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In this survey paper, we discuss biomedical ontologies and major text mining techniques
applied to  biomedicine and healthcare. Biomedical ontologies such as UMLS are currently
being adopted in text mining approaches because they provide domain knowledge for text
mining approaches. In addition, biomedical ontologies enable us to resolve many linguistic
problems when text mining approaches handle biomedical literature. As the first example of
text mining, document clustering is surveyed. Because a document set is normally multiple-
topic, text mining approaches use document clustering as a preprocessing step to group similar
documents. Additionally, document clustering is able to inform the biomedical literature
searches required for the practice of evidence-based medicine. We introduce Swanson’s
UnDiscovered Public Knowledge (UDPK) model to generate biomedical hypotheses from
biomedical literature such as MEDLINE by discovering novel connections among logically-
related biomedical concepts. Another important area of text mining is document classification.
Document classification is a valuable tool for biomedical tasks that involve large amounts of
text. We survey well-known classification techniques in biomedicine. As the last example of
text mining in biomedicine and healthcare, we survey information extraction. Information
extraction is the process of scanning text for information relevant to some interest, including
extracting entities, relations, and events. We also address techniques and issues of evaluating
text mining applications in biomedicine and healthcare.

Copyright(c)2008 by The Korean Institute of Information Scientists and Engineers (KIISE).
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Permission to
post author-prepared versions of the work on author’s personal web pages or on the
noncommercial servers of their employer is granted without fee provided that the KIISE citation
and notice of the copyright are included. Copyrights for components of this work owned by
authors other than KIISE must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires an explicit prior
permission and/or a fee. Request permission to republish from: JCSE Editorial Office, KIISE.
FAX +82 2 521 1352 or email office@kiise.org. The Office must receive a signed hard copy of the
Copyright form.



110 Illhoi Yoo and Min Song

Journal of Computing Science and Engineering, Vol. 2, No. 2, June 2008

1. INTRODUCTION

An overwhelming amount of biomedical text information is available because vast
quantities of biomedical discoveries and studies have been reported, documented,
and stored to digital libraries or biomedical literature databases such as MEDLINE
[NLM 2008]. For example, MEDLINE, the largest biomedical bibliographic text
database, has nearly 18 million articles since 1966. 

In order to overcome this text information overload and transform the text
information into machine-understandable knowledge for knowledge management,
text mining techniques have been used along with machine learning, data mining,
information retrieval, etc. Text mining has been defined as the non-trivial discovery
process for uncovering novel patterns in unstructured text [Fan et al. 2005; Mooney
and Nahm 2003; Karanikas and Theodoulidis 2002]. Text mining techniques have
been advanced by using techniques and methods from information retrieval, natural
language processing, data mining, machine learning, and statistics. However, some
old methods are rarely used nowadays. For example, while Bayesian models and
hierarchical clustering were widely used in the early days, more advanced machine
learning methods, such as artificial neural networks, support vector machines, and
semantic-based clustering algorithms, have been applied in recent years.

Text mining has been applied to many different areas of biomedicine and healthcare
such as gene clustering, protein structure prediction, spike signal detection, clinical
diagnosis, biomedical hypothesis generation, measurement of patient care quality,
and evidence-based medicine. In this paper, we briefly survey some of the relevant
research in the field, covering biomedical ontologies and the applications of learning
techniques in text mining in biomedicine and healthcare. More exhaustive and
detailed reviews and discussions of selected text mining techniques and applications
in biomedicine can be found in the subsequent sections in this paper.

The rest of the paper is organized as follows. Section 2 surveys biomedical
ontologies. We briefly discuss ontology and major biomedical ontologies. In Sections
3, 4, 5, 6, and 7, document clustering, Swanson’s Undiscovered Public Knowledge
(UDPK), document classification, information extraction, and evaluation are discussed
respectively. Section 7 concludes this paper.

2. BIOMEDICAL ONTOLOGIES

In this section, we discuss what ontology is and what major biomedical ontologies are.

2.1 Ontology

First of all, we briefly discuss what ontology is. Although ontology in philosophy is a
field that studies what exists in the world or being, ontology in computer science
(especially artificial intelligence), information science, bioinformatics and biomedical
informatics is a sharable, reusable, machine-readable data structure, emphasizing
practical usage. A well-known definition of ontology [Gruninger and Lee 2002] is “a
formal, explicit specification of a shared conceptualization for a domain of interest”
[Gruber 1995]. The following shows how some important terms in the definition
should be interpreted:
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• conceptualization refers to a model formed with concepts and their relationships
in a domain for conceptual interpretation.

• shared implies the community of the domain should reach a consensus on the
conceptualization.

• formal specification means that the specification must be machine-readable and
machine-understandable.

• explicit specification indicates that concepts (meanings) and relationships between
the concepts are explicitly defined.

2.2 Major Biomedical Ontologies

There are many biomedical ontologies; interested users should refer to Open Bio-
medical Ontologies (OBO*) and Unified Medical Language System (UMLS†) source
vocabularies‡ for a comprehensive list of biomedical ontologies. Each ontology except
UMLS has its intended purpose and biomedical aspect. In this section, we briefly
discuss Medical Subject Headings (MeSH§) and UMLS because they are most
widely-used for biomedical information retrieval and biomedical literature mining
and because National Library of Medicine (NLM) has developed them. For well-
structured ontologies such as the MeSH or UMLS, the corresponding domain
communities can reach a consensus on the knowledge in the ontologies. For this
reason, ontologies can be used as domain knowledge for knowledge-based systems or
intelligent agents. They enable us to go beyond traditional mathematics/statistics-
based machine learning approaches.

2.2.1 MeSH
MeSH is formally classified as biomedical terminology rather than biomedical onto-
logy. In fact, the distinction between ontology and terminology is not always clear at
least in the biomedical informatics field [Bodenreider 2006]. This is because onto-
logies normally concentrate on the relationships among concepts and terminologies
just record terms for concepts or entities of domain significance. However, many
terminologies, including MeSH and Gene Ontology (GO), also provide a sort of
semantic networks (e.g., MeSH Tree) as well as lexicons. However, MeSH Tree and
GO supply simple relationships among concepts such as isa and part of (GO only),
while UMLS defines the relationships among concepts in detail using, for example,
result_of, affects, derives_from, etc. Accordingly, the distinction between terminologies
and ontologies could be the detailness of defined relationships among concepts. Here,
we assume that MeSH is a biomedical (pre)ontology because of MeSH Tree
(discussed soon).

The MeSH, developed by the NLM in 1954, mainly consists of the controlled
vocabulary and MeSH Tree. The controlled vocabulary contains several different
types of terms such as Descriptor, Qualifiers, Publication Types, Geographics, and
Entry terms. Among them, Descriptors and Entry terms are normally used for text

*http://www.obofoundry.org
†http://www.nlm.nih.gov/research/umls/
‡http://www.nlm.nih.gov/research/umls/metaa1.html
§http://www.ncbi.nlm.nih.gov/sites/entrez?db=mesh
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mining approaches. The rest of them are reserved for information retrieval (i.e.
MEDLINE search) so that Descriptor and Entry terms are discussed. 

Descriptors are main concepts or main headings. Entry terms are basically the
synonyms of Descriptors. Entry terms include linguistic variations (in word order
and plurality) of the synonyms as well as Descriptors. For example, as shown in
Figure 1, “Neoplasms” as a descriptor has the following entry terms: {“Neoplasm”,
“Tumors”, “Tumor”, “Benign Neoplasms”, “Neoplasms, Benign”, “Benign Neoplasm”,
“Neoplasm, Benign”, “Cancer”, “Cancers”}. The NLM annually revises and updates
the MeSH controlled vocabulary including Descriptors and Entry terms. There are
24,767 Descriptors and more than 97,000 Entry terms in 2008 MeSH while there are
22,997 Descriptors in 2007 MeSH [NLM 2008].

MeSH Descriptors are organized in the MeSH Tree, which can be seen as the
MeSH Concept Hierarchy, as shown in Figure 2. In other words, MeSH Descriptors
are arranged by parent/child. In the MeSH Tree there are 16 categories [NLM-MeSH
2008], and each category is further divided into subcategories; for example, Anatomy
category has Body Regions, Musculoskeletal System, Digestive System, etc. For each
subcategory, its descriptors are hierarchically arranged from most general to most
specific. The nodes in the tree are MeSH Descriptors. Because the 2008 MeSH Tree
has 48,442 nodes, on average, a descriptor is placed in two places in the tree (48,442/
24,767≈2). The nodes do not include the main branches of the MeSH Tree such as
Anatomy, Organism, etc. that are not MeSH terms. 

In addition to the ontology role of the MeSH, MeSH Descriptors have been used to

Figure 1. For the MeSH Descriptor of “Neoplasms”, its definition and Entry Terms are provided.
This figure was captured at www.ncbi.nlm.nih.gov and edited for this purpose.
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index MEDLINE articles as well as NLM media. Some of the MeSH Tree categories
(such as Publication Characteristics in Figure 2) are used only for indexing and
retrieval purposes. For these purposes, about 10 to 20 MeSH terms are manually
assigned to each article by highly-trained curators (after reading full papers). Upon
the assignment of MeSH terms to an article, roughly 3 to 4 MeSH terms are set as
“MajorTopics” that primarily represent that article depending on its contents.

2.2.2 UMLS
UMLS, started by NLM as a long-term R&D project in 1986, provides a mechanism
for integrating all the major biomedical vocabularies such as the MeSH, the
Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), etc.
Ultimately, UMLS has been designed for paving the way for the development of
intelligent biomedical systems that can read Biomedical and Healthcare data,
comprehend the meaning of them and further make inferences from them [NLM-
UMLS, 2008]. UMLS is normally updated three times per year; each updated version

Figure 2. MeSH Tree with 16 hierarchies (categories).
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has a name like 2008 AA, AB, or AC. UMLS consists of three knowledge sources;
Metathesaurus, Semantic Network, and SPECIALIST lexicon.

The Metathesaurus is a very large vocabulary database (nearly 5GB in text) whose
data are collected from various biomedical thesauri. Currently, Metathesaurus (2007
AC version) contains more than 1 million biomedical concepts (meanings), 5 million
unique concept names from nearly 150 different source vocabularies, and more than
17 million relationships between concepts. The Metathesaurus is basically organized
by concepts (meanings). Each concept in the Metathesaurus has a unique concept
identifier called CUI. Because a concept is an idea of how something is conceived, a
concept can be represented in several different names (see Table I). Those names
come from source vocabularies such as the MeSH. Each name from a source
vocabulary is an atom; atoms are the “basic building blocks” of Metathesaurus
[NLM-UMLS 2008]. Each atom has a unique identifier called AUI. Strings (concept
names) from different source vocabularies may be the same so the Metathesaurus
has a unique and permanent string identifier called SUI to combine the same strings.
For example, Benign Neoplasm (A7569072) and Benign Neoplasm (A0029820) in
Table I are the same and they have a common SUI S0018300. In addition, the
Metathesaurus connects strings that can be seen as lexical variants or minor
linguistic variations with LUI. For example, in Table I, the terms “Benign Neoplasm”,
“BENIGN NEOPLASM NOS ”, “Neoplasms, Benign”, “Benign Neoplasms”, “Benign
neoplasms”, “BENIGN NEOPLASMS”, and “Neoplasm, Benign” are linked to a single

Table I. UMLS Metathesaurus Concept Construction (The source vocabularies of the first five
strings are present.). 
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LUI L0086795 because they are merely lexical variants or minor linguistic variations.
The Semantic Network of UMLS consists of semantic types and semantic relations.

semantic types are simply categories for concepts so that every Metathesaurus
concept is assigned to at least one semantic type as a category. semantic relations are
relationships (e.g., diagnoses) between semantic types instead of concepts. Thus, in
the Semantic Network, semantic types are nodes and semantic relations are links
between nodes. The Semantic Network currently (2007 AC version) contains 135
semantic types and 54 distinct semantic relations. Both the semantic types and the
semantic relations are hierarchically arranged from most general to most specific as
are MeSH Descriptors. Each semantic type or each semantic relation has its own tree
number (for example, A1.1, A1.1.1, A1.1.2). Figures 3 and 4 show sample semantic

types and sample semantic relations, respectively, as well as their tree numbers. 
Basically, 558 “stem” relationships between semantic types have been made. Because

the semantic types are hierarchically arranged, those relationships are inherited
through the hierarchy. Through this inheritance process 6,752 relations are stated

Figure 3. Sample semantic types arranged in a hierarchical structure.

Figure 4. Sample semantic relations arranged in a hierarchical structure.
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between semantic types from the stem relationships in the Semantic Network. For
example, the stem relationship <Biologic Function|process_of|Organism> generates
208 derived relationships because Biologic Function semantic type has 13 child
semantic types and Organism semantic type has 16 child semantic types; 13*16=208.

The SPECIALIST lexicon has been designed for the SPECIALIST Natural
Language Processing (NLP) System. In order to supply the NLP system with lexical
information, the lexicon contains general English words and many biomedical terms.
Those words and biomedical terms come from the American Heritage Word Frequency
Book, English dictionaries such as Longman’s Dictionary of Contemporary English,
the UMLS Test Collection of MEDLINE abstracts, and Dorland’s Illustrated
Medical Dictionary [NLM-UMLS 2008]. 

As shown in Figure 7, the lexicon records for each word/term are delimited by
braces (“{ }”). Figure 7 shows 3 lexical entries. Each record basically has slot (e.g.,
base) and filler (e.g., anesthetic) format. Each record provides lexical information for
each word/term in terms of morphology (base form and inflectional type (e.g., showing
the pluralization pattern of a base form is regular or irregular)), orthography (spelling
variants of a base form), and syntax (syntactic category (e.g., nouns, verbs, adjectives),
position information). 

Figure 7 shows that the first lexicon entry has the base form of anesthetic with a
spelling variant of anaesthetic (orthographical information). The anesthetic is an
adjective (adj) (syntactic information). The adjective (anaesthetic) is invariant (inv)
so that it compares with less, least, more, or most (e.g., most anesthetic agents)
(morphological information). attrib(x) and pred indicate the adjective is attributive
(e.g., anesthetic drugs) and predicative (the drug is anesthetic) respectively (syntactic

Figure 5. Sample SPECIALIST lexicon.
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information). The number (1-3) in the parentheses (“( )”) indicates the location of the
adjective in the typical sequence of adjectives in a noun phrase (syntactic information).
There are three kinds of adjectives: qualitative (attrib(1)), color (attrib(2)), and
classifying (attrib(3)) [Browne et al. 2000]. Qualitative adjectives normally precede
color adjectives and color adjectives generally precede classifying adjectives. The
adjective anaesthetic is classifying one (attrib(3)). Last, stative indicates the adjective
is static. The stative adjective does not describe an activity or event but a state or
condition. For example, we do not say that “the drug is being anesthetic.” but “the
drug is anesthetic”. 

3. DOCUMENT CLUSTERING

Unlike classification, document clustering is an unsupervised learning process. Basically,
document clustering is to group unlabeled documents into meaningful document
clusters whose documents are similar to one another within the cluster, without any
prior information about the document set. The problem of document clustering is
formally defined as follows: Given a set of n documents called DS, DS is clustered
into a user-defined number of k document clusters DS1, DS2,…DSk, ({DS1,
DS2…,DSk } =DS) so that the documents in a document cluster are similar to one
another while documents from different clusters are dissimilar. In order to measure
similarities between documents, documents have been represented based on the
vector space model. In this model, each document d is represented as a high
dimensional vector of words’/terms’ frequencies (as the simplest form), where the
dimensionality indicates the vocabulary of DS; the size of the vocabulary is the
number of distinct words/terms in the document set. Although there are a number of
similarity measurements, similarity between two documents has been traditionally
measured by the cosine of the angle between their vector representations. Documents
are grouped based on a cluster criterion function as an iterative optimization process
that measures key aspects of inter-cluster and intra-cluster similarities.

3.1 Classification of Document Clustering Approaches

A number of document clustering approaches have been developed over several
decades. Most of these document clustering approaches are based on the vector space
representation and apply various clustering algorithms to the representation. As a
result, most of the approaches are categorized as either hierarchical or partitional
[Kaufman and Rousseeuw 1999].

3.1.1 Hierarchical clustering
Hierarchical agglomerative clustering algorithms were used for document clustering.
The algorithms successively merge the most similar objects based on the pairwise
distances between objects until a termination condition holds. Thus, the algorithms
can be classified by the way they select a pair of objects for calculating the similarity
measure (e.g., single-link, complete-link, and average-link). An advantage of the
algorithms is that they generate a document hierarchy so that users can drill up and
drill down for specific topics of interest. However, due to their cubic time complexity,
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they are limited in their scalability so that they cannot handle a very large number of
documents.

3.1.2 Partitional clustering
Partitional clustering algorithms (especially K-means) are the most widely-used
algorithms in document clustering [Steinbach et al. 2000]. Most of the algorithms
first randomly select k centroids and then decompose the objects into k disjoint
groups through iteratively relocating objects based on the similarity between the
centroids and the objects. The clusters become optimal in terms of certain criterion
functions. As the most widely-used partitional algorithm K-means minimizes the
sum of squared distances between the objects and their corresponding cluster centroids.
K-mean’s complexity is O(k*T*n), where k is the number of clusters, T is the
number of iterations for relocating objects, and n is the number of objects. As a
variation of K-means, BiSecting K-means [Steinbach et al. 2000] first pick a cluster
(normally the biggest one) to split and then splits the objects into two groups (i.e.
k = 2) using K-means. One major drawback of partitional clustering algorithms is
that clustering results are heavily sensitive to the initial centroids because the
centroids are randomly selected.

3.1.3 Hybrid clustering
There are some hybrid document clustering approaches that combine hierarchical
and partitional clustering algorithms. For instance, Buckshot [Cutting et al. 1992]
follows a K-means approach but uses the average-link to set cluster centroids with
the assumption that hierarchical clustering algorithms provide superior clustering
quality to K-means. In order to create cluster centroids for K-means, Buckshot first
picks  objects randomly and then uses an average-link algorithm whose complexity
is (O(n2log n)). In order to make the overall complexity linear, Buckshot selects 
objects. However, as Larsen & Aone pointed out [Pantel and Lin 2002], using a
hierarchical algorithm for centroids does not significantly improve the overall
clustering quality compared with the random selection of centroids.

3.1.4 Semantic document clustering
Hotho et al. introduced the semantic document clustering approach that uses
background knowledge [Hotho et al. 2002]. The authors apply an ontology during
the construction of a vector space representation by mapping terms in documents to
ontology concepts and then aggregating concepts based on the concept hierarchy,
which they called concept selection and aggregation (COSA). As a result of COSA,
they resolve a synonym problem and introduce more general concepts in the vector
space to easily identify related topics [Hotho et al. 2002]. Their method, however,
cannot reduce the dimensionality (i.e. the document features) in the vector space; it
still suffers from the “Curse of Dimensionality”.

3.1.5 Non-vector-space document clustering
While all the approaches mentioned above represent a document as a feature vector,
Suffix Tree Clustering (STC) [Zamir and Etzioni 1998] does not rely on the vector

kn
kn
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space model. STC does not treat a document as “a set of words”, where the order is
not important, but rather as an ordered sequence of words (i.e. a set of phrases). In
fact, phrases instead of words have long been used in IR systems [Buckley et al.
1995]. One of major drawbacks of STC is that semantically similar nodes may be
distant within a suffix tree, because STC does not consider the semantic relationships
among phrases (nodes or base clusters). In addition, some common expressions may
lead to combining unrelated documents. Recently Eissen et al. applied STC to the
RCV1 document collection of Reuters Corporation and showed STC did not produce
good clustering results; the average F-measure was 0.44 [Eissen et al. 2005].

3.1.6 Graph-based semantic document clustering
Recently, Yoo et al. introduced two graph-based semantic document clustering
approaches (a scale-free, graph-based, semantic document clustering method and a
bipartite, graph-based, semantic document clustering method) and successfully applied
them to MEDLINE documents [Yoo et al. 2007; Yoo et al. 2006]. The key difference of
the two approaches is how they represent documents: scale-free graph or bipartite
graph.

The key of the first approach is the use of the graphical representation method
using a biomedical ontology. The graphical representation method represents a set of
documents as an ontology-enriched scale-free graph. This ontology-enriched graphical
representation method has several advantages over the traditional vector space based
approaches. First, it provides a very natural way to portray the contents of documents.
Second, it provides document representation independence that means that the
graphical representation of a document does not affect other representations. Last, it
guarantees better scalability on text mining than the traditional vector space model.
The ontology-enriched graph (i.e., the corpus-level graphical representation of documents)
is clustered under the consideration of the power law distribution of terms in documents
to identify document cluster models as semantic chunks capturing the semantic
relationships among the terms in the document clusters. These document cluster
models are used for assigning documents to clusters to group semantically similar
documents in accordance with the similarity between each document and each
document cluster model.

The second approach models a set of documents as a bipartite graph, where the
two sets on the graph are documents and corpus-level significant semantic features.
The semantic features are the selected co-occurrence concepts based on Mutual
Information. The use of co-occurrence concepts has several advantages. First, the co-
occurrence concepts have been regarded as more important than the single word/
term [Hristovski et al. 2001; Jenssen et al. 2001; Perez-Iratxeta et al. 2002] because
they capture potential relationships between two co-occurring concepts in text. Second,
the use of co-occurrence concepts prevents noise terms (which are unrelated to the
topic of a document but are found in the document) from affecting the similarity
measures during document clustering. After selecting co-occurrence concepts as
significant semantic features, they are classified according to their relationships with
documents and their semantic similarities in a concept hierarchy in an ontology.
Then the documents are clustered based on each document’s contribution to each
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significant semantic feature group. To refine the initial document clustering, Yoo
and colleagues developed a new spectral co-clustering algorithm that uses the
mutual-refinement relationship between the significant semantic feature groups and
the document groups so that the two groups are mutually recursively refined.

3.2 Applications of Document Clustering

Document clustering was initially investigated for improving information retrieval
(IR) performance in terms of precision and recall or F-measure because similar
documents grouped by document clustering tend to be relevant to the same user
queries [Wang et al. 2002; Zamir and Etzioni 1998]. Document clustering has been
recently used to facilitate nearest-neighbor search [Buckley and Lewit 1985], to support
an interactive document browsing paradigm [Cutting et al. 1992; Koller and Sahami
1997; Gruber 1993], and to construct hierarchical topic structures [van Rijsbergen
1979]. Thus, document clustering plays a more important role for IR and text mining
communities since the most natural form for storing information is text, and text
information has increased exponentially.

In the biomedical domain, document clustering technologies have been used to
facilitate the practice of evidence-based medicine. This is because document clustering
enhances biomedical literature searching (e.g., MEDLINE searching) in several ways
and literature searches are one of the core skills required for the practice of evidence-
based medicine [Evidence-based Medicine Working Group 1992]. For example, Pratt
and her colleagues [Pratt et al. 1999; Pratt and Fagan 2000], and Lin and Demner-
Fushman [Lin and Demner-Fushman 2007] introduced interesting semantic document
clustering approaches that automatically cluster biomedical literature (MEDLINE)
search results into document groups for better understanding of literature search
results. 

Unlike traditional document clustering methods, DynaCat [Pratt et al. 1999; Pratt
and Fagan 2000] takes advantage of keywords assigned by article authors and MeSH
terms assigned by NLM and tries to map them to UMLS semantic types to classify
MEDLINE articles. Because a term is assigned at least one UMLS semantic type,
DynaCat provides soft  categorization. In addition, DynaCat utilizes user’s query to
categorize search results through Query Model (created by the authors) and Terminology
Model (borrowed from UMLS). In other words, document categorization is dependent
on kinds of user’s query: there are nine query types (for example symptoms-diagnoses)
A major drawback of this approach is that the method cannot cover all kinds of user
queries because it is nearly impossible to create a comprehensive list of user queries.

Recently, Lin and Demner-Fushman developed a MEDLINE document clustering
approach focusing on therapy and diagnosis questions [Lin and Demner-Fushman
2007]. In order to group similar documents, terms (in MEDLINE articles) belonging
to the Chemicals & Drugs, Devices, and Procedures UMLS semantic type are extracted
using MetaMap** and ranked based on some heuristics (e.g., term’s location in an
abstract). The highest ranked term for each article becomes the representative for
the article. The approach combines the representative UMLS terms based on UMLS

**http://mmtx.nlm.nih.gov/
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Metathesaurus concept relationships (that are hierarchically structured), until no
representatives are left to combine. In this way, MEDLINE articles are hierarchically
arranged and each article is labeled. A major drawback of this approach is that each
MEDLINE article is labeled using only one UMLS term. However, this does not
reflect the reality that most MEDLINE articles discuss several concepts. In addition,
there is a high possibility that the approach may miss the most important term in
MEDLINE articles.

4. SWANSON’S UNDISCOVERED PUBLIC KNOWLEDGE (UDPK) 

The huge volume of the biomedical literature provides a promising opportunity to
induce novel knowledge by finding novel connections among logically-related medical
concepts. For example, Swanson introduced Undiscovered Public Knowledge (UDPK)
model to generate biomedical hypotheses from biomedical literature such as MEDLINE
[Swanson 1986]. According to Swanson, UDPK is “a knowledge which can be public,
yet undiscovered, if independently created fragments are logically related but never
retrieved, brought together, and interpreted”. 

The UDPK model formalizes a procedure to discover novel knowledge from bio-
medical literature as follows (see Figure 6): Consider two separate sets of biomedical
literature, BC and AB, where the BC document set discusses biomedical concepts B
and C and the AB document set discusses biomedical concepts B and A. However,
none of the documents in the BC or AB sets primarily discusses biomedical concepts
C and A together. The goal of the UDPK model is to discover some novel connec-
tions between a starting concept C (e.g., a disease) and target concepts A (e.g.,
possible medicine or treatments to the disease) by identifying biomedical concept B
(called a bridge concept). For example, Swanson discovered that fish oils (as concept
A) could be a potential medicine for Raynaud disease (as concept C) by identifying
the bridge concept (as concept B) blood viscosity. This discovery (UDPK) is accom-
plished by finding two different biomedical document sets in which one set (the CB
document set) discusses that Raynaud disease (as concept C) aggravates blood
viscosity (as concept B) and the other set (the BA document set) discusses that fish

Figure 6. Swanson’s Undiscovered Public Knowledge model.
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oils (as concept A) improve blood viscosity (as concept B).
Swanson’s UDPK model can be described as a process to induce “C implies A”,

which is derived from both “C implies B” and “B implies A”; the derived knowledge
or relationship “C implies A” is not conclusive but, rather, hypothetical. The B
concepts are the bridge between concepts C and A. The following steps summarize
the procedure [Swanson 1987].

1. Specify the user’s goal (a starting concept C such as a disease, or symptom,
etc.)

2. Search the relevant documents BC from the biomedical literature (e.g., MEDLINE)
for C. 

3. Generate a set of selected biomedical terms (called “B” list) from the BC
document set using predefined stop-list filter; B concepts are chosen from only
the titles of the documents.

4. Search MEDLINE for each term in the B list to retrieve AB documents related
to the B concepts.

5. Generate a set of biomedical terms (A candidates) from the AB documents; A
concepts also come from only the titles of the documents.

6. Check whether each of the A candidates and C are co-cited together in any
MEDLINE articles. If not, keep the A candidate.

7. Rank the selected A terms based on how many linkages are made with B terms.

One of the drawbacks of Swanson’s method is that a large amount of manual
intervention is required. Although he and his colleague designed an interactive tool
called Arrowsmith to automate some of the steps [Swanson and Smalheiser 1999],
the procedure still requires much manual intervention, such as the choice of proper
lists of stop words and filtering through a large number of C-B and B-A connections
to identify the real novel connections/hypotheses. Another problem is that the
relationships or associations among a huge number of the biomedical concepts grow
exponentially. As a result, the key of the UDPK problem is how to exclude meaningless
C-B and B-A concept pairs because the automated process yields too many irrelevant
suggestions.

Several algorithms have been developed to overcome the limitations of Swanson’s
approach. Hristovski et al. use the MeSH descriptors rather than the title words of
MEDLINE articles [Hristovski et al. 2001]. They use association rule algorithms to
find the co-occurrence of the words. Their methods identify as bridges all B concepts
that are related to the starting concept C. Then, all A concepts related to B concepts
are found through MEDLINE searching. However, in MEDLINE each concept can
be associated with many other concepts, the number of C-B and B-A concept pairs
can be extremely large. In order to deal with this problem, the algorithm incorporates
filtering and ordering capabilities [Hristovski et al. 2003; Hristovski et al. 2001; Joshi
et al. 2004]. 

Pratt and Yetisgen-Yildiz used UMLS concepts instead of MeSH terms assigned to
MEDLINE documents [Pratt and Yetisgen-Yildiz 2003]. Similar to Swanson’s
method, their search space is limited to only the titles of MEDLINE articles. As a
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result, they can reduce the number of possible B-A concept pairs. In addition to that,
they reduce the number of terms/concepts by pruning out terms that are “too general”
(e.g., problem, test, etc), “too closely related to the starting concept”, and
“meaningless” in the following ways: They defined terms as “too general” if the terms
are found in titles of MEDLINE articles more than 10,000 times. For “too closely
related to the starting concept”, they tracked all the parents and children concepts of
the starting concept and then eliminated the related terms. To avoid “meaningless”
terms, they manually selected a subset of semantic types to which the collected
terms should belong, as did Hristovski et al. [Hristovski et al. 2001]. After
eliminating these terms, they group B concepts and A concepts based on their
similarity. They then remove “too general” concepts in each group by looking at their
UMLS hierarchy level, and finally remove non-UMLS concepts. With the qualified and
grouped UMLS concepts (for B and A), they use the well-known Apriori algorithm
[Agrawal et al. 1995] to find correlations among the concepts. Although they manage
to simulate Swanson’s migraine-magnesium case only through concept grouping,
their method still requires strong domain knowledge, especially for selecting semantic
types for A and B concepts and also some vague parameters for defining “too
general” concepts.

Srinivasan viewed Swanson’s method as involving two dimensions [Srinivasan
2004]. The first dimension is about identifying relevant concepts for a given concept.
The second dimension is about exploring the specific relationships between concepts.
However, Srinivasan deals with only the first dimension. The key of this approach is
that MeSH terms are grouped into the semantic types of UMLS to which they belong.
However, only a small number of semantic types (8 out of 134) are considered because
the author believes those semantic types are relevant to B and A concepts. For each
semantic type, the MeSH terms that belong to the semantic type are ranked based
on a modified TF*IDF. There are some limitations in the method. First, the author
used manually-generated semantic types for filtering. Second, the author applied the
same semantic types to both A and B terms even though the roles of the A and B
terms for the C term are different.

These research work mentioned above represent significant progress on Swanson’s
method. However, none of the approaches considers the different roles of concepts A
and B for concept C. We believe the UDPK association problem should be tackled
by means of not only information measures such as TF*IDF but also the semantic
relationships among the concepts.

5. DOCUMENT CLASSIFICATION

Medical experts have hard time identifying the relevant medicine related literature.
Human classification is a highly time consuming task, and slow process. Furthermore,
it has been applied to several aspects of biomedical research, such as database
construction [Stapley et al. 2002], gene/protein function annotation [Raychaudhuri
et al. 2002], and clinical records data mining [Pakhomov et al. 2003]. Within the
field of IR, text classification provides the means to drastically improve the efficiency
of medical experts. Text classification is a technique to automatically determine the
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category that a document or part of a document belongs to based on the particular
topics or characteristics of interest that a document contains. Classification methods
primarily rely on supervised machine learning techniques. 

Features used for classification are not specified explicitly by the user; instead the
user only provides a set of documents that contain the characteristics of interest,
which is known as the positive training set, and another set that does not contain the
characteristics, which is known as the negative training set.

The goal of a text classification system is to assign the class labels to the new
unseen documents. Classification can be defined into two different phases, namely
model construction or also widely known as the training phase, and model usage also
known as the prediction phase. 

In the training phase, given a set of positively labeled sample documents, the goal
is to automatically extract features relevant to a given class. Hence, it would help
distinguish the positive documents from the negative ones. Once such features have
been identified then those features should be applied to the candidate documents
using some kind of decision-making process. In the model usage phase, check the
accuracy of the model and use to it classify new unseen data.

5.1 Classification Methods

Several methods have been proposed for document classification, including naïve
Bayesian [Raychaudhuri et al. 2002], maximum entropy [Joachims 1999; Pakhomov
et al. 2002], support vector machine [Stapley et al. 2002; Jenssen et al. 2001].

5.1.1 Naïve Bayes
Naïve Bayes assumes that the features in the input feature vector are statistically
independent, hence the order of words, and presence of a word does not affect the
presence or absence of the other words [Sebastiani 2002; Rish 2001]. This assumption
makes the computation of Bayesian approaches more efficient. Although the assumption
is not true in any language, it has been shown that the classification accuracy is
insignificantly affected by such disruptions [Domingos and Pazzani 1997]. It is the
simplest yet very effective, and due to its simplicity also the single most researched
classifier. Naïve Bayes is also the canonical classifier [Rish 2001] such that it is a
baseline against which other new classification methods are measured [Pant and
Srinivasan 2005]. Even when Bayesian methods are computationally intractable,
they can provide a standard of optimal decision making against which other methods
can be measured.

Naïve Bayesian approaches have been studied frequently in data mining even
before the topic of document classification became popular. Their performance is as
well as the newer, more sophisticated methods [Witten and Frank 2000]. Additionally,
they show a very good computational performance during classification of new
documents [Herrmann et al. 2001].

5.1.2 SVM
The support vector machine (SVM) method was introduced for text classification in
[Joachims 1998; Joachims 1999], and has been subsequently used in several other
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text classification tasks [Vapnik 1995; Witten and Frank 2000; Yang and Liu 1999].
The goal of SVM is to automatically learn a separation hyperplane from a set of
positive and negative training examples, which splits classified entities into two
subsets according to a certain classification property. As the name SVM suggests, it
is required that the text documents be represented as vectors but this problem has
been handled in various classification and clustering algorithms. Generally, each
word in the vocabulary of the corpus becomes a dimension, and a vector represents
the number of occurrences of the respective words in the document. Stemming is
utilized so that words such as “run” and “running” are counted together. SVMs work
well for text classification as there are many words in the vocabulary, yielding a high-
dimensional vector space. At the same time, each document might only use a small
subset of the thousands of words in the vocabulary of the corpus. SVMs are thus well
suited for such document vectors that are sparse but contain dense concepts (i.e., the
words that are present in a document are important). SVMs were normally adapted
for binary classification method that combines statistical learning and optimization
techniques with kernel mapping [Vapnik 1995], but have been successfully applied to
multiclass classification [Crammer and Singer 2001].

The optimization part is used to maximize the distance, also called the margin of
each of the two subsets from the hyperplane. The document representatives closest
to the decision surface are called support vectors. The result of the algorithm remains
unchanged if documents that do not belong to the support vectors are removed from
the set of training data. An advantage of SVM is its superior runtime-behavior
during the categorization of new documents because only one dot product per new
document has to be computed. A disadvantage is the fact that a document could be
assigned to several categories because the similarity is typically calculated individually
for each category. Nevertheless, SVM is a very powerful method and has outperformed
other methods in several studies [Dumais et al. 1998; Hearst et al. 1998; Joachims
1998; Siolas and d’Alché-Buc 2000; Yang and Liu 1998]. 

According to [Joachims 1998], unlike many other classification methods that have
difficulties coping with huge dimensions, one of the major advantages of the SVM
approach is that its performance does not depend on the dimensionality reduction.
SVMs tend to be fairly robust to overfitting and can scale up to considerable dimen-
sionalities. [Brank 2002] also indicated that feature selection tends to negatively
effect the performance of SVMs. Even, it has been shown that the removal of stop-
words is not necessary [Leopold and Kindermann 2002].

Few approaches have focused on tuning the original SVM approach by selecting
different features, or by using different feature weights and kernels, mostly for the
text classification task. For example, [Leopold and Kindermann 2002] have discussed
the impact of different feature weights on the performance of SVMs in the case of
document classification in English and German. Additionally, they have reported
that an entropy-like weight performed better than idf, especially for larger documents.
Moreover, they proposed that when using single word as features, lemmatization was
not required, as it had no significant effect on the performance.

Additionally, SVMs have been used extensively in the classifying documents in the
biomedical domain, as discussed below.
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In Donaldson and his colleagues’ study [2003], SVM is used to train on the bag-of-
words in MEDLINE abstracts to distinguish abstracts containing information on
protein-protein interactions, prior to curating this information into their BIND database.
A small evaluation with 100 abstracts found a precision of 96% with a recall of 84%.
They estimated that the classification system would reduce the number of abstracts
that the curators needed to read by 2/3rds. 

5.1.3 Maximum entropy
Maximum entropy takes advantage of feature distribution characteristics in the
training set, and is suitable for classification tasks having a discriminated feature set.

In Liu and her colleagues’ study [2004], the authors have focused on classifying
figures captions in full-text scientific papers. They applied text mining and classification
techniques on the text in figure legends, in order to identify an interesting figure
based on schematic representations of protein interactions and signaling events.
Furthermore, each figure was classified as relevant/non-relevant using a maximum
entropy classifier, by assigning an estimated likelihood. One of the major advantages
of the maximum entropy technique is that it provides a probability score for the
decision, instead of a binary assignment. Also, this accelerated the experts  manual
work, while the results showed positively the linkage between picture and text.

6. INFORMATION EXTRACTION

In terms of what is to be extracted by the systems, most studies can be broken into
the following three major areas: 1) named entity extraction, named entities may include
proteins or genes, 2) relation extraction whose main task is to extract relationships
among entities, and 3) abbreviation extraction. Most of these studies adopt information
extraction techniques, using a curated lexicon or natural language processing for
identifying relevant tokens such as words or phrases in text [Shatkay & Feldman,
2003]. 

Fukuda et al. [1998] extract protein names with hand-crafted rules. Although they
reported that experimental results were competitive based on F-value of 0.92, the
results were not replicated and their method relied on manually created rules. Proux
et al. [2000] use single word names only with selected test set from 1,200 sentences
coming from Flybase. Collier et al. [2000] adopt Hidden Markov Models (HMMs) for
10 test classes with small training and test sets. Krauthammer et al. [2000] use
BLAST database with letters encoded as 4-tuples of DNA. Demetriou and Gaizuaskas
[2002] pipeline the mining processes including hand-crafted components and machine
learning components. For the study, they use large lexicon and morphology components.
Narayanaswamy et al. [2003] use a Part of Speech (POS) tagger for tagging the
parsed MEDLINE abstracts. Although Narayanaswamy and his colleagues
implement an automatic protein name detection system, the number of words used
is 302 and thus it is difficult to see the quality of their system in that the size of the
test data is too small. Yamamoto et al. [2003] use morphological analysis techniques
for preprocessing protein name tagging and apply SVM for extracting protein names.
They found that increasing training data from 390 abstracts to 1,600 abstracts
improved F-value performance from 70% to 75%. Lee et al.  [2003] combined an
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SVM and dictionary look-up for named entity recognition. Their approach is based
on two phases, the first phase is identification of each entity with an SVM classifier
and the second phase is post-processing to correct the errors by the SVM with a
simple dictionary look-up. Bunescu et al.  [2004] studied protein name identification
and protein-protein interaction. 5,206 names extracted from MEDLINE database
were used in their experiment. Among several approaches used in their study, the
main two ways are one using POS tagging, and the other using the generalized
dictionary-based tagging. Their dictionary-based tagging presents higher F-value.
Table I summarizes the work in the areas of named entity extraction in biomedical
literature.

The second extraction task of biomedical literature extraction is relation extraction.
Leek [1997] applies HMM techniques to identify gene names and chromosomes
through heuristics. Craven and Kumlien [1999] extract location relations for proteins
in Yeast database based on HMM techniques. Blaschke et al. [1999] extract protein-
protein interactions based on co-occurrence of the form “… p1 I1… p2” within a
sentence, where p1, p2 are proteins and I1 is an interaction term. Protein names and
interaction terms (e.g., activate, bind, inhibit) are provided as a “dictionary.” Rindflesch
[1999] extracts binding relations for Unified Medical Language System (UMLS)
from MEDLINE. Proux [2000] extracts an “interact” relation for the gene entity
from Flybase database. Pustejovsky [2002] extracts an “inhibit” relation for the gene
entity from MEDLINE. Jenssen et al. [2001] extract gene-gene relations based on co-
occurrence of the form “… g1…g2…” within a MEDLINE abstracts, where g1 and g2
are gene names. Gene names are provided as a “dictionary”, harvested from HUGO,
LocusLink, and other sources. Although their study uses 13,712 named human genes
and millions of MEDLINE abstracts, no extensive quantitative results are reported
and analyzed. Friedman et al. [2001] extract a pathway relation for various biological
entities from a variety of articles. In their work, the precision of the experiments is
high (from 79-96%). However, the recalls are relatively low (from 21-72%). Bunescu

Table II. A summary of works in Biomedical Entity Extraction.

Authors Named Entities Database No. of Words F value

Fukuda et al. Protein MEDLINE 20,000 93

Proux et al Gene Flybase summary 12,000 92

Collier et al. Proteins and DNA MEDLINE 30,000 73

Krauthammer et al. Gene and Protein Review articles 5,000 75

Demetriou and 
Gaizauskas 

Protein, Species, and 
10 more

MEDLINE 30,000 83

Narayanaswamy Protein MEDLINE 302 75.86

Yamamoto et al. Protein GENIA 1,600 abstracts 75

Lee et al. Protein
DNA
RNA

GENIA 10,000 77
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et al. [2004] conducted protein/protein interaction identification with several learning
methods such as pattern matching rule induction (RAPIER), boosted wrapper
induction (BWI), and extraction using longest common subsequences (ELCS). ELCS
automatically learns rules for extracting protein interactions using a bottom-up
approach. They conducted experiments in two ways; one with manually crafted
protein names and the other with extracted protein names by their name identification
method. In both experiments, Bunescu et al. compared their results with human-
written rules and showed that machine learning methods provides higher precisions
than human-written rules. Table II summarizes work on relation extraction in
biomedical literature. 

The third extraction task is abbreviation extraction. Chang et al. [2003] use an
algorithm with a logistic regression technique to extract abbreviations. Their algorithm
scores abbreviation expansions based on the similarity to a training set of human-
annotated abbreviations from MEDLINE abstracts. The algorithm is reported to
have a maximum recall of 83% at 80% precision. Major limitations of their approach
are that an abbreviation must be enclosed in parentheses and a set of rules applied to
abbreviation extraction was not comprehensive compared to other rule-based extraction
techniques.

Yu et al. [2002] present a system (i.e., AbbRE) with a rule-based algorithm. Their
system contains pattern-matching rules for mapping abbreviations to their full forms
in biomedical text. AbbRE is reported to have an average 70% recall and 95%
precision for defined abbreviations. However, their experimental setup was limited
to defined abbreviations which constitute only 25 percent of total abbreviations in
biomedical articles as their own statistics identify.

Liu and Friedman [2003] propose an algorithm based system to extract a set of
related terms from the biomedical literature. Their method is also based on the
observation that presentation of abbreviations in text are usually within parentheses.
The recall of the algorithm was around 88.5%, and its precision was 96.3%. The
limitation of their approach is that the system is not suitable for identifying expansions
that occur only once in a text. 

Schwartz and Hearst [2003] report a system with a simple algorithm based on the
use of parentheses and ad hoc rules for identifying abbreviations’ definitions in

Table III. A summary of relation extraction for biomedical data.

Source Relation Entity DB Precision Recall

Leek Location Gene OMIM 80% 36%

Craven Location Protein Yeast 92% 21%

Rindflesch Binding UMLS MEDLINE 79% 72%

Blaschke Interact Protein MEDLINE n/a n/a

Proux Interact Gene Flybase 81% 44%

Pustejovsky Inhibit Gene MEDLINE 90% 57%

Jenssen Location Gene MEDLINE n/a n/a

Friedman Pathway Many Articles 96% 63%
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biomedical texts. The algorithm has an experimental result of 82% of recall and a
precision of 96%.

Ao and Takagi [2005] describe an ad hoc algorithm called ALICE. ALICE identifies
and extracts pairs of abbreviations and their expansions by using parentheses-
searching and heuristic pattern-matching rules. In addition to the strategies used by
Yu et al. [2003] and Schwartz and Hearst [2003], this algorithm uses manually
expanded patterns, rules, and stop word lists. The authors argue that their system
can potentially validate 320 abbreviation-expansion patterns as combinations of the
rules. It is reported that the system achieved 95% recall and 97% precision on
randomly selected titles and abstracts from the MEDLINE database. ALICE is
reported to be limited to disambiguate synonyms and expansions. 

Song and Yoo [2007] proposed a hybrid extraction technique to detect the
corresponding long forms (i.e., definitions, expansions, and full names) of short forms
(i.e., abbreviations, acronyms, and symbols) from biomedical text. It incorporates
the proposed method gives us the comparative advantages over others in the
following aspects: 1) it incorporates lexical analysis techniques into supervised
learning for extracting abbreviations; 2) it makes use of text chunking techniques to
identify long forms of abbreviations.

7. EVALUATION

One of the pivotal issues yet to be explored further for biomedical literature mining is
how to evaluate the techniques or systems. 

The focus of the evaluation conducted in the literature is on extraction accuracy.
The accuracy measures used in IE are precision and recall ratios. For a set of N
items, where N is either terms, sentences, or documents and the system needs to
label each of the terms as “positive” or as “negative” according to some criterion –
“positive” if a term belongs to a predefined document category or a term class. Recall
is defined as the number of relevant documents retrieved divided by the total
number of relevant documents in the collection. For example, suppose there are 80
documents relevant to widgets in the collection. If the system X returns 60 documents
and 40 of which are about widgets, then X’s recall is 40/80 = 50%. Precision is defined
as the number of relevant documents retrieved divided by the total number of
documents retrieved. In our example, X’s precision is 40/60 = 67%. As discussed
earlier, the extraction accuracy is measured by precision and recall ratio. Although
these evaluation techniques are straightforward and are well accepted, calculating
recall ratios may be criticized when the total number of true “positive” terms is not
clearly defined. 

Participants in the Message Understanding Conference (MUC) tested the ability
of their systems to identify entities in text to resolve co-reference, extract and populate
attributes of entities, and perform various other extraction tasks from written text.
As identified by Shatkay and Feldman [2003], the important challenge in biomedical
literature mining is “the creation of gold-standards and critical evaluation methods
for systems developed in this very active field.” The framework of evaluating
biomedical literature mining systems was recently proposed by Hirschman et al.
[2002]. According to this framework the following elements are needed for a
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successful evaluation: 1) challenging problem, 2) task definition, 3) training data, 4)
test data, 5) evaluation methodology and implementation, 6) evaluator, 7) participants,
and 8) funding. In addition to these elements for evaluation, the existing biomedical
literature mining systems encounter the issues of portability and scalability, and
these issues need to be taken as part of evaluation. 

The accuracy of a learning system needs to be evaluated before it can become
useful. Limited availability of data often makes estimating accuracy a difficult task
[Kohavi 1995]. Choosing a good evaluation methodology is very important for
machine learning systems development. 

There are several popular methods used for such evaluation, including holdout
sampling, cross validation, leave-one-out, and bootstrap sampling [Stone 1974;
Efron and Tibshirani 1993]. In the holdout method, data are divided into a training
set and a testing set. Usually 2/3 of the data are assigned to the training set and 1/3
to the testing set. After the system is trained by the training set data, the system
predicts the output value of each instance in the testing set. These values are then
compared with the real output values to determine accuracy. 

In cross-validation, a data set is randomly divided into a number of subsets of
roughly equal size. Ten-fold cross validation, in which the data set is divided into 10
subsets, is most commonly used. The system is trained and tested for 10 iterations.
In each iteration, 9 subsets of data are used as training data and the remaining set is
used as testing data. In rotation, each subset of data serves as the testing set in
exactly one iteration. The accuracy of the system is the average accuracy over the 10
iterations. Leave-one-out is the extreme case of cross-validation, where the original
data are split into n subsets, where n is the size of the original data. The system is
trained and tested for n iterations, in each of which n–1 instances are used for
training and the remaining instance is used for testing. 

In the bootstrap method, n independent random samples are taken from the
original data set of size n. Because the samples are taken with replacement, the
number of unique instances will be less than n. These samples are then used as the
training set for the learning system, and the remaining data that have not been
sampled are used to test the system [Efron and Tibshirani 1993]. 

Each of these methods has its strengths and weaknesses. Several studies have
compared them in terms of their accuracies. Hold-out sampling is the easiest to
implement, but a major problem is that the training set and the testing set are not
independent. This method also does not make efficient use of data since as much as
1/3 of the data are not used to train the system [Kohavi 1995]. Leave-one-out
provides the most unbiased estimate, but it is computationally expensive and its
estimations have very high variances, especially for small data sets [Efron, 1983; Jain
et al. 1987]. Breiman and Spector [1992] and Kohavi [1995] conducted independent
experiments to compare the performance of several different methods, and the
results of both experiments showed ten-fold cross validation to be the best method
for model selection. 

In light of the significant medical and patient consequences associated with many
biomedical data mining applications, it is critical that a systematic validation method
be adopted. In addition, a detailed, qualitative validation of the data mining or text
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mining results needs to be conducted with the help of domain experts (e.g., physicians
and biologists), and therefore this is generally a time-consuming and costly process.

8. CONCLUSIONS

This paper showed that major biomedical ontologies such as UMLS and MeSH
served as the domain knowledge provider for text mining techniques. This paper also
overviewed important text mining approaches (such as document clustering, document
classification, and information extraction). In addition, we introduced several text
mining applications to biomedicine and healthcare. For example, we showed how
semantic-based document clustering helps physicians for the practice of evidence-
based medicine when they perform MEDLINE searches.

An overwhelming amount of biomedical text data is available. However, biomedical
text is not readily processed for biomedical knowledge extraction and management
due to its unstructured nature and the complexity of the biomedicine domain. Because
of these issues, the biomedical information and knowledge in biomedical text have
not been easily reused. For this problem, text mining techniques enable us to readily
put to use research findings and even infer novel biomedical knowledge or reasonable
biomedical hypotheses from the research findings. As a result, text mining is the
most promising solution to overcome biomedical text information overload. Text
mining has attracted considerable attention even though there are challenging issues
of applying text mining techniques to biomedicine and healthcare such as full-text
mining, cross-language mining techniques, and interactive text mining systems. As
the sheer size of the biomedical text databases continues to grow, the importance of
text mining for biomedical literature will be further magnified.
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