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We have developed a tool for annotation of electronic health record (EHR) data. Currently we
are in the process of manually annotating a corpus of Norwegian general practitioners' EHRs
with mainly linguistic information. The purpose of this project is to attain a linguistically
annotated corpus of patient histories from general practice. This corpus will be put to future
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use in medical language processing and information extraction applications. The paper outlines
some of our practical experiences from developing such a corpus and, in particular, the effects of
semi-automated annotation. We have also done some preliminary experiments with part-of-
speech tagging based on our corpus. The results indicate that relevant training data from the
clinical domain gives better results for the tagging task in this domain than training the tagger
on a corpus from a more general domain. We are planning to expand the corpus annotations
with medical information at a later stage.

1. INTRODUCTION

Medical treatment and other contacts with a patient are always documented with a
narrative text in the health record describing the encounter. Over time, the amount
of information grows, making it difficult to make sense of the patient’s treatment
history. A lot of effort has been put into the application of natural language processing
(NLP) methods as a way of extracting relevant information−be it clinical findings,
adverse drug events, or sensitive information− from the health record. 

For our research, we take a particular interest in the domain of primary care. NLP
applied on primary care patient records is to a large extent uncharted territory,
possibly for practical reasons: Data from hospital patient records are easier to gain
access to for researchers within e.g. university clinics. In many cases, this is not a
problem. For research where NLP is used as a means toward improving treatment of
particular medical conditions−such as tuberculosis and breast cancer−the use of
specialized patient records is a necessity. From such sources we may learn a lot about
the application of health care in particular−but not in general. For most people their
primary point of contact with health services is their primary physician, whose job is
not only to manage the health of the patient but also to manage interactions with
other health care actors. In sum, the information recorded by the primary physician
gives the most complete picture of the lifecycle of a patient. This longitudinal
information is, from our point of view, a necessary prerequisite for learning how
illness is documented; knowledge that, in turn, may help us create patient record
systems that are better adapted towards managing patient treatment.

Through our collaboration with the Norwegian EHR Research Centre1 (NSEP) we
have access to a large data set from a Norwegian primary care practice. NSEP is a
multidisciplinary research community at the Norwegian University of Science and
Technology. The centre is involved in different research projects regarding development,
use and usefulness of electronic patient records. Our long-term goal is to use the data
set as a basis for developing tools and techniques that enable easier access to data
hidden within the patient record−in particular through automated structuring of
patient record narrative. NLP applied on narrative in the patient record can be
supported by an annotated corpus that is representative for the given domain. Such
a corpus will give us training and evaluation data for construction of automated
tools. A primary research area is to uncover the intentionalities behind different
parts of the consultation note. Through analysis of the syntactic and grammatical
characteristics of the narrative we seek to find function and structure in texts where
the structure is not explicitly stated.

1http://www.nsep.no
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This paper describes our efforts in the development of a linguistically annotated
corpus that will form a basis for future research efforts. The intended outcome differs
from development of other medical corpora in three ways. First, our focus is on data
from primary care. Second, we are interested in complete patient histories that may
span several years of treatment, as compared to isolated incidents. Third, our approach
towards making sense of such patient histories will be primarily shallow and data
driven; that is, in the spirit of keeping things simple and at the same time realizing
robust applications that can handle the kind of noisy, ungrammatical narrative typically
found in primary care health records, we forgo the use of traditional rule-based NLP
methods.

We give particular emphasis to our experiences from developing such a corpus and
some preliminary results indicating how a domain-specific corpus fares against a
more general corpus depending on corpus size. Developing corpora of this size can be
time consuming. One of our goals has therefore been to automate parts of the
annotation process without sacrificing annotation quality.

2. BACKGROUND AND MOTIVATION

The electronic health record is the main tool for recording and communicating
information about the medical care process. It is, however, a tool that in many
instances fails to deliver to its full potential:

• Navigating the health record and retrieving relevant information gets increasingly
difficult as the amount of information grows, almost to the point of being
inaccessible through simple browsing and searching.

• Electronic health record systems in use today are only semi-structured. Physicians
still document clinical encounters in the traditional written narrative. There are
perfectly valid reasons for doing so, such as the semantic richness of narratives
and the problems associated with structured data entry [Walsh 2004]. As noted by
Powsner [Powsner et al. 1998], clinicians “value the ability of flowing prose to
paint an evocative clinical picture.” Well-structured and rich representations of
health record narrative are often lacking, thus reducing the health record’s utility
for clinical, administrative and research purposes. Nonetheless, a lot of the
information surrounding the encounter note is available in a structured, easily
accessible and sometimes standardized format. This information is, however,
insufficient for providing a complete view of the patient’s state and history. Thus,
finding ways of extracting relevant information from encounter notes is a useful
research goal. 

• The lack of structure in health record narrative makes it difficult to do research
on their use and content. In order to develop electronic health records better suited
for both clinical practice and research purposes, one needs a clearer picture of
actual usage and documentation patterns. Knowing the hows and whys of clinical
documentation might be essential for providing improved ways of documenting
clinical practice. 
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The shortcomings of electronic health records and the intractability of clinical
narrative have triggered substantial research efforts into providing structure and
accessibility where there is none. Specifically, steps have been taken in the application
of natural language processing and data mining methodologies to clinical documentation.
The purpose is to automate querying and information extraction from clinical narrative.
Finding ways of unlocking the information within clinical documentation would
benefit both clinical practice and health record research. 

2.1 Medical Language Processing

The clinical data available in coded format is not sufficient to fully communicate the
patient’s true state and progress [Iezzoni 1997; Spyns 1996]. While health care
institutions increasingly store medical information in an electronic format the
frequent use of narrative makes them inaccessible to large scale or automated
analysis [Hripcsak et al. 2003].

Simple text searches in the electronic health record can prove effective in detecting
concepts of interest [Giuse and Mickish 1996; Goldman et al. 1999; Honigman et al.
2001] but suffer from serious shortcomings. Some of the problems with keyword
detection are negated words, different ways of expressing the same concept,
ambiguity resolving, and interpreting the context in which concepts occur. Thus,
this simple approach will often lead to many false positives and poor specificity
[Murffu et al. 2003].

Several studies have shown that medical language processing (MLP)−natural
language processing (NLP) applied in the medical domain−can achieve much higher
accuracy than simple concept detection techniques [Hripcsak et al. 1995; Hripcsak et
al. 1998]. Notably, with respect to sensitivity (recall), specificity and positive predictive
value (precision), the performance of some systems is shown to be indistinguishable
from physician performance [Hripcsak et al. 1995] and superior to other methods
[Fiszman et al. 1999].

The text in EHRs is often fragmented and quite often plainly ungrammatical. This
state of affairs requires robust NLP analyzing methodology. Traditional deep linguistic
grammars often have a problem with getting broad enough coverage and thus lack
robustness. Parsing with such grammars also tends to be time-consuming and inefficient,
and the output is often highly ambiguous. Shallow NLP processing can to some
extent solve these issues, but the pay-off is less informative output. Shallow
techniques can also be used as preprocessing modules in deep grammars, to help
resolve some ambiguities early. Machine learning techniques can be applied to
shallow processing, but requires training data. Both data-driven and rule-based
methods require at least some annotated data for evaluation purposes. Examples of
shallow NLP techniques include:

• Part-of-speech (POS) tagging: POS tagging is the process of assigning each
word in a text with its correct part-of-speech tag in the relevant context. There
are two basic tasks: choosing the correct tag for ambiguous known words, and
assigning tags to unknown words. Part-of-speech tagging is widely used in other
disambiguation tasks (e.g. speech recognition) and as a first step towards richer
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syntactic structures.

• Noun phrase chunking: Noun phrases (NPs) often carry the most interesting
pieces of information in running texts. The set of NPs comprises subsets like
proper names (John, Jane), location names (London, Europe), other proper nouns
(Viagra, Losec), common nouns (medicine, pain), phrases (no pain, improved
general condition), and so on. NPs are often the target items for search in texts,
and NP chunkers are thus useful tools in information retrieval. 

• Shallow parsing: Shallow parsing (often called partial parsing or chunking)
assigns some syntactic structure to sentences. Instead of hierarchical, nested
structures, a shallow parser identifies chunks or phrases that are contiguous and
non-overlapping. Shallow parsers can be used for preprocessing in deep grammars,
or as basis for robust semantic analysis.

2.2 The Health Record in Primary Care

Most MLP research on health records concerns itself with specialist documentation
that originates from within hospitals, while the domain of primary care has been
largely overlooked. We believe there are particular traits of the Norwegian health
care system that makes research on primary care health records attractive. Our data
originates from areas with a low rate of migration, ensuring the availability of
comprehensive and long-term patient histories. Also, the list patient system reform
of 2001 established that each patient should have a single responsible primary care
physician. Some of the goals were to ensure continuity, reduce patients’ switching
between different physicians, and to strengthen the gatekeeper role of the primary
care physician. While the reform inflicted some short-term loss of continuity, it is
still regarded to have been a success [Bakken 2006]. The most recent evaluation
stresses the need for research on primary care practice: Research from specialist care is
not immediately transferable to primary care and there is thus a need to initiate more
research on clinical practice in primary care.

Moreover, Norway’s early adoption of electronic communications between primary
and specialist care implies that the patient histories are supplemented with additional
data, such as hospital discharge notes and communications with social services. This
further enhances the uniqueness and completeness of available data. Finally, electronic
health records have been in common use in Norwegian primary care since the early
1990s. Accordingly, the opportunity exists to follow patient histories across a
considerable time span. These characteristics, combined with the lack of previous
research, make a strong case for focusing on primary care health records. 

2.3 Patient Histories

A lot of research on the application of NLP on patient documentation focuses on
single notes and narratives. Given that disease and its treatment can be complex and
long-term, these are just brief glimpses that might say little or nothing about the
bigger picture. There is a distinct lack of research that considers how a health record
note exists within a context and that it has a past and a future: The observations,
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interventions and outcomes of previous treatment and the (often implicit) purposes
and expectations of upcoming care, both in the short and long term. 

For these reasons we have ensured that the corpus consists of full patient histories
where the included patients can be followed over time. Moreover, links to the data
structure in the originating EPR have been preserved. This makes it possible to trace
the additional information associated with each consultation note, such as classification
codes, prescriptions and lab results. Previous research has indicated that consultation
notes in the primary care patient record can not always be interpreted through the
narrative alone; the accompanying information fills in details that can not be
inferred from the text on its own [Røst et al. 2007]. Intuitively, this makes sense:
The text should not repeat what has already been stated through structured data entry
but, if necessary, rather supply a story that motivates for e.g. cessations, ordering of
lab tests, or the issuing of medical certificates. It can thus be argued that automated
processing of patient record narrative should also take the additional structured
information into account in order to increase the probability of making the correct
inferences from the text. 

For the research described in this paper, the additional structured information will
not be put to use or described further−though we expect to base future research on a
combination of language processing applied on the narrative and traditional data
mining applied on structured data in the corpus.

2.4 Structuring Health Record Narrative

A primary motivation for building this corpus was to use it as a basis for long-term
research on techniques that make information in the EHR more readily accessible to
its users. In practice, this implies finding structure in the free-text narrative which
constitutes a major part of the information content in the EHR. The availability of
linguistically annotated texts is necessary when progressing from simple, lexical
approaches to parsers that can infer the grammatical structure of health record
narrative. In comparable medical language processing research, this kind of information
can e.g. help finding qualifiers and modifiers such as negation and adjectives for
clinical findings [Hripcsak et al. 1995].

A second approach is to use the availability of linguistic information to build richer
representations of health record narrative for data mining and classification purposes.
We have previously attempted to classify consultation notes into their corresponding
ICPC classification code [Røst et al. 2006]. This is, from a practical point of view, a
feasible task: We are training classifiers to classify text based on a gold standard that
is already present in the health record. However, this does not tell us anything new
about the content. A far more interesting challenge is to use classification to help
reveal any hidden structures that are not readily available to us. 

Sharda et al. did a study where it was shown that restructuring narrative in
clinical discharge summaries lead to an improved recall rate when test subjects
where tasked with verbalizing their assessment of each summary [2006]. This
indicates that the application of structure can be useful on an intra-document level.
We believe that restructurings can also prove useful on inter-document levels; that
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is, on full patient histories. Prior to creating this corpus we tried using text
compression algorithms on patient history consultation notes in order to detect
novelties or anomalies−novelties here being text fragments that stands out from a
lexical point of view [Edsberg 2007]. The motivation for this research was to
highlight consultations in the patient history that may be more noteworthy than the
rest; this from the observation that a considerable part of disease treatment in
primary care is documented in a very homogenous manner [Røst et al. 2007].

We intend to continue this line of research with the annotated corpus. A first
application area will be an attempt to classify sentences within the consultation note
according to their function and intentionality. The initial classification task will be
to classify sentences according to the SOAP format, as proposed by Lawrence Weed
in 1969 [Weed 1969]. SOAP is closely related to the advent and rise of the problem
oriented medical record and suggests that a consultation note should be structured
according to four categories: Subjective observations, Objective observations, Assessment
and Plan. Through enhancing the corpus with SOAP annotations, the intended
outcome is to learn if there are patterns in the way these categories are used
throughout the treatment of a disease. The linguistic annotations of the corpus will
help establish if there are lexical, syntactic and grammatical features that enable
classifiers to differentiate between these categories.

In general, methods of automating the application of structure to unstructured
health record narrative should be a benefit. Not only do physicians prefer reading
standardized documents [Walraven et al. 1999], but structuring also improves the
completeness and accuracy of clinical narrative [Johnson et al. 2008]. Structured
data entry will typically prove more time-consuming than free text information
entry [MacDonald 1997] while at the same time losing out on the innate ability of
text to evoke a more complete picture of the patient’s situation. Johnson et al. [2008]
describes how “structured data entry can be quite slow when events are broad in
scope and exhibit high variation.” This is exactly the kind of situation one finds in
primary care, motivating for finding ways of applying structure to primary care
health records without sacrificing the convenience of free-text narrative.

3. RELATED WORK

A growing interest in data-driven natural language processing research has lead to
the development of annotated corpora for testing and training of computational models
for language applications. Common annotation categories are part-of-speech tags,
base forms, phrasal categories and syntactic tree structures. The Penn Treebank
[Marcus et al. 1994] has become the de facto standard corpus for evaluation of part-
of-speech tagging for English, and, as the name implies, also contains syntactic tree
structures. For German, the Negra corpus [Skut et al. 1993] and the TIGER Treebank
[Brants et al. 2002] are similar resources, though smaller in size. Large scale annotated
corpora are more common for well-used languages, but these kinds of resources also
exist for some smaller languages, like the Stockholm-Umeå corpus of Swedish
[Ejerhed et al. 1992]. Most of the corpora are built from newspaper texts, which are
widely available in large quantities.
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In later years, some effort has been put into research on domain adaptation of
general language models into the medical domain. Much of the focus has been on
part-of-speech tagging. Campbell and Johnson [2001] concluded that there is a
syntactic difference between the medical domain and the more general newspaper
domain, and that the availability of relevant medical training data gives significantly
better results than just adopting a general language model for classification.
However, Hahn and Wermter [2004] concluded that “off-the-shelf NLP-tools can be
applied to MLP in a straightforward way”. The two experiments were performed on
different languages (English and German), different tag sets, different part-of-speech
taggers and different training and test data from different medical sub-domains, and
as such might not be directly comparable. 

Pakhomov et al. [2006] discuss the discrepancies between these two studies, and
suggest that the richer inflectional morphology of German is one reason for the
divergence. The TnT tagger [Brants 2000] used by Hahn and Wermter [Hahn and
Wermter 2004] has been shown to do better for German than English when it comes
to unknown words, due to its reliance on suffix analysis for classification of unknown
words. This strategy is particularly suitable for inflectional rich languages like
German. Pakhomov et al. show similar results as Campbell and Johnson [Campbell
and Johnson 2001], even though the tagger, the medical sub-domain and the
evaluation methodology differ. While the two other reports focus on the impact of
syntactic similarities or differences between the training domain and the target
domain, Pakhomov et al. note that the amount and types of unknown words in the
test corpus also contribute to a substantial degree.

4. DATA

Our data set has been collected from a rural Norwegian general practice center and
encompasses all recorded activities in their electronic health record system from
November 1991 until October 2006. In total, there are more than 616,000 consultations
and 12,000 patients. The population in proximity to the medical center has remained
reasonably stable over the years, giving a mix of both longer and shorter patient
histories. In addition, the Norwegian list patient system ensures that patient histories
are fairly complete for interventions involving general practice.

When selecting patient histories for annotation we did not use e.g. history length,
disease type or consultation note size as a selection criterion but rather chose random
histories. Over time, this should give us a corpus that is fairly representative for the
different types of diseases found in the general population. Note that a patient
history is defined as all available encounters for a given individual.

5. ANNOTATION PROCESS

Manual annotation of large corpora requires considerable effort. Streamlining the
tools and techniques used in the annotation process may help towards reducing the
overall workload. For our project, this involved making sure that the annotation tool
had the best trade-off between automation and manual labor in terms of minimizing
annotation errors. In addition, we needed to make sure that our initial linguistic
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annotation would be suitable for and compatible with future annotation efforts in
which the same corpus is annotated from a medical point of view.

5.1 Categories and Tag Sets

So far, our efforts have been directed towards annotation of linguistic information,
but we are planning to enrich the corpus with medical annotations at a later stage.
For the linguistic annotations, the main motivation is to create relevant training and
test data for data-driven natural language processing. For that purpose we have
annotated the data with base forms, part-of-speech tags and simple phrasal tags.
The set of POS tags (Table I) is about half the size of tag sets used for other
languages, e.g. the Penn Treebank tag set. This is partly because we have access to a
POS tagged corpus of Norwegian newspaper text that uses this set. Having the same
tag set on our data gives opportunities for comparative studies and other evaluations.
Having a smaller tag set also simplifies the job of the human annotator. The phrasal
tag set follows the IOB format of Ramshaw and Marcus [1995], where I is used for
words inside a chunk and O is used for words outside. A word is tagged as being the
first word of a phrase by adding the suffix -B to the phrase name, e.g. NP-B for the
first word of a noun phrase. Words other than the first one in a phrase get the suffix
-I. Words that are outside of any phrase we are interested in is given the tag O. We
assume 5 phrasal categories: NP, VP, PP, AP and AdvP, which gives a tag set of 10
phrasal tags (Table I), since we do not use the tag PP-I (every preposition is
annotated as PP-B, and any other words in the prepositional phrase are members of
some other phrase, e.g. an NP).

In addition to the linguistically motivated annotation categories, the human annotator
has the possibility of marking a word as sensitive. This information may be used to

Table I. Tag sets.

Phrase Tags POS Tags POS tag explanation

AdvP-B adj adjective

AdvP-I adv adverb

AP-B det determiner

AP-I infm infinitive marker

NP-B interj interjection

NP-I konj conjunction

O noun noun

PP-B noun_prop proper noun

VP-B PAR parenthesis etc.

VP-I prep preposition

pron pronoun

subj subjunction

tall number

verb verb

. sentence-final punctuation

, mid-sentence punctuation
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help develop automated de-identification tools. She also has the option of marking a
word as unsure, which means it will be controlled later by either a medical expert or
a linguist. In practice, medical terms and abbreviations were the most common
sources of uncertainty for our human annotator, but some syntactic constructions
were problematic as well.

5.2 Part-of-Speech Tagger

Studies [Marcus et al. 1994] have shown that manually editing the output from an
automatic part-of-speech tagging process, rather than annotating from scratch, can be
approximately twice as fast, as well as reducing error rates. This motivated us to
make a part-of-speech tagger an integrated part of the annotation tool.

We have previously developed a part-of-speech tagger [Huseth 2005], and this has
been integrated with the annotation tool. It suggests POS tags for every word to be
annotated. The human annotator then only has to correct the errors. The POS tagger
is based on the theory of Hidden Markov Models (HMM) [Rabiner 1989], a
probabilistic machine learning technique. In lack of more appropriate corpora, the
tagger was originally trained on a corpus of Norwegian newspaper texts with
approximately 100,000 words.

The problem of probabilistic part-of-speech tagging can be formulated as finding
the most probable tag sequence T given a word sequence W: argmaxT P(T |W). By
Bayes’ theorem, the sequence P(T |W) is equivalent to P(T)P(W |T). Our tagger
uses supervised training to train a trigram tag model. The trigrams are used to
estimate the prior probability P(T), such that P(T) = P(ti |ti-2, ti-1). The
trigram model is smoothed with linear interpolation. The likelihood P(W |T) is
estimated directly, without smoothing. This means we are assuming that trigrams
not seen in the training data cannot exist. This is a rather strong assumption, but
empirically gives better results than any of the smoothing techniques we have tested.
For unknown words, the likelihood is estimated from a weighted model of suffixes
from the training data. In addition, capitalization and numbers are used to adjust
the probabilities for an unknown word having proper noun or number as its tag. As
noted by Johannesen and Hauglin [Johannessen and Hauglin 1998], compounding
“is extremely productive in Norwegian, and it is futile to ever hope for a lexicon
(dictionary) that will contain all or even most of the compounds that occur in actual
texts”. Unlike many compounds in e.g. English, Norwegian compounds are
orthographically realized as single words. The POS tag for a compound is
determined by its final part, so we have included a module for the identification of
compounds. If the last basic word of a compound is in our training data, the
observation probability distribution of that word is used.

5.3 Automation and Incremental Training

As the quality of the automatic annotation improves, the speed of manual annotation
can be expected to increase. We thus wanted to benefit from already annotated data
from the relevant domain. We do so by making sure the tagger is incrementally
trained. This means that each manually tagged sentence is added to the training

 
i 1=
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data of the POS tagger as it becomes available. The tagger’s output is thus expected
to improve as the amount of annotated data increases. This way of training the
tagger means that probabilities have to be computed for every sentence to be tagged,
instead of doing all probability calculations in advance. This makes the tagger
slightly slower, but the decrease in speed is barely noticeable when tagging single
sentences. On a side note, the annotator working on our data mentioned that as the
quality of the automatic annotation improved, she was more inclined to trust the
suggestions, which could lead to her becoming less critical and alert when annotating.

Some automatization was involved for base form and phrase tag selection,
tokenization and sentence splitting as well:

• Base forms: For each word, a set of possible base forms were inferred from the
NorKompLeks computational lexicon [Nordgård 2000]. As the amount of annotated
data grew, the suggested base forms were sorted according to their overall frequency
in the annotated corpus with the most probable base form as the primary suggestion.
If no possible base forms were found, either from NorKompLeks or the corpus,
the word itself was suggested. Accordingly, the amount of effort needed for base
form modifications decreased over time.

• Phrase tags: A set of static rules was used to suggest phrase tags based on the
POS tags suggested by the tagger. For instance, words with the prep tag were
automatically assigned the PP-B phrase tag, words with the noun_prop tag were
given the NP-B phrase tag, and so on. As the tagger accuracy increased, so did
the phrase tag suggestion.

• Tokenization and sentence splitting: Our data included a lot of domain-
specific constructs−e.g. blood pressure measurements, lab results and diagnosis
codes−that were not properly handled by standard whitespace tokenization
algorithms. Special rules to handle these exceptions were applied. Also, the use of
abbreviations was very common; more so than in typical corpora. These would
cause a lot of unwanted sentence splitting and would have to be dealt with. Our
approach was to allow the human annotator to designate abbreviations as she
went along and then allow the tokenizer and sentence splitter to make use of this
knowledge.

5.4 Annotation Tool

A number of existing annotation and markup tools were evaluated and found
insufficient for a number of reasons: The tight coupling between the part-of-speech
tagger and the annotation tool; the dual purpose of the annotation process; the need
for manual preprocessing of texts in order to ensure correct tokenization and sentence
splitting; the need to preserve and take advantage of the original database structure;
the focus on patient histories rather than individual notes; the need to integrate data
from disparate sources; the need to search annotated texts based on a number of
different criteria. Ultimately, we ended up developing our own annotation tool that
would satisfy these requirements. The tool was developed using the Python
programming language and the Django web framework, since the characteristics of
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the tool closely resembles those of a typical database-backed application.
There are three main components to the annotation tool:

• Sentence and tokenization review: We quickly found that the encounter
notes would have to undergo some manual preprocessing before the annotation.
E.g., for ease of annotation it is useful to have the note split into proper sentences.
However, the common use of abbreviations and sometimes haphazard use of
punctuation often required us to make slight modifications to the original texts,
such as adding missing punctuation. A general principle was to modify only when
absolutely necessary so as to not deviate too far from the original text.

• Annotation: The encounter note is presented to the annotator as separate
sentences (Figure 1). The full text of both the original and the edited note is
available for reference. Each sentence is shown vertically, with columns containing
respectively the word, base form, POS tag, phrase tag, sensitivity and whether or
not the annotator is unsure of how to annotate a word. Annotation categories can
be navigated using either the keyboard or the mouse. In practice, keyboard
navigation turned out to be the most convenient and efficient option. It is worth
noting that our annotator preferred annotating a sentence per annotation category−
that is, to first annotate all base forms, then all POS tags, and so on−rather than
annotating all categories for one word at a time.

• Search and batch modification: In order to ensure consistency we occasionally
need to review and modify previous annotations. To do so we implemented a
custom search interface (Figure 2) that would allow us to perform complex queries
across multiple annotation categories and to make batch modifications to the
results.

Figure 1. Annotation view.
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6. PRELIMINARY RESULTS

We have done an initial evaluation of the impact of relevant training data on the
accuracy of part-of-speech tagging in the medical domain, experimenting with our
newly annotated corpus of Norwegian primary care health records as training and
test data. Similar experiments have been done before, but then for other languages
and other medical subdomains. 

We have previously evaluated our part-of-speech tagger on two corpora, The English
Penn Treebank corpus [Marcus et al. 1994], and a Norwegian corpus of newspaper
text. The Penn Treebank corpus consists of approximately 1,200,000 words of
newspaper text. The Norwegian corpus has approximately 100,000 words. The tag
set for the Penn treebank corpus has 43 tags, while the Norwegian tag set has 20
tags.

We evaluated the tagger on both corpora by 10-fold cross validation. This means
dividing the data into 10 parts, doing 10 iterations where 9/10 of the data is used for
training and 1/10 for testing at each iteration. This ensures that test data is unseen
by the tagger at every turn, but gives a sufficient amount of test data. The average
accuracy of the 10 iterations for the Penn treebank test was 96.10 %. In comparison,
Brants [2000] reports an accuracy of 96.70 % for his TnT tagger in a similar study,
using the same data and the same test method. For the 10-fold cross validation of the
Norwegian corpus, the accuracy was 95.04 %.

We did several experiments where we tested the effect of introducing relevant
training data when doing automatic part-of-speech tagging of Norwegian health
record data.

• Experiment 1: We tested the tagger, trained on the Norwegian newstext corpus
mentioned above, on 74,000 words of our newly annotated health record data.

Figure 2. Search view.
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We also did a 10-fold cross validation of the health record data. Thus, the first
test uses a general language model on the classification of texts from the health
record domain, while the second test only uses in-domain training and test data.

• Experiment 2: We set aside 10,000 words from the annotated health records for
testing, and used the remaining 64,000 words for training. We started with the
newstext corpus as training data, and incrementally added portions of the health
record training data to this. The first iteration added 1,000 words of health record
data, and this amount increased by 1,000 words for each iteration until all 64,000
words were used for the final iteration. For each iteration the tagger was tested
on the 10,000 word test set. The results are presented in Figure 3.

• Experiment 3: We did a similar experiment as the previous one, but did not
include the newstext corpus in the training data. The size of the training data
(taken from the annotated health records) was incrementally increased by 1,000
words, and at every turn tested on the 10,000 word test set. The results are
presented in Figure 3.

For the first experiment, the accuracy when we trained the tagger on newstext
data and tested on health record data was 76.87 %. When we did a cross-validation
of the health record data, however, the accuracy increased to 94.60 %. Even if the
evaluation methodology differs for the two tests, the total test data is the same in
both.

Experiments 2 and 3 are summarized and compared in Figure 3. From Experiment
2, it is worth noting that by adding only 1,000 words of health record data to the
newspaper training data, the accuracy increased from 76.87 % to 84.46 %. It is also
interesting that the first iteration in Experiment 3, with only 1,000 words of training
data in total (from the health record data) outperforms the test where 100,000 words

Figure 3. Results, experiments 2 and 3.
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of training data from the newstext corpus is used, with 79.05 % contra 76.84 % These
tests can not, however, be directly compared, as they use 10,000 and 74,000 words as
test data respectively, but still indicate that very little training data from the
medical domain is needed to improve part-of-speech tagging in this domain.

From Figure 3, we can also see that the curves cross when we get approximately
10,000 words of health record domain training data. At that point, the newspaper
text does not contribute to the improvement of tagging accuracy any longer, but just
acts as noise. The difference between the two curves is fairly stable at around 0.4-0.5
percentage points from around 17,000 words and above, so the negative effect of the
newstexts seems to be stable and not very severe. At 64,000 words of health record
training data, the accuracy is 94.09 % with the newstext data and 94.54 % without
it.

7. CONCLUSIONS

Our informal experience from usage of the annotation tool was that automation
efforts and incremental learning did, on the whole, benefit the annotation process.
Over time, automation reduces the human annotator’s role to that of verifying the
suggested annotations and to correct the diminishing number of errors. The presence
of a search and batch modification interface was of great help during the initial
annotation phase when the annotator and the supervisors were still working out how
to annotate ambiguous syntactic constructions. Search and modification was not, in
fact, one of the original suggested features of the tool but rather an afterthought as
we realized the need to ensure consistency through verification of previous annotations.

Our findings from Norwegian part-of-speech tagging of medical text seem to be in
accordance with similar studies for English. However, our initial, unadapted tagger
performs worse than the same initial studies for English show. One possible explanation
might be that we have less general training data to begin with. Other possible
explanations are language differences, or differences in documentation practice. We
use data from primary care health records, which is often written by the doctor during
consultations. Specialist care health records, on the other hand, are often dictated
and written at a later stage. This difference may lead to the specialist care record
being less prone to grammatical and spelling errors, and thus being more similar to
the newspaper texts that the tagger is initially trained on. 

As we get more data, the results are comparable to those of Pakhomov et al.
[2006]. As Figure 3 shows, adding more training data gives better results. And as we
are continuing the manual annotation, our accuracy can be expected to improve
further.

It is worth noting that our experiments differ slightly from Pakhomov et al. in
terms of training data, test data, medical sub-domains, language, size of accessible
data, tag sets and evaluation methodologies and results should, accordingly, be
interpreted with caution. As an example, Pakhomov et al. uses a slightly modified
version of 10-fold cross-validation, where the corpus is divided in 10 chunks of 2/10 of
the corpus size instead of the standard 1/10 division that we used. The overall
accuracy of Pakhomov et al.’s experiment when using training data from the medical
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domain is 94.69 %, and the average accuracy on the same test data with training
data from the newstext domain is 89.79 %. In relation to this last test, Pakhomov et
al. also divided the test data according to medical sub-domains, and the results for
the different domains varied from 74.70 % (the domain of current medications) to
92.62 % (the domain of family history). Our own accuracy for this kind of test was
76.87 %, and is as such comparable to what Pakhomov et al. reports for some sub-
domains, although not for the average. It should also be noted that the size of the
test data from the different sub-domains varied from 392 to 43,633 tokens, which
could also affect the results.

8. FUTURE WORK

We are still working on the manual annotations, and aim towards at least 100,000
words annotated with both linguistic and medical information. More data will make
more extensive evaluations of e.g. POS tagging possible. We are also planning formal
evaluations of the impact of semiautomatic methods on manual annotation, regarding
quality and speed of the annotation process.

The development of an NP chunker and a shallow parser are natural next steps,
using output from our part-of-speech tagger, trained on health record data, as input.

Furthermore, the corpus will be enriched with medical annotations in order to
approach specific medical information extraction challenges.
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