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The increasing availability of personal location data pushed by the widespread use of location-
sensing technologies raises concerns with respect to the safeguard of location privacy. To
address such concerns location privacy-preserving techniques are being investigated. An
important area of application for such techniques is represented by Location Based Services
(LBS). Many privacy-preserving techniques designed for LBS are based on the idea of
forwarding to the LBS provider obfuscated locations, namely position information at low
spatial resolution, in place of actual users’ positions. Obfuscation techniques are generally
based on the use of geometric methods. In this paper, we argue that such methods can lead to
the disclosure of sensitive location information and thus to privacy leaks. We thus propose a
novel method which takes into account the semantic context in which users are located. The
original contribution of the paper is the introduction of a comprehensive framework consisting
of a semantic-aware obfuscation model, a novel algorithm for the generation of obfuscated
spaces for which we report results from an experimental evaluation and a reference architec-
ture.

1. INTRODUCTION

Personal location data are increasingly being collected and processed by a large variety
of applications, also pushed by the increased availability of location-sensing systems
such as GPS/Galileo, RFID, and sensor networks. Unfortunately, personal location
information can lead to the inference of sensitive information about individuals and
thus to privacy breaches. For example, the health status of an individual can be
inferred from the hospitals and medical labs he or she visits and disclosed to third
parties without the consent of the individual. On the other hand, location information
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is important in a variety of applications, such as data analysis and information
services, and therefore it cannot be simply removed from the data being collected.
The problem is thus how to protect the privacy of individuals while retaining location
information at an adequate level of accuracy so that it can be effectively used in
applications.

Personal location data, in its most general form, are captured as tuples of the form
(userId, loc), where userId is the value of an attribute identifying an individual, such
as the social security number, and loc is the location occupied at a given time by this
individual. Locations are described in terms of geometric objects, for example a point
or a region in a coordinated space, or semantically meaningful spatial objects and
descriptions, such as a house, a park, a shop’s name or an address. Because a
geometric object can be given one or more semantic descriptions and, vice versa a
description can be given one or more geometric representations, it is reasonable to
assume that the geometric and the semantic representations are interchangeable
[Verykios et al. 2007]. Paraphrasing [Beresford and Stajano 2003], we say that a
location privacy threat occurs when both the identity userId and the position loc are
disclosed.

Location privacy is an important requirement for location-based services (LBS)
applications. A LBS is typically requested through a query issued by a mobile client
and answered by the LBS provider based on the current position of the client. An
example of such a query is: which is the clinic closest to me? Position information,
once transferred to the LBS provider, is no longer under the control of the user and
thus can be arbitrarily used, for example for unsolicited advertisement purposes. To
avoid abuses against privacy, the collection of personal location data by third parties
is increasingly regulated by law [Bonchi et al. 2007]. Complementary, technological
solutions are being investigated to protect personal information against data loss,
data theft and abuses by dishonest LBS providers.

A naïve technique to protect location privacy is to remove the user’s identifier
from service requests. Unfortunately, the simple removal of the identifier may be not
sufficient to anonymize requests because identity may be inferred from the
association of the user’s location with some external data source. For example, if the
position of an individual is known to be inside a non-publicly accessible office, it is
likely that such individual works at that office and thus can be easily identified.
Moreover, applications may need to have available identity information for
accounting and user authentication. Various techniques have been recently developed
which attempt to protect either the identity or the actual location of the user.

The basic idea underlying most schemes is to hide the actual position by forwarding
to the LBS provider a coarse location, that is, a location with low spatial resolution.
The operation of deliberately degrading the quality of the information about an
individual’s location is also called location obfuscation. We can abstractly think of
location obfuscation as a function which takes in input the actual position of an
individual and returns a location which is either imprecise (i.e. the information lacks
specificity) or inaccurate (i.e. it lacks correspondence between information and
reality) [Worboys and Clementini 2001].

Location obfuscation techniques typically use geometric methods such as geometric
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transformations and space subdivision to generate coarse locations. We refer to these
techniques as geometry-based. Note that geometry-based techniques do not consider
“what” is contained in space, that is, the spatial entities that populate the world, the
places and their relationships. In other words those techniques do not account for
geographical knowledge. We believe that the lack of concern for the semantics of
space may lead to privacy breaches. In particular, we claim that an adversary with
sufficient geographical knowledge may infer sensitive location information from
obfuscated locations generated by geometric-based techniques. To support our claim
we present the example below.

1.1 A Motivating Example

Assume that John is subscriber of an LBS application. John does not want to let
anyone know that he has health problems. Therefore he does not want to reveal his
position while being in a hospital. Conversely John is not concerned with location
privacy when in other places, like a park.

Consider now the case of a hospital close to a lake and to a residential district.
Suppose that each of these places, i.e. the lake, the district and the hospital, covers a
polygonal region. Suppose moreover that no boats are allowed on the lake. Now
assume that John requests a service from a certain position p and that an obfuscated
location o is computed and transmitted to the LBS provider in place of p. Now
suppose that an adversary has the same knowledge we have about the geographical
context. From the observation of the spatial relationships existing between the
obfuscated location and real world entities, like the topological relationship of spatial
containment, overlapping and disjointness, the adversary may likely determine
whether John is located in a hospital and thus in a sensitive place.

In particular consider the following three cases:
(a) The obfuscated location o is spatially contained in the extent of the hospital. In

this case, John still results to be located in a sensitive place although the actual
position is blurred to a coarser region.

(b) o includes the extent of both the hospital and the lake. Since John cannot be
physically located inside the lake, because no boats are allowed on the lake, the
only realistic position is within the hospital and thus the obfuscated location is
still sensitive. Notice that in this case information about the user’s obfuscated
location is combined with publicly available information, that is, that no boat
is allowed on the lake, in order to infer more precise information about the
actual location of the user.

(c) o overlaps part of the hospital and part of the residential district. Since only the
hospital is a sensitive place for John, we can say that the obfuscated location is
“sensitive to some extent”. 

This example emphasizes the fact that a location, besides a geometric shape, has a
qualitative meaning which depends on the entities spatially related to such location.
The semantics of space is what ultimately determines the sensitivity of the location.
Furthermore, it is important to note that different locations may have different
degrees of sensitivity, depending also on the user’s perception of what is sensitive.
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From this observation it follows a key requirement, that is, the techniques for the
generation of obfuscated locations must take into account the qualitative context in
which users are located and move. To address such requirement, in this paper we
propose a novel obfuscation framework based on the use of geographical knowledge,
referred to as obfuscation system. In this paper we present the core components of
the obfuscation system:

1. a semantics-aware obfuscated space model;
2. an algorithm, called SensFlow, for the generation of obfuscated spaces for which

we report an experimental evaluation.
To our knowledge, this is the first approach addressing the problem of how to
prevent the disclosure of sensitive locations in an LBS context.

1.2 Paper Organization

The remainder of the paper is structured as follows. Next section overviews related
work. Then we introduce the baseline of the proposed approach and the architectural
framework of the obfuscation system. The obfuscation model is presented in the
subsequent section followed by the obfuscation method and the SensFlow algorithm
along with the experimental evaluation. A final section, reporting future research
directions, concludes the paper.

2. RELATED WORK

In this section we overview related work concerning location privacy and recent
advances in data privacy for relational databases. Early proposals focus on the
specification of privacy policies. Privacy policies state who and when a subject is
allowed to access location information concerning a specific individual.

The drawback of privacy-policy based approaches is that they provide a strong
protection only when LBS providers are trustworthy. Trustworthiness however is
costly to ensure. Therefore it is more realistic to assume that personal location data
are subject to privacy attacks. Note that we use the notion of privacy attack
informally to mean that an adversary can detect with certainty the actual location of
the user. A first attempt to formalize the concept of privacy attack is by Bettini et al.
[Bettini et al. 2007]. Most recent work comprises two main categories of privacy
models, focusing respectively on the protection of location information when the user
cannot be anonymous, and the concept of k-anonymity.

2.1 Privacy Models for the Protection of Location Information

Following Atallah and Frikken [Atallah and Frikken 2004], the problem can be
succintly formulated as follows: given a query such as “give me the address of the
post-office that is nearest to my current position”, how can the query be processed by
the database without knowing the actual position of the requester? Atallah and
Frikken propose three methods of varying complexity to process nearest-neighbor
queries that we illustrate in detail. The first approach is straightforward; the client
applies a geometric translation to the user’s precise position and forwards the
approximated position to the LBS provider. The database answers the query and
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returns an approximated answer. The second method does not result in any accuracy
loss but has potentially higher communication costs. The idea is to subdivide the
space in a grid of cells. The client queries the database with the tile, thus with an
obfuscated location, that contains the client’s location. The database answers the
query with all spatial objects that are closest to at least one point in the query tile.
Upon receiving these objects the client determines which of them is closest to the
actual position. The third approach is more efficient and does not require any
obfuscation of the user’s position. The basic idea is that the set of spatial objects in
the database is processed so as to produce a Voronoi diagram, that is, a subdivision
of the plan into cells such that each cell is associated with one of the objects of
concern. Then a secure-multiparty protocol [Du and Atallah 2001] is used to assess
whether the user’s position is contained in a cell without revealing to the database
anything other than the Yes/No answer to the question. If the answer is Yes, the
object associated with the cell is the one closest to the user. Note that using a secure-
multiparty protocol is much like using a trusted third-party getting the actual
position of the user and the Voronoi diagram and then matching such position
against the cells. Finally note that this mechanism can be only applied to spaces
which are partitioned.

Another approach for the processing of nearest-neighbor queries is proposed by
Duckham and Kulik [Duckham and Kulik 2005]. In this case the geographic space is
represented in the database as a planar graph. The vertexes of the graph denote
locations of objects and users while the edges represent how such locations are
connected by roads. Edges have associated a weight representing the distance
between two adjacent vertexes. The client obfuscates position p by supplying a set P
of arbitrary positions including p. The database then answers the nearest-neighbor
query by determining the objects (vertexes) that are closest to any point in P. Then,
in the simplest case, the database returns the whole set of vertexes leaving the client
to choose among them.

Cheng et al. [2006] focus on a different class of spatial queries. The problem is
formulated as follows: given a space populated by n users {u1, ...,un} located in
uncertain (i.e. obfuscated) positions and represented as closed regions, determine
which of them are located within distance C from a given user ui. Such queries are
called imprecise location-based range queries. Basically the idea is to process the
query for each point of the location of u. Hence, unlike the approach by Atallah and
Frikken, each possible answer is assigned a probability. We observe that the
emphasis of such an approach is on query processing and not on obfuscation
techniques.

2.2 Protection of User Identity through K-anonymity

The concept of k-anonymity has been originally defined for relational databases. A
relational table T is k-anonymous when for each record there are at least (k-1) other
records whose values, over a set of fields, referred to as quasi-identifier, are equal. A
quasi-identifier is a set of one or more attributes which, though not containing an
explicit reference to the individual identity, can be easily linked to external data
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sources and in this way reveal who the individual is. k-anonymity can be achieved by
generalizing the quasi-identifier values. Generalization is thus performed by replacing
a value with a less specific but semantically consistent value [Sweeney 2002]. The
value of k quantifies the degree of privacy in T.

In the LBS context, the k-anonymity concepts are translated as follows: like a table
record, a request is a tuple of values including the user’s location and the location
based query. The location attribute is treated as a quasi-identifier. A request is thus
k-anonymous if the user’s location is indistinguishable form the location of other k-1
individuals. Finally a generalized location is a region containing the position of k
individuals. Note that a generalized location is nothing but an obfuscated location.

Typically k-anonymity techniques are applied using a three-tier architecture
consisting, beyond a client and a server, of a trusted intermediary, referred to as
anonymizer. The anonymizer receives the user’s service request, removes the user’s
identity, acquires and generalizes the location of the user and then forwards it to the
LBS. The LBS in turn processes the request and returns the anonymizer a set of
candidates containing the actual results.

Location generalization techniques generate obfuscated locations independent of
the query type. The first such technique has been proposed by Gruteser and
Grunwald [Gruteser and Grunwald 2003]. Their approach is based on a recursive
subdivision of the space in quadrants. The set of quadrants is represented by a
quadtree data structure. The quadtree is then traversed top down, thus from the
largest quadrant covering the whole space, until the smallest quadrant is found
which includes the requester and enough users to satisfy the anonymity constraint k.
Such a final quadrant constitutes the generalized location. Another technique based
on quadtrees has been proposed in the Casper system [Mokbel et al. 2006]. The
anonymizer uses a hash table to directly locate the user. Such table contains the
pointer to the lowest-level cell in the quadtree-based data structure in which each
user is located and the user privacy profile. A privacy profile is defined by the pair (k,
AMin) where k means that the user wishes to be k-anonymous, and AMin is the
minimum acceptable resolution of the generalized location. The location generalization
algorithm works bottom-up: if a cell, or combination of two adjacent cells, does not
satisfy privacy preferences, then the algorithm is recursively executed with the
parent cell until a valid cell is returned. 

Kalnis et al. [2007] observe that k-anonymity algorithms may compromise location
privacy if an attacker knows the generalization algorithm, the value of k and the
position of all users. Specifically, this happens when a generalized location can be
univocally associated with a user. To prevent such privacy leaks, Kalnis et al.
propose the Hilbert Cloak algorithm. The main idea is to sort users’ locations by
utilizing a classical spatial ordering technique, the Hilbert space-filling curve technique,
mapping two-dimensional coordinates of each user onto a one-dimensional value.
Users’ position, which are contiguous in the ordering and thus, for how the Hilbert
space-filling curve is defined, in space, are grouped in buckets of k users. Therefore
each user belongs to a unique k-bucket and all users in the same bucket have the
same generalized location.
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2.3 Beyond k-anonymity

Finally we discuss related work concerning advances in data privacy for relational
databases. Recently several papers have pointed out that k-anonymity has a number
of drawbacks and thus it does not ensure a sufficient protection against a number of
privacy attacks. For example k-anonymity can generate groups of records that leak
information due to the lack of diversity in the sensitive attribute. Such an
information leak is called homogeneity attack. As an example consider a table T
consisting of the three following attributes: Zip Code and Age represent a quasi-
identifier, Disease is a sensitive attribute. Assume a publicly-available, k-anonymous
dataset T composed of groups of at least k records and assume that all the tuples in
a certain group have an identical value for the sensitive attribute, say ([13000−
13099], [40−50], cancer). Then, if John is known to be present in the table, live at zip
code 13057 and be 44 years old, one can immediately infer that John has the cancer,
albeit the table is k-anonymous. l-diversity is a possible counter-measure against
such an attack. The main idea of l-diversity is the requirement that the values of the
sensitive attributes must be well represented in each group [Machanavajjhala et al.
2006]. In its simpler form, l-diversity means that each group should have at least l
distinct values.

Another criticism against k-anonymity is that it does not take into account
personal anonymity requirements. For example, consider the previous table T, and
assume it to be 2-anonymous. Consider a group consisting of the following tuples: t1
= ([13000−13099], [40−50], bronchitis), t2 = ([13000−13099], [40−50], pneumonia). If
John is known to belong to such a group, then it is easy to infer that John must have
suffered from bronchitis or pneumonia, which is acceptable according to k-
anonymity and also l-diversity. However, John may want not to disclose that he has
had respiratory problems. On the other hand, an individual suffering from flu may be
unconcerned with the disclosure of the sensitive attribute value. To address this
requirement, Xian and Tao [2006] introduce the concept of personalized anonymity.
The main idea is to organize the values of sensitive attributes in a taxonomy and
then let each user specify through a guarding node the most specific value of the
attribute that the user wants to disclose. Interestingly, this approach attempts to
protect the association between a user and the meaning of the sensitive attribute,
which is close to what we propose. Unfortunately this technique can be only applied
to categorical attributes.

3. SEMANTICS-AWARE OBFUSCATION

We now outline the general approach we propose for semantic-aware obfuscation.
The main idea is as follows: users specify which places they consider sensitive and the
desired degree of privacy in a privacy profile. Based on the privacy profile, the
privacy-preserving system generates a set of obfuscated locations and associates it
with such a profile. At run time, a user issues an LBS request specifying also the
profile and thus implicitly the set of obfuscated locations. If the user’s position falls
inside any location o from such a set, then o is forwarded to the LBS provider in
place of the actual position. An adversary cannot thus infer with certainty that the
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user is inside a sensitive (for the user) place. At most the adversary can infer that the
position may be in a sensitive place. To implement this strategy, we propose a
privacy-reserving framework based on a number of key concepts.

- Sensitive places. We assume that relevant places are classified in categories or
types of spatial objects. Each user can specify which types of places are sensitive,
non-sensitive or unreachable. A place is sensitive when the user does not want to
reveal to be in that area; a place is unreachable when nobody can be located in
that place; conversely a place is non-sensitive.

- Level of sensitivity. The level of sensitivity quantifies the level of location privacy
leak the user is exposed to when located in a region. For example a region
entirely occupied by a hospital has a high level of sensitivity. We emphasize that
the level of sensitivity depends on the extent and nature of the objects located in
the region as well as the privacy concerns of the user.

- Obfuscated space. It is a partition of the reference space consisting of obfuscated
locations. Specifically, obfuscated locations are regions which have a level of
sensitivity less than or equal to than a sensitivity threshold value. The sensitivity
threshold value quantifies how much sensitive the resulting obfuscated location
can be for the user. The sensitivity threshold value and the set of sensitive and
unreachable types of places is specified in the privacy profile of the obfuscated
space. The obfuscated space is generated by an obfuscation algorithm.

- Obfuscation enforcement. It refers to the mapping of the user’s position onto a
region of an obfuscation space. Given an obfuscated space OS, the location
which obfuscates user’s position p is the region of OS which contains p.

Figure 1 illustrates the functional components of the obfuscation system. The first
component is the obfuscated spaces repository. Such repository stores the obfuscated
spaces which are generated based on the privacy preferences of users. Because
obfuscated spaces only need to be generated once and then used every time a
position is obfuscated, it seems reasonable to assume that the obfuscated space is
created off-line and not while processing the request. Each obfuscated space in the
repository has a privacy profile. Such profile specifies user preferences, in particular
which values are assigned as input to the parameters of the obfuscation algorithm.

Figure 1. Architecture of the system.
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The obfuscation algorithm is run by the obfuscated space Generator. The GeoDB is
the spatial database, which contains the spatial entities of concern to the
application. Both the Generator and the GeoDB must be trusted.

The user interaction is as follows. The user starts a session by specifying the
obfuscation space to consider in the session. When the user requests an LBS, the
query is sent to the obfuscation system. The obfuscation enforcement module then
retrieves the actual user’s position through the positioning system interface. Since
the details of how the position is obtained are not relevant for our work, we assume
that the user’s position is known with a high level of accuracy and precision and is
provided in the form of georeferenced coordinates x and y and that the user positions
are communicated securely. Then the obfuscation enforcement module matches the
actual position against the obfuscation space associated with the session; finally the
resulting obfuscated location along with the query is forwarded to the LBS provider.
As it is the operational core of the system, the obfuscation enforcement module must
be trusted.

As a result, the LBS provider processes the query based on the imprecise user’s
position. There are diverse approaches in literature for the computation of spatial
queries based on imprecise positions, such as [Cheng et al. 2006; Mokbel et al. 2006;
Kalnis et al. 2007]. It is important to observe, however, that the investigation of
those techniques is beyond the scope of this paper, because our goal is to define a
location generalization method which takes into account the semantics of places for
the purpose of protecting against location inferences based on background knowledge.
Such a generalization is independent from the issued queries.

4. THE OBFUSCATION MODEL

We now present the basic concepts of the obfuscation model. We first introduce
some assumptions on space. Then we introduce the important notions of sensitivity
level and obfuscated spaces, which are the key notions of our approach.

Space S is a coordinate space of 1, 2 or higher dimension. The position of a user is
a point in S. Throughout the paper, we use the term location to broadly denote a
portion of space containing the user’s position. A region in S is a bounded, connected
subset of space of the same dimension of S. Without loss of generality, in the rest of
the paper we consider 2D-spaces; therefore a region is represented by a polygon.

Space is populated by spatial objects representing real world entities such as
buildings and roads. Following a popular data model, spatial objects are modeled in
terms of OGC simple features. A feature has an unique name, say Milano, and a
unique feature type, say City. Furthermore, a feature has attributes and a geometric
extent of type point, line, polygon or collection of disjoint geometries [Open
GeoSpatial 2005]. An advantage of our approach is that spatial objects can be stored
in commercial spatial DBMSs and easily displayed as maps. Furthermore, it
supports fine-grained and application-dependent privacy requirements. Our approach
is also extensible in that new feature types can be easily created from the initial
spatial database. In what follows, without significant loss of generality, we assume
that the features of interest are of polygonal type. We denote with FT and F
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respectively the set of features types and the set of corresponding features. Hereinafter
we refer to the pair (FT, F) as the geographical database of the application.

Users specify their preferences about the feature types that are to be considered
sensitive and unreachable for the generation of the obfuscated space. We say that a
feature type is sensitive when it denotes a set of sensitive places. For example if
Religious Building is a sensitive feature type, then Duomo di Milano, an instance of
Religious Building, is a sensitive feature. We say instead that a features type is non-
reachable when it denotes a set of places where, for various reasons, such as physical
impediment, cannot be accessed by the user. For example, the feature type
MilitaryZone may be non-reachable if the user is a civilian.

The user specifies sensitive and unreachable features in the privacy profile. As we
will see, the user can add further parameters in this profile. The privacy profile is
then used by the obfuscation system for the generation of the obfuscated space.
Ideally a user can define multiple privacy profiles and thus be associated with
multiple obfuscation spaces.

4.1 Sensitivity Level

Assume that a user has chosen a set of sensitive (unreachable) features types. The
next step is to define a metric to quantify how much sensitive an arbitrary location is
with respect to the user’s privacy requirements. Such a metric is called sensitivity
level (SL). The value of SL depends on: a) the classification of features types. For
example if only few features are sensitive, it is likely that the sensitivity level in the
region is low. b) The nature of the location. For example a location enclosing a large
hospital is likely more sensitive than a region enclosing a small clinic. c) The
perception of users. For example, typically a hospital is not a sensitive feature for a
doctor while it may be so for an individual with health problems. To model SL we
introduce the notions of sensitive location probability and sensitivity score.

• Sensitive location probability. The sensitive location probability Psens with respect
to a region r is the probability that the user, if known to be in r, is actually
located in the extent of any sensitive feature in r. We assume that a user has
equal likelihood of being located in whatever point in space. The value Psens is
computed by the system based on the extent of the sensitive feature types in the
region.

• Sensitivity score. The sensitivity score of a feature type defines “how much
private” the information of being in a region of that type is for the user. For
example the score of the restaurant feature type is typically lower than the score
of hospital because an individual is usually more concerned with the privacy of
medical information than with information about his/her preferred restaurants.
The score is assigned a quantitative value ranging between 0 and 1: 0 means that
the feature type is not sensitive, while 1 means that the feature type has the
highest sensitivity. The score of each sensitive feature type is specified directly
by the user in the privacy profile.

4.2 The Computation of the Sensitivity Level

Based on the previous concepts, we now specify how to compute the value SL for a
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region, given a privacy profile.
We use the following notation: E is the set of regions in the reference space; the

pair (FT, F) is the geographical database, namely the set of feature types and
features; FTSens ⊆ FT is the set of sensitive feature types, while FTNreach ⊆ FT is the
set of non-reachable features, with FTNreach ∩ FTSens = ∅. Given a region r, the
functions AreaGeo(r) and AreaFea(r, ft) compute, respectively, the whole area of r and
the area of r covered by features of type ft. In the latter case, only the portions of
features which are contained in r are considered. Score(ft) is the score assigned to
feature type ft. 

We now introduce AreaRel(r), the function computing the relevant area of r, that
is, the portion of region not covered by unreachable features:

AreaRel(r) = AreaGeo(r) − AreaFea(r, ft)

Next we define the function PSens(r) computing the sensitive location probability of
r as the ratio of the area covered by sensitive features to the relevant area of the
region:

PSens(r) = 

If r only consists of unreachable features we define Psens(r) = 0.
Finally, we define the sensitivity level of the region SLReg(r). SLReg(r) is computed

as sum of the ratios of weighted sensitive areas to the relevant area in the region.

Definition 4.1 (Sensitivity level of a region) The sensitivity level of a region is
defined by the function: SLReg : E → [0, 1] such that, given a region r:

SLReg(r) = Score(ft)

If r only contains non-reachable features, we define SLreg(r) = 0.

Example 1 Consider a space consisting of four regions c0, c1, c2, c3; the set of
sensitive feature types is FTsens = {ft0, ft1, ft3} and the set of non-reachable feature
types is FTNreach = {ft2}. Table II reports for each feature type fti and region cj the
area occupied by fti in cj, with i ranging over {0, 1, 2, 3, 4}, and j over {0, 1, 2, 3}.
Note that two regions include a portion of area, occupied by features of type ft4,
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Figure II. Area and sensitivity scores of feature types.
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which is not sensitive. The row labeled as Arearel reports the size of the reachable
areas of each region. Finally, the column labeled Score(ft) reports the sensitivity
score assigned to each feature type.

The sensitivity level for regions c0 and c1 is:

- SLreg(c0) =  = 0.425

- SLreg(c1) =  = 0.9.

According to our metrics region c1 is more sensitive than c0. The motivation is that
users located in region c1 are certainly located in the extent of a feature of type ft3,
which has a high sensitivity score.

4.3 Obfuscated Space

Before introducing the notion of obfuscated space, we need to extend the notion of
sensitivity level from regions to space partitions. A space partition consists of a set of
disjoint cells covering the reference space S. The idea is to define a metric for
comparing the sensitivity not only of regions but also of space partitions. The
sensitivity level of a partition is defined as the maximum value of the sensitivity
levels of the partition cells. Denoted with Π(S) the set of partitions over space S, we
formally define the sensitivity of a partition as follows:

Definition 4.2 (Sensitivity level of partitions) Let C ∈ Π(S) be a partition over
S. The sensitivity level of a partition is defined by the function: SLPar : Π(S) → [0, 1]

such that:

SLPar(C) =  SLReg(c)

Now we define the obfuscated space as a partition with a sensitivity level less than or
equal to a threshold value. Each cell of the partition represents an obfuscated
location of each position inside the cell. The threshold value expresses the degree of
location privacy requested by the user and is specified directly in the privacy profile.
Therefore given an obfuscated space OS, for each point p in S, exactly one cell
containing p exists in OS which has a level of sensitivity less than or equal to the
specified threshold. The formal definition of obfuscated space and privacy profile is
reported below.

Definition 4.3 (Obfuscated space) Let (FT, F) be the geographical database.
Moreover let:

- Score be the score function.
- θsens ∈ [0, 1] be the sensitivity threshold value.

Then:
(1) An obfuscated space OS is a space partition in Π(S) such that: SLPar(OS) ≤ θsens

(2) The privacy profile associated with OS is the tuple
< FTSens, FTNreach, Score, θsens >.

0.5 200⋅ 0.7 100⋅ 0.9 0⋅+ +
400

-------------------------------------------------------------

0.9 200⋅
200

-------------------

max
c C∈



Semantics-aware Obfuscation for Location Privacy 149

Journal of Computing Science and Engineering, Vol. 2, No. 2, June 2008

Example 2 With reference to example 1, consider the profile:
- FTSens = {ft0, ft1, ft3} where ft0 represents night clubs, ft1 religious buildings and

ft3 clinics.
- ft4 represents public gardens and is not a sensitive feature type
- FTNreach = {ft2} where ft2 represents a military zone
- Score(ft0) = 0.5, Score(ft1) = 0.7, Score(ft2) = 0, Score(ft3) = 0.9, Score(ft4) = 0
- θsens = 0.9

Consider the four regions {c0, c1, c2, c3} and the sensitivity level of each of them
reported in Table II. It can be noticed that such value, in all cases, is less than θsens.
Thus, the set of regions constitutes an obfuscated space.

5. COMPUTATION OF THE OBFUSCATED SPACE

After having presented the privacy model, we discuss how to generate an obfuscated
space. The basic idea is to segment the space in locations starting from an initial fine-
grained discretization of space and repeatedly merging adjacent regions until a
termination condition is met. Specifically, this strategy is articulated in three main
steps.

1. Specification of the initial partition. The space is subdivided in a set of
small cells which constitute the initial partition denoted as Cin ∈ Π(S). The
initial partition can result, for example, from a regular tessellation of space, or
from an application-driven subdivision. The granularity of the initial partition,
that is, how small the cells are, is an application-dependent issue which is not
addressed here.

2. Setting of input parameters. Input parameters are specified in the privacy
profile < FTSens, FTNreac, Score, θsens >.

3. Iterative method. The current partition is checked to assess whether it is an
obfuscated space for the given profile. If this is the case, the process terminates.
Otherwise each cell which has a level of sensitivity higher than θsens is merged
with an adjacent cell. The result is a new current partition. This step is iterated
until the solution is found or the partition degenerates into the whole space.

We now detail the iterative method. Given two adjacent cells c1, c2 ∈ C, the
operation which merges the two cells generates a new partition C′  in which cells c1

and c2 are replaced by cell c = c1∪c2. We say that partition C′  is derived from
partition C, written as C′  C. Consider the set PCin of partitions derived directly or
indirectly from the initial partition Cin through subsequent operations of merge. It
can be easily shown that the poset H = (PCin, ) constitutes a bounded lattice in
which the least element is the initial partition while the greatest element is the
partition consisting of a unique element, that is, the whole space (called maximal
partition).

We claim that an obfuscated space can be generated by progressively aggregating
cells in coarser locations. To prove our claim we show that the level of sensitivity of
a partition remains identical or decreases when cells are aggregated in coarser
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regions. Therefore, starting from the initial partition which has the highest level of
sensitivity, one can proceed by merging adjacent cells until either the obfuscated
space is found or no aggregation is possible. The demonstration is articulated as
follows: a) Lemma 5.1 shows that the SL (i.e. sensitivity level) of the cell resulting
from a merge operation is less or equal than the sensitivity level of the starting cells.
b) Theorem 5.2 shows that the sensitivity level of the partition resulting from
subsequent merge operations is less or equal the sensitivity level of the starting
partition. c) Corollary 5.3 specifies necessary and sufficient condition for at least one
obfuscated space to exist. Proofs are reported in appendix.

Lemma 5.1 Let c1, c2 ∈ C be two cells and c = c1∪c2 the cell resulting from the
merge operation. The following inequality holds:

SLreg(c) ≤ max (SLreg(c1), SLreg(c2)).

In essence, the Lemma states that the region resulting from the merging of two
cells is “equally or less sensitive” than the initial cells. The following theorem extends
this result to a sequence of merge operations.

Theorem 5.2 Consider the two partitions CA and CB. The following implication
holds:

CA  CB  SLpar(CA) ≤ SLpar(CB)

We say that the sensitivity level of a partition is weakly anti-monotonic with respect
to the “be derived” relation.

Theorem 5.2 states that a sequence of merge operations does not increase the
sensitivity level SL of the initial partition. As a consequence, the maximal partition,
consisting of a unique region, has the lowest attainable sensitivity level among the
partitions of the set PCin. Therefore, if such a value is higher than the sensitivity
threshold, the problem has no solution. On the other hand, if such a constraint is
satisfied, the maximal partition results to be one of the possible solutions. Formally:

Corollary 5.3 Consider the maximal partition, that is, the partition consisting of a
unique region, denoted as Max. The following hold:

(1) SLpar(Max) ≤ θsens implies that at least one obfuscated space can be generated.
(2) If C is an obfuscated space, then

SLpar(Max) ≤ SLpar(C) ≤ SLpar(Cin)

(3) SLpar(Max) > θsens implies that no obfuscated space can be generated.

6. THE SensFlow ALGORITHM

Multiple obfuscated spaces can be generated for the same profile. We consider
optimal the obfuscated space with the maximum cardinality, thus possibly consisting
of the finest-grained regions. The problem we address can be formulated as follows:

Given an initial partition Cin and a profile

< FTSens, FTNreach, Score, θsens >
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determine, if it exists, the sequence of merge operations such that the resulting
partition C is an obfuscated space with the maximum number of cells, that is:

(1) SLpar(C) ≤ θsens

(2) C� Cin

(3) |C | ≥ |C′| where C′ is an obfuscated space with the same profile.

Since we are not aware of any efficient algorithm computing the optimal solution, we
present an algorithm which computes an approximated solution for this problem.
The idea is to progressively expand each cell which is over-sensitive (that is, for
which the level of sensitivity exceeds the threshold value) until a terminating
condition is met. This approach raises a number of issues. The first issue is how to
choose the cell to be merged. A reasonable approach is to select the adjacent cell
which most reduces the sensitivity level of partition. A second issue concerns the
criteria for the expansion of cells. To address such issue, we have identified two basic
strategies: the first strategy is to expand one over-sensitive cell at a time, until the
sensitivity level is below the threshold; the second strategy is to expand “in parallel”
all cells which are over-sensitive. The second strategy is the one which has been
adopted because it achieves a better control over the size of each location. In what
follows we outline the algorithm.

6.1 Implementation

We represent a space partition through a Region Adjacency Graph (RAG)
[Molenaar 1998]. In general a RAG is defined from a partition by associating one
vertex to each region and by creating an edge between two vertices if the associated
regions share a common boundary. In addition we label each vertex v of the RAG
with a tuple < a1, a2, ...,an > specifying for each feature type fti ∈ FT, with i ∈ [1, n]

and n = |FT |, the size ai of the area covered by features of type fti in v. Within this
framework, the edge information is interpreted as a possibility to merge the two
regions identified by the vertices incident to the edge. Such a merge operation
collapses the two vertices incident to the edge into one vertex and removes this edge
together with any double edge between the newly created vertex and the remaining
vertices [Brun and Kropatsch 2006].

Starting from the RAG corresponding to the initial partition, the algorithm
shrinks the graph by merging adjacent cells until the sensitivity level of the partition
is less or equal the threshold value or the RAG is degenerated into a unique vertex.
At each step, the iterative algorithm selects the pairs of cells to merge. In case a cell
c can be merged with different cells, the algorithm analyzes each possible merge
operation and selects the one which minimizes the sensitivity level of the resulting
region in case such a value is less than or equal to the SL of c. Note that two cells can
be merged although the resulting region has the same sensitivity to enable the
combination of cells which are separated by unreachable cells (e.g. an island
separated from the mainland).
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The pseudo-code of the algorithm is reported in Algorithm 1. The input
parameters are: 1) the initial RAG built on the initial partition (parameter G); 2) the
sensitivity threshold (parameter θsens). The algorithm returns an obfuscated space if
it exists, otherwise the maximal partition consisting of a unique vertex. The internal
representation of the RAG is based on adjacency lists. The algorithm repeatedly
examines the over-sensitive cells; each over-sensitive cell is then merged with at most
one cell at each iteration following a breadth-first strategy.

Specifically the input graph is processed as follows: Loop 2 repeatedly scans the list
of vertices V(G), to find those which have a level of sensitivity higher than the input
threshold value. Once a vertex is found, say v, the algorithm analyzes the adjacency
list of v to find a vertex to merge with v (Loop 3). If the sensitivity of the vertex
resulting from the merge, e.g. SL(v1, v2) is less than the sensitivity of the current
vertex, the algorithm proceeds with the merge operation. In case more than one
candidate exists, the vertex which determines the minimum level of sensitivity is
selected. Loop 2 then proceeds to scan the remaining vertices. The whole loop is
repeated until no vertex is modified. Termination occurs when either every vertex
has a level of sensitivity less or equal the threshold value or it is not possible to
further improve the sensitivity of vertices. 

We measure the complexity of this algorithm based on the number of two key
operations: (a) the merge of two vertices, (b) the number of edges analyzed. Let n be
the number of vertices, and m the number of edges. We observe that no more than n
merge operations can be performed before a single vertex is found. Thus, loop 1 is
executed at most n times and, since at each iteration we perform at least one merge,
the total number of merge operations (a) is O(n). At each step we consider all the
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edges incident to over-sensitive vertices, each corresponding to a potential merge
(O(m) edges analyzed, in the worst case). Thus, the total number of edges considered
before termination is O(m *n). Since we are considering a planar graph, the number
of edges is proportional to the number of vertices. Therefore the number of edges
analyzed (b) is O(n2).

6.2 Example

The major steps of the algorithm are illustrated in Figure 2. We consider an initial
partition and assume sensitivity threshold to be set to θsens = 0.75. Each sub-figure in
Figure 2 represents the current partition at each step of the algorithm; the tables
report the area per cell and feature type. The rightmost column reports the score of
feature types and the last row the SL of cells.

We observe that in Figure 2.A the sensitivity level of cell c1 and c3 is higher than
the threshold θsens = 0.75. The algorithm thus evaluates which merge operation
would be the most convenient; merging cells c1 and c0 would result in a new cell with
sensitivity level 0.583, whereas merging cells c1 and c2 would yield sensitivity level

Figure 2. Evolution of partitions (θ
sens

 = 0.75).
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0.800. Thus, the algorithm replaces cells c1 and c0 with a new cell labeled as c0 + c1.
Figure 2.B shows the result of the merge operation. It can be noticed that the

sensitivity level of cell c3 is still higher than the threshold. Since c3 is adjacent to c0 +
c1, and c2, the levels of sensitivity associated with the resulting regions are,
respectively, 0.677 and 0.764. The algorithm thus collapses c0 + c1 and c3 into a new
cell denoted as c0 + c1 + c3. At this point the algorithm stops, because the sensitivity
level of every cell in the resulting partition (Figure 2.C) has a sensitivity level which
is below the threshold 0.75. The obfuscated space is thus found.

7. EXPERIMENTAL EVALUATION

We have carried out both a qualitative and a quantitative analysis of the approach.
The qualitative analysis is to analyze the shape and the extent of obfuscated regions
for different values of the sensitivity threshold θsens. The quantitative analysis
reports statistics about the size of the generalized regions and the computational cost
of the proposed algorithm for different values of θsens.

We have run the experiments over a space populated by sensitive areas generated
on a random basis. The experimental setting and the results of the analysis are
described in the following.

7.1 Experimental Setting

We assume an initial partition consisting of a regular grid of 100 squared cells. The
neighbors of cells that we consider are exclusively the four cells on the north, south,
east and west side; therefore each vertex of the RAG has degree four. Each cells may
include sensitive features. If so the cell is termed sensitive. We consider a unique
sensitive feature type with score 1. The extent of the sensitive area in a cell has a
value between 1 and 10 randomly assigned. Similarly, each cell is assigned a value in
the same range for the area which is relevant but non sensitive. The density of
sensitive cells in a grid is a parameter of the experiment denoted as p; p=0.8 means
that 80% of cells contains sensitive features and those cells are uniformly distributed.
For each value of p, ranging from 0.9 to 0.01 (the figures report only 4 values), we
have generated 100 grids, each with a different spatial distribution of sensitive
features.

7.2 Qualitative Evaluation

Figure 3 shows the obfuscated spaces generated for different values of the sensitivity
threshold. The result is visualized as follows. Cells are assigned a color and a number.

Figure 3. Visual representation of the obfuscated regions for different values of θ
sens

.
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The adjacent cells which are aggregated in an obfuscated region have the same color
and the same number. Numbering is used just to better highlight the cells composing
the same obfuscated region. We can observe that the granularity of obfuscated
locations (i.e. a set of cells with identical label) is coarser for lower values of θsens.

7.3 Quantitative Evaluation

The plot in (Figure 4.a) shows the average number of cells of the initial partition
exceeding the varying sensitivity threshold θsens. For example, it can be noticed that
for p = 0.8 (i.e. high density of sensitive cells), there are, on average, about 65% of
cells which have a sensitivity level greater than θsens = 0.3.

The additional plots in Figure 4 report the results of three experiments that we
now describe in some detail. Note that the results are not defined for the values of
θsens for which no meaningful obfuscated space is found, that is, the solution either
does not exist or degenerates into the whole space. Notice that, if a meaningful
solution does not exist for a value of the sensitivity threshold, then such a solution
does not exist for all values that are smaller than this value. The first two tests

Figure 4. (a) Average number of cells having a sensitive value above the threshold in the original
partition. (b-c) Cost of the algorithm: average number of merge operations and analyzed edges.
(d) Average maximal size of obfuscated regions.
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(Figure 4.b, Figure 4.c) evaluate the computational cost of the algorithm. Such cost
depends on two factors: the number of merge operations which are performed before
a termination condition is met; the number of edges which are analyzed. For
example, if p = 0.8 and θsens = 0.6, an obfuscated space is found, on average, after 25
merge operations and the analysis of 100 edges; instead if θsens = 0.3 the algorithm
cannot generate a meaningful solution. We observe that both measures respect the
worst case complexity analysis for n = 100. 

The third test (Figure 4.d) computes the average size of the largest obfuscated
location in resulting spaces. Such a value is determined by the number of original
cells in the region. Such a measure gives an idea of the quality, i.e. the precision, of
the obfuscated space: the higher is its value and the more imprecise are the
obfuscated locations. For example, if p = 0.8 and θsens = 0.6, then the largest
obfuscated location consists on average of 5 cells. It can be observed that the value of
the variable increases rapidly as θsens gets closer to the sensitivity level of the
maximal partition (i.e. the whole space).

8. OPEN ISSUES AND CONCLUDING REMARKS

We have presented a location privacy-preserving infrastructure for the protection of
privacy against inferences over sensitive locations. Such an infrastructure can be
improved in several ways. In this conclusive section, we discuss the major issues we
plan to address in our future research and report some conclusive remarks.

8.1 Open Issues

Open issues can be grouped in three main classes depending on whether they pertain
to the privacy model, the computation of the obfuscated space or the architectural
framework.

1. Issues related to the privacy model. A first issue concerns the extension of
the privacy model towards a probabilistic model. In this work we have assumed
that positions inside a relevant area are equally likely and that the likelihood is
expressed by the probability density function (pdf) 1/Area where Area is the
size of the area. This assumption seems too restrictive. For example actual
positions of individuals do not necessarily correspond to geometric points, as we
have assumed in this model. For instance, in a football stadium the probability
for a spectator to be inside the stadium likely depends on the maximum number
of seats. To generalize the approach and thus account for arbitrary pdfs, the
idea is to revise the model and then redefine the algorithm SensFlow to merge
cells whose sensitivity values depend on arbitrary distributions of probabilities.
Note that in such new model, the unreachable cells would be those for which the
probability function has value 0. Another important problem concerns the
specification of the threshold value (i.e. the value of θsens) in the privacy profile.
Although ideally the threshold value ranges between 0 and 1, in practice the
actual range depends on several factors including the nature and extent of the
territory under consideration. Therefore it may be difficult for the user to define
which value to assign to such variable in order to express his/her privacy
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requirements. To deal with such an issue, the idea is to adopt the following
heuristics: consider the two partitions, representing respectively the initial and
the top partition and compute the corresponding sensitivity values G and L.
Based on the shown properties, G is the greatest and L the least value of
sensitivity of space partitions. Then we sample the interval [L,G] to obtain a set
V of candidate values for θsens, with V = v1 . . . vn. For each value vi ∈V, an
obfuscated space, if it exists, is generated, along with statistics pertaining also to
the average size of obfuscated locations. The idea is that a user selects the value
in V, based on the statistical properties of obfuscated spaces and the desired
trade off between privacy and quality of service.

2. Scalability A major issue that will be addressed concerns the scalability of the
obfuscation system. Such a concern is motivated by the fact that the proposed
graph-based algorithm has complexity O(n2) where n is the number of cells.
Therefore for large reference spaces or for fine-grained grids containing a
significant number of sensitive places, obfuscation can result into a very
expensive process. A promising direction of research that we are currently
investigating is towards the development of algorithms which employ more
efficient data structures for space representation such as space filling curves.

3. Deployment onto a distributed architecture. The obfuscation system
consists of a number of building blocks that in the present work are only
described from a functional point of view. The issue is how to distribute those
functionalities over an LBS client-server architecture. Critical questions are:
where to keep the repository of obfuscation space/s; and where to generate the
obfuscation upon an LBS request.

A straightforward approach is to use a trusted obfuscation server (TOS). The TOS
stores obfuscation spaces and their associated and univocally identified privacy
profiles. Obfuscated spaces can be generated as follow. Users specify a privacy
profile, for example by filling in a form. Then based on such input the TOS creates
the obfuscated space and stores it in the local repository. Users might even be
allowed to browse and select privacy profiles from the TOS repository. The client
locally maintains a copy of the privacy profiles of interest. At run time, when the
user issues a request, the client forwards the identifier of the privacy profile to the
TOS along with the query and the client identity. The TOS gets the actual position
p of the client and through the obfuscation enforcement module determines the cell
of the obfuscated space containing p. The TOS finally forwards that cell to the LBS
provider which answers the query based on the imprecise position being sent. The
drawback of this scheme is the need of a dedicated and trusted server.

To overcome this limitation, an alternative approach is to distribute
functionalities between the client and the server. Assume clients to be location-aware
and have enough intelligence and resources. The idea is to let the client store locally
the obfuscated spaces of interest. Obfuscated spaces can be generated directly by the
LBS server or by a third party and then returned to the client in the form of maps.
The user must trust the provider of obfuscated spaces; for example maps can be
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accompanied by a digital certificate. The run-time operations are implemented at
the client. Therefore upon a service request, the client determines the obfuscated
location and then can directly forward the cell to the LBS provider without the need
of intermediaries.

8.2 Concluding Remarks

Personal location information has peculiar characteristics with respect to privacy
because representing both a quasi-identifier and a sensitive information. So far,
research on location privacy has mostly focused on the former aspect, that is how to
protect the users  identity. In this paper we have presented a different perspective. In
particular the focus is on how to prevent inferences on sensitive locations. Thus our
research has been directed towards the specification of an architectural framework
comprehensive of a privacy model and an obfuscation algorithm for the generation of
obfuscated spaces. It is important to emphasize that the aforementioned viewpoints
are complementary. On the one hand, k-anonymity techniques do not protect
against sensitive location inferences, because the resulting generalized location can
be sensitive; on the other hand, our obfuscation technique does not protect against
data linkage and thus cannot be used to hide user’s identity. A challenge for the
future is the integration of those viewpoints.
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A Proofs

Lemma 5.1 proof: The thesis can be restated as

SLreg(c) ≤ SLreg(c1) ∨ SLreg(c) ≤ SL(c2)

We define

W(c) = 

The first inequality can be rewritten, using the sensitivity definition, as

Since W(c) = W(c1) + W(c2), and Arearel(c) = Arearel(c1) + Arearel(c2), the inequality
is equivalent to

and, with some simple algebraic operation, to

W(c2) · Arearel(c1) − W(c1) · Arearel(c2) ≤ 0

The same expansion, applied to the second inequality of the thesis, gives

W(c2) · Arearel(c1) − W(c1) · Arearel(c2) ≥ 0

Since one of the two inequalities must be necessarily true, the thesis is true.

Theorem 5.2 proof: Assume CA ≠ CB otherwise the demonstration is trivial. Now,
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suppose that CA is directly derived from CB, using a single merge operation. Lemma
5.1 states that the resulting cell c has an equal or a smaller sensitiveness level than
the replaced cells. Based on definition 4.2, the level of sensitiveness of a partition is
determined by the higher level of sensitiveness of its cell. It follows that SL(CA) ≤
SL(CB). Consider now a sequence of merging operations each generating an intermediate
partition I0, I1..., Ik such that CA:

CA I1 . . . Ik CB

Based on the previous lemma it follows that:

SL(CA) ≤ SL(I1) ≤ . . . ≤ SL(Ik) ≤ SL(CB)

therefore SL(CA) ≤ SL(CB) that is what we wanted to demonstrate. 

Corollary 5.3 proof: In case SLpar(Max) ≤ θsens, then Max is an obfuscated space,
hence the proposition (1) is true. The assertion (2) follows from the anti-monotonicity
of SL(C) and the ordering of the three partitions involved: Max C Cin. Finally, (3)
is a direct consequence of (2): for every partition C, SLpar(C) ≥ SLpar(Max) > θsens
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