorithm attempts to identify
the root of a semantic tree corresponding to the element tree and use “semantically
matched” edges to connect the root to remaining nodes. This process is recursive and
in a bottom-up fashion.

Example 4.3. Given an element tree T

GradStudent(@ln,@fn)[
Program(@pname)],

and an ontology/CM shown in Figure 9. Suppose the user specifies the following
correspondences from attributes of elements in T to datatype properties of concepts
in the ontology

v1: X:GradStudent.@ln O:GradStudent.lastname,
v2: X:GradStudent.@fn O:GradStudent.firstname,
v3: X:GradStudent.Program.@pname O:Program.name.

In a recursive and bottom-up fashion, we build a semantic tree S corresponding to
T starting from the leaf @pname. The correspondence v3 gives rise to the semantic
tree S ′ for the leaf @pname, where S ′ is the concept Program. For the subtree Pro-
gram(@pname), the semantic tree is S ′ as well because there are no other correspon-
dences involving the element X:Program. At this level, there are two other subtrees:
@fn and @ln. The semantic tree for both @fn and @ln is the concept GradStudent

according to the correspondences v1 and v2. Let us refer to this semantic tree as S ′′.
In connecting S ′′ to S ′, a possible solution is to assume that the root of S ′′ corresponds
to the element tree root X:GradStudent. Therefore the connection is a functional
edge from the root of S ′′, GradStudent, to the root of S ′, Program, because the
connection from the element X:GradStudent to the element X:Program is functional
(the occurrence constraint on X:Program is 1). Consequently, we identify the semantic
tree S as the connection --registersIn->-  in the ontology.GradStudent Program

Fig. 9. A small ontology and an element tree.
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The first principle of our mapping discovery algorithm is to identify the root of a
semantic tree and to construct the tree recursively by connecting the root to its
direct subtrees using edges in the ontology graph. More precisely, for the node v1 and
its child v2 in an element tree, if a node N1 in an ontology is identified for the root of
a semantic tree for interpreting the tree at v1 and a node N2 is the root of a semantic
tree for the subtree at v2, then we connect N1 to N2 using an edge having cardinality
constraints compatible with the occurrence constraints of the edge from v1 to v2 in
the element tree.

Evidently, identifying the root of a semantic tree is the major obstacle. The
following example illustrates the problem for an XML schema which is not XNF
compliant. Such a schema can be easily encountered in reality. 

Example 4.4. Given an element tree

GradStudent[
Name(@ln, @fn), Program(@pname)].

Suppose the user specified the following correspondences

v1: X:GradStudent.Name.@ln O:GradStudent.lastname,
v2: X:GradStudent.Name.@fn O:GradStudent.firstname,
v3: X:GradStudent.Program.@pname O:Program.name,

from the attributes of elements to the datatype properties of concepts in the ontology
shown in Figure 10.

For the element X:Name and the element X:Program, we can identify two sub-trees,
the concept GradStudent and the concept Program by using the correspondences. For
the element X:GradStudent, we have to use the two identified sub-trees to build the final
semantic tree. Since both X:Name and X:Program occur once and are at the same
level, the question is which concept node is the root of the final semantic tree? GradStudent

or Program? Since the order of nodes on the same level of the element tree does not

Fig. 10. An element tree and an ontology.
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matter, both are potential roots. Therefore, the mapping algorithm should recover func-
tional edges from GradStudent to Program as well as from Program to GradStudent, if any.

This leads to the second principle of our algorithm. Let v1 and v2 be two nodes in
an element tree (an element tree has element nodes and attribute nodes). Let v2 be a
child of v1 and the maximum occurrence constraint for v2 is 1. For each concept C in
an ontology graph such that C has been identified as the root of a semantic tree for
the subtree at v2, C is a potential root for building a semantic tree for the element
tree at v1. If v1 does not have a child whose maximum occurrence constraint is 1, then
we find a concept node as the root of a semantic tree for the element tree at v1 as
follows. The root connects to its children using non-functional paths. The tree
consisting the root and its children is the minimum one if there are other trees
formed by other roots connecting to the same set of children.

Unfortunately, not every functional edge from a parent node to a child node in an
element tree represents a functional relationship. Specifically, some element tags are
actually the collection tags. The following example illustrates the meaning of a
collection tag.

Example 4.5. Figure 11 depicts an element tree and the correspondences from the
element tree to a CM. The element tree and the correspondences are written in text
as follows.

GradStudent[
Name(@ln, @fn), Hobbies[

 (Hobby(@title))*]]

X:GradStudent.Name.@ln O:GradStudent.lastname,
X:GradStudent.Name.@fn O:GradStudent.firstname,
X:GradStudent.Hobbies.Hobby.@title O:Hobby.title.

Fig. 11. An element tree with a collection tag. 
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The element tag X:Hobbies is a collection tag. It represents a collection of hobbies
of a graduate student. Although the edge X:GradStudent ⇒ X:Hobbies is functional,
X:Hobbies → X:Hobby is non-functional. When the concept Hobby is identified as
the root of a semantic tree for the subtree

Hobbies[
(Hobby(@title))*],

Hobby should not be considered as a potential root of the semantic tree for the entire
element tree. 

Eliminating concepts corresponding to collection tags from the set of the potential
roots is our third principle.

In most cases, we try to discover the semantic mapping between an XML schema
and an ontology such that they were developed independently. In such cases, we may
not be able to find an isomorphic semantic tree S embedded in the ontology graph.
For example, for the element tree

City(@cityName)[
Country (@countryName)],

if a CM with a path  -- locatedIn -- > -  -- locatedIn -- > -
is used for interpreting the element tree, the entire path is a possible answer. The
fourth principle for discovering mappings is to find shortest paths in an ontology
graph instead of restricting to single edges. The composed cardinality constraints of
a path should be compatible with the occurrence constraints of the corresponding
edge in the element tree.

Even though we could eliminate some collection tags from the set of potential roots
to reduce the number of possible semantic trees, there may still be too many possibi-
lities if the ontology graph is large. To further reduce the size of the set of potential
roots, we can make use of the key and keyref constructs in an XML schema.

Example 4.6. Given the element tree

Article[
 Title(@title), Publisher(@name), ContactAuthor(@contact), (Author(@id))*].

If the attribute @title is defined as the key for the element X:Article, then we should
only choose the concept corresponding to @title as the root of the semantic tree,
eliminating the classes corresponding to @name and @contact (chosen by the second
principle). Alternatively, if @contact is defined as a keyref referencing some key, we
can also eliminate the class corresponding to @contact. 

So our fifth principle is to use key and keyref definitions to restrict the set of
potential roots.

4.1.2 Reified Relationships. To represent n-ary relationships in the conceptual
modeling language (CML), one needs to use reified relationship (classes). For ex-
ample, an ontology may have class Presentation connected with functional roles to
classes Author, Paper, and Session, indicating participants. It is desirable to recover
reified relationships and their role connections from an XML schema. Suppose the
element tree. 

City State Country
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Presentation[
Presenter(@author), Paper(@title), Session(@eventId)];

represents the above ternary relationship. Then, in the ontology, the root of the
semantic tree is the reified relationship class Presentation, rather than any one of the
three classes which are role fillers. The sixth principle then is to look for reified
relationships for element trees with only functional edges from a parent to its children
that correspond to separate classes4.

4.1.3 ISA Relationships. In [Embley and Mok 2001], ISA relationships are eliminated
by collapsing superclasses into their subclasses, or vice versa. If a superclass is
collapsed into subclasses, correspondences can be used to distinguish the nodes in the
ontology. If subclasses are collapsed into their superclass, then we treat the ISA edges
as special functional edges with cardinality constraints 0 : 1 and 1 : 1. The last prin-
ciple is then to follow ISA edges whenever we need to construct a functional path5.

4.2 Algorithm

First, to get a better sense of what we are aiming for, we present the encodeTree(S,
L) procedure, which translates an ontology subtree S into a conjunctive formula,
taking into account the correspondences L [An et al. 2006].

Function encodeTree(S,L)
Input subtree S of ontology graph, correspondences L from attributes of element
tree to datatype properties of class nodes in S.
Output variable name generated for root of S, and conjunctive formula for the tree.
Steps:
(1) Suppose N is the root of S, let  = {}.
(2) If N is an attribute node with label f, find @d such that L(_, @d, _, f, N) = true,

return (@d, true).
(3) If N is a class node with label C, then introduce new variable Y; add conjoint

C(Y) to ; for each edge pi from N to Ni:
(a) let Si be the subtree rooted at Ni;
(b) let (vi; φi(Zi))=encodeTree(Si, L);
(c) add conjunct pi(Y, vi) ∧ φi(Zi) to ;

(4) return (Y, ).

The following procedure constructTree(T, L) generates the subtree of the ontology
graph for the element tree after appropriately replicating nodes6 in the ontology graph.

Function constructTree(T, L)
Input an element tree T, an ontology graph, and correspondence L from attributes
in T to datatype properties of class nodes in the ontology graph.
Output set of (subtree S, root R, collectionTag) triples, where collectionTag is a

4If a parent functionally connects to only two children, then it may represent an M:N binary
relationship. So recover it as well.
5Thus, ISA is taken care of in the forthcoming algorithm by proper treatment of functional path.
6Replications are needed when multiple attributes correspond to the same datatype property.
See [An et al. 2005b] for details.
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boolean value indicating whether the root corresponds to a collection tag.
Steps:
(1) Suppose N is the root of tree T.
(2) If N is an attribute, then find L(_, N, _, _, R) = true; return ({R}, R, false).

/*the base case for leaves.*/
(3) If N is an element having n edges {e1, ..., en} pointing to n nodes {N1, ..., Nn}, 

let Ti be the subtree rooted at Ni, 
then compute (Si, Ri, collectionTagi) = constructTree(Ti, L) for i = 1, ..., n;
(a) If n = 1 and e1 is non-functional, return (S1, R1, true);/*N probably is a collec-

tion tag representing a set of instances each of which is an instance of the N1

element.*/
(b) Else if n = 1 and e1 is functional return (S1, R1, collectionTag1).
(c) Else if R1=R2=...=Rn, then return (combine(S1, ..., Sn), R1, false)

7.
(d) Else let F={Rj1, ..., Rjm

| s.t. ejk is functional and collectionTagjk = false
for k = 1, ..., m, jk∈{1, ..., n}} and NF={Ri1

, ..., Rih
| s.t. eik is non-functional,

or eik is functional and collectionTagik = true for k = 1, ..., h, ik∈{1, ..., n}},
let ans = {}, /*separate nodes according to their connection types to N.*/

i. Try to limit the number of nodes in F by considering the following cases:
1) keep the nodes corresponding to key elements located on the highest
level; 2) keep those nodes which do not correspond to keyref elements.

ii. If NF = ∅, find a reified relationship concept R with m roles rj1, ..., rjm
pointing to nodes in F, let S = combine({rjk}, {Sjk

}) for k = 1, ..., m; let
ans = ans∪(S, R, false). If R does not exist and m = 2, find a non-
functional shortest path p connecting the two nodes Rj1

, Rj2
 in F; let S =

combine(p, Sj1
, Sj2

); let ans = ans∪(S, Rj1
, false). /*N probably represents

an n-ary relationship or many-many binary relationship (footnote of the
sixth principle.)*/

iii. Else for each Rjk
 ∈ F k = 1, ..., m, find a shortest functional path pjk from

Rjk
 to each Rjt

 ∈ F\Rjk
 for t = 1, ..., k − 1, k + 1, ..., m; and find a shortest

non-functional path qir from Rjk
 to each Rir

 ∈ NF for r = 1, ..., h; if pjk and
qir exist, let S = combine({pjk}, {qir}, {S1, ..., Sn}); let ans = ans∪(S, Rjk

,
false). /*pick an root and connect it to other nodes according to their
connection types.*/ 

iv. If ans ≠�∅, return ans; else find a minimum Steiner tree S connecting R1,
..., Rn, return (S, R1, false). /*the default action is to find a shortest Steiner
tree.*/

5. EXPERIMENTAL EVALUATION

We have implemented the mapping discovery algorithm and conducted a set of
experiments to evaluate its efiectiveness and usefulness.

Measures for mapping quality and accuracy. We first attempt to use the
notions of precision and recall for the evaluation. Let R be the number of correct

7Function combine merges edges of trees into a larger tree.
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mapping formulas of an XML schema, let I be the number of correctly identified
mapping formulas by the algorithm, and let P be the total number of mapping
formulas returned. The two quantities are computed as: precision = I/P and recall
= I/R. Please note that for a single input element tree T, which has a single correct
mapping formula, the algorithm either produces the formula or not. So the recall for
T is either 0 or 1, but the precision may vary according to the number of output
formulas. For measuring the overall quality of the mapping results, we computed the
average precision and recall for all tested element trees of an XML schema.

However, precision and recall alone cannot tell us how useful the algorithm is to
users. The purpose of our tool is to assist users in the process of constructing complex
mappings, so that productivity is enhanced. Consider the case when only one semantic
mapping is returned. Even if the tool did not find the exactly right one, it could still
be useful if the formula is accurate enough so that some labor is saved. To try to
measure this, we adopt the accuracy metric for schema matching [Melnik et al. 2002].
Consider the mapping formula Φ(X)→ (X, Y) with the formula Φ(X) encoding an
element tree. The formula (X, Y) encodes a semantic tree S = (V, E) by using a set
of unary predicates for nodes in V, a set of binary predicates for edges in E, and a set
of variables, Y, assigned to each node (there are predicates and variables for datatype
properties as well). For a given element tree T, writing the complex mapping formula
consists of identifying the semantic tree and encoding it into a conjunctive formula
(which could be treated as a set of atomic predicates). Let 1 = {a1(Z1), a2(Z2), ...,
am(Zm)} encode a tree S1, let 2 = {b1(Y1), b2(Y2), ..., bn(Yn)} encode a tree S2. Let
D = 2\ 1 = {bi(Yi)| s.t. for a given partial one-one function f : Y → Z representing
the mapping from nodes of S2 to nodes of S1, bi(f(Yi)) ∈ 1}. One can easily identify
the mapping f : Y → Z by comparing the two trees S2 and S1 (recall an ontology
graph contains class nodes as well as attribute nodes representing datatype proper-
ties) so we consider that it comes for free. Let c = |D|. Suppose 1 to be the correct
formula and 2 to be the formula returned by the tool for an element tree. To reach
the correct formula 1 from the formula 2, one needs to delete n − c predicates
from 2 and add m − c predicates to 2. On the other hand, if the user creates the
formula from scratch, m additions are needed. Let us assume that additions and
deletions need the same amount of effort. However, browsing the ontology for
correcting formula 2 to formula 1 is difierent from creating the formula 1 from
scratch. So let α be a cost factor for browsing the ontology for correcting a formula,
and let β be a factor for creating a formula. We define the accuracy or labor savings
of the tool as labor savings = 1 − . Intuitively, α < β, but for a worst-
case bound let us assume α = β in this study. Notice that in a perfect situ-      ation,
m = n = c and labor savings = 1.

Schemas and ontologies. To evaluate the tool, we collected 9 XML schemas
varying in size and nested structure. The 9 schemas come from 4 application
domains, and 4 publicly available domain ontologies were obtained from the Web
and literature. Table I and II shows the characteristics of the schemas and the
ontologies; the column heads are self-explanatory. The company schema and
ontology are obtained from [Kleiner and Lipeck 2001] in order to test the principles

α n c–( ) m c–( )+[ ]
βm

--------------------------------------------
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of the mapping construction. The conference schema is obtained from [Lee and Chu
2000]. UT DB is the schema used for describing the information of the database
group in University of Toronto. SigmodRecord is the schema for SIGMOD record.
The rest of the schemas are obtained from the Clio test suite (http://www.cs.tor-

onto.edu/db/Cl io). The KA ontology, CIA factbook, and the Bibliographic-Data are
all available on the Web.

Experimental results. Our experiments are conducted on a Dell desktop with a
1.8 GHZ Intel Pentium 4 CPU and 1G memory. The first observation is the
efficiency. In terms of the execution times, we observed that the algorithm generated
results on average in 1.4 seconds which is not significantly large, for our test data. 

Figure 12 shows the average precision and recall measures of the 9 mapping pairs.
For each pair of schema and ontology, the average precision and recall are computed
as follows. For the element trees extracted from the schema graph, a set of correct
mapping formulas is manually created. We then apply the algorithm on the element

Table II. Ontology summary.

Ontology # Nodes # Links

Company 18 27

KA 105 4396

KA 105 4396

CIA factbook 52 77

Bibliographic 75 749

Bibliographic 75 749

Bibliographic 75 749

Bibliographic 75 749

Bibliographic 75 749

Table I. Characteristics of test XML schemas.

XML Schema 
Max Depth (DFS) in 

Schema Graph
# Nodes in 

Schema Graph 
# Attributes in 
Schema Graph 

Company 6 30 17

Conference 5 21 12

UT DB 6 40 20

Mondial 6 214 93

DBLP 1 3 132 63

DBLP 2 5 29 11

SigmodRecord 3 16 7

Amalgam 1 3 117 101

Amalgam 2 3 81 53
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trees and ontologies to generate a set of formulas. Next we examine each of the
generated formulas to count how many are correct and compute the average
precision and recall. The overall average precision is 35% and overall average recall is
75%. Notice that we have limited the number of formulas returned by the tool to 10.

Finally, we evaluate the usefulness of the tool. Figure 13 shows the average values
of labor savings for the 9 mapping cases. For each mapping case, the average labor
savings is computed as follows. Examine each incorrect formula returned by the
algorithm and compute its labor saving value relative to the manually created one.
Take the average value of the labor savings of all incorrect formulas. Note that even
when the correct formula was identified by the algorithm, we still computed the
labor savings for all incorrect ones to see how useful the tool is in case only one
formula was returned. The overall average labor savings is over 80%, which is quite
promising. Especially in view of the pessimistic assumption that α = β in the labor
savings formula, we take this as evidence that the tool can greatly assist users in

Fig. 13. Average labor savings for 9 mapping cases.

Fig. 12. Average recall and precision for 9 mapping cases.
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constructing complex mappings between XML schemas and ontologies with a proper
schema matching tool as a front-end component.

6. MAINTAINING SEMANTIC MAPPINGS

Creating semantic mappings between XML schemas and ontologies is a complex
process. Although we have developed heuristics for assisting people to discover
semantic mappings, it still requires human involvement in the process. Once such a
semantic mapping has been created, it is important and necessary to help maintain
the consistency of the semantic relationship when the schema and ontology evolve.
In this section, we study the problem of maintaining a semantic mapping. 

The purpose of the maintenance are two-fold: first, to preserve the semantic
relationship between the schema and the ontology when the schema or ontology are
modified; second, to reuse the existing semantic mapping as much as possible. A
similar problem has been studied for adapting schema mappings under schema
evolution. Two possible approaches have been proposed in the literature: a schema
change approach (SCA) [Velegrakis et al. 2003] and a mapping composition approach
(MCA) [Yu and Popa 2005]. Both solutions focus on reusing the semantics encoded
in previous mappings for merely adapting the mappings. Schemas are not “syn-
chronized”. In our situation, “synchronizing” the ontology and schema associated
with a semantic mapping along with adapting the mapping will be essential for
achieving desired goals. Consider a very simple case. Suppose the semantics of an
XML schema is expressed in terms of an ontology. If the database administrator
(DBA) wants to modify an occurrence constraint in the schema by changing it from
many to one, it may be desirable to “synchronize” the corresponding cardinality
constraint in the ontology accordingly. Although an ontology is commonly consider-
ed as a shared conceptualization and tends to be fixed, we assume that we can
modify a local copy of the ontology and employ sophisticated version control systems
for maintaining difierent versions of ontologies. Version control for ontologies is
beyond the scope of this paper. In the sequel, we focus on mapping maintenance
between XML schemas and ontologies when XML schemas evolve.

Related work includes schema evolution in object-oriented databases (OODB).
The problem of schema evolution in OODB is to maintain the consistency of the
instances in an OODB when its schema is modified. The challenges are to update the
database efficiently and minimize information loss. A variety of solutions, e.g.,
[Benatallah; Banerjee et al.; Claypool et al.; Ferrandina et al.], have been proposed
in the literature. Our problem is different from the schema evolution problem in
OODB in that we aim at the semantic consistency between a schema and an
ontology. How-     ever, we can draw some insights from the extensive study of the
schema evolution problem in OODB.

Another mapping maintenance problem, studied in [McCann et al.], mainly focuses
on detecting inconsistency of simple correspondences between schema elements when
schemas evolve. This problem is complementary to the problem we consider here.

We organize this section as follows. First, we propose the goals of mapping main-
tenance: We need to understand what is a consistent semantic relationship. Second,
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we analyze and categorize possible changes to schemas and ontologies. Finally, we
present a maintenance plan.

6.1 Goals of Maintaining Semantic Mappings

A semantic mapping formula (X) → Φ(X, Y) relates a formula (X) encoding an
element tree T with a conjunctive formula Φ(X, Y) encoding a semantic tree (or s-
tree) S in an ontology. A consistent mapping means that the element tree and the s-
tree S should be “semantically compatible”. In other word, the instances of the
element tree should be compatible with the instances of the s-tree. To check this
condition, we consider the process of translating instances under one structure to
instances under another structure.

Let ΣT be a set of occurrence constraints (see Section 3.1) imposed to the elements
in the element Tree T. Let ΣS be a set of cardinality constraints (see Section 3.2)
imposed on the relationships in the semantic tree S. Consider the mapping formula

(X) → Φ(X, Y). For a legal instance of T satisfying ΣT, we can create an instance
of S by instantiating Y using labeled null variables in Φ(X, Y). We then check
whether the new instance of S satisfies the constraints ΣS. Conversely, for a legal
instance of S satisfying ΣS, we can create an instance of T and check whether the
instance satisfies the constraints ΣT . If for each legal instance of T we can create a
legal instance of S, and for each legal instance of S we can create a legal instance of T,
then we say that the mapping formula (X) → Φ(X, Y) is consistent. Our goals for
maintaining semantic mappings are as follows.
Goal 1 For a consistent semantic mapping M between an XML schema X and an
ontology O, maintain the consistency of M when X evolves.
Goal 2 For a consistent semantic mapping M between an XML schema X and an
ontology O, maximize the usage of the existing semantics of M during the maintenance.

6.2 Schema Evolution

Changes to XML schemas can be classified along two orthogonal axes. First, on the
action axis, changes can be classified into (1) changes for adding/deleting elements;
(2) changes for merging/splitting elements; (3) changes for moving/copying elements;
(4) changes for renaming elements; and (5) changes for modifying constraints. Second,
on the effect axis, changes can be classified into (i) changes that cause mapping
modification; (ii) changes that cause the related schema (or ontology) modification;
and (iii) changes that cause both mapping and the related schema (or ontology)
modification. These changes can be characterized by mappings [Yu and Popa 2005]
or by sequences of evolution primitives [Velegrakis et al. 2003; Banerjee et al.].

In our study, we use a set of simple correspondences to link elements of the previ-
ous schema to elements of the new schema after a schema changed. We then analyze
the existing semantic mapping and the semantics in the new schema. Through the
set of correspondences, we will then (semi-)automatically adapt both the semantic
mapping and the schema/ontology to maintain the consistency of the semantic
mapping.

Example 6.1. Figure 14 shows on the left hand side an old XML schema X. On the
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right hand side is the new XML X ′ which was evolved from X by removing the Name

element. The dashed arrows from attributes and elements in X to attributes and
elements in X ′ capture the commonality/differences between the old XML schema
and the new XML schema.

6.3 Maintenance Plan

We present a plan for maintaining semantic mappings between XML schemas and
ontologies. Figure 15 graphically describes the semantic mapping maintenance sett-
ing, where the schema X evolved to a new schema X ′. M is the existing semantic
mapping; M ′ is the set of correspondences from elements of X ′ to elements of X. The
result of the mapping maintenance is to adapt M to a new semantic mapping M ′′

between X ′ and O (or O ′′ if the (copy of the) original ontology needs to be modified.)
For a semantic mapping formula (X) → Φ(X, Y) which relates a formula (X)

encoding an element tree T with a conjunctive formula Φ(X, Y) encoding an s-tree S
in an ontology, the plan consists of several strategies presented as the following. 
Strategy 1: Align the element tree T and the s-tree S so that each attribute,
element, and edge in T corresponds to a construct or a set of constructs in S. This
alignment may indicate that a path in T corresponds to an edge in S or vice versa.
Consequently, for each individual attribute, element, or edge in T, it either
corresponds to an individual construct in S or it is a part of a compound structure
such as a path which corresponds to an individual construct in S. 
Strategy 2: If an attribute is added to the XML schema, then locate the construct

Fig. 15. Maintenance of semantic mapping.

Fig. 14. Capturing the evolution of an XML schema.
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in S corresponding to the element where the attribute is added. Add a new attribute
to the construct. If an element added to the schema, add a new concept to the
ontology. The new concept is connected to the construct corresponding to the parent
element of the new element. Update the mapping formula accordingly. 
Strategy 3: If a construct is deleted from either the schema such that some leaves of
the trees are removed, then update the mapping formula by removing the deleted
construct. For example, if a leaf of T is removed due to the deletion of an attribute in
the schema, the mapping formula can be updated accordingly by removing the
referred attribute.
Strategy 4: If the element tree T evolves to a new tree T ′ through restructuring,
then use the set of simple correspondences between T and T ′ to generate an evolu-
tion mapping between these two trees. Composing [Yu and Popa 2005] the evolution
mapping and the existing mapping formula to generate a new mapping formula
relating T ′ and S.
Strategy 5: If a constraint in the schema is changed, locate the constructs in the
ontology which correspond to the structure in the XML schema where the changed
constraint was imposed. Update the corresponding constraint in the ontology accord-
ing to the change to the constraint in the schema. For example, if the occurrence
constraint on a parent-child edge is changed from many to single, then the cardinality
constraint on the corresponding relationship in the ontology should be updated from
many to functional.

With the above strategies, we are able to incrementally maintain the consistency
of a semantic mapping between an XML schema and an ontology when the schema
evolves.

7. CONCLUSIONS

In this paper, we have motivated and defined the problem of discovering complex
semantic mappings from XML schemas to ontologies, given a set of simple corre-
spondences from XML attributes to ontology datatype properties. The problem is
motivated by the needs to annotate XML data in terms of ontologies, to translate
XML data into ontologies [An and Mylopoulos], and to integrate heterogeneous
XML data on the semantic web. We presented in detail a novel tool [An et al. 2005a]
for semi-automatically constructing complex mappings for users. The experimental
results suggest that quite significant savings in human work could be achieved by the
use of our tool.

Semantic mappings between XML schemas and ontologies are valuable assets once
they are created. However, schemas and ontologies change constantly in open, dy-
namic, and distributed environments such as the Web. To address this problem, we
extend our previous work [An et al. 2005a] by proposing strategies for maintaining a
semantic mapping between an XML schema and an ontology under schema evolu-
tion. Overall, our work addresses an important problem in managing heterogeneous
XML data sets. The results of the entire study provide a set of solutions for building
sustainable XML data integration systems using ontologies.

Future work includes developing effective algorithms for ranking the mapping
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candidates and studying the maintenance problem under ontology evolution. We also
plan to use semantic mappings between XML schemas and ontologies to generate
direct mappings between XML schemas.
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