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The effective management of uncertainty is one of the most fundamental problems in medical
decision making. According to the literatures review, most medical decision models rely on
point estimates for input parameters. However, it is natural that they should be interested in
the relationship between changes in those values and subsequent changes in model output.
Therefore, the purpose of this study is to identify the ranges of numerical values for which each
option will be most efficient with respect to the input parameters. The Nonhomogeneous
Poisson Process (NHPP) was used for describing the behavior of aging chronic diseases. Three
kinds of failure models (linear, exponential, and power law) were considered, and each of these
failure models was studied under the assumptions of unknown scale factor and known aging
rate, known scale factor and unknown aging rate, and unknown scale factor and unknown aging
rate, respectively. In addition, this study illustrated developed method with an analysis of data
from a trial of immunotherapy in the treatment of chronic Granulomatous disease. Finally, the
proposed design of Bayesian value of information analysis facilitates the effective use of the
computing capability of computers and provides a systematic way to integrate the expert’s
opinions and the sampling information which will furnish decision makers with valuable
support for quality medical decision making.

Categories and Subject Descriptors: Software & Applications: Decision Sciences

General Terms: Bayesian value of information, Nonhomogeneous Poisson Process (NHPP),
Aging Chronic Diseases, Chronic Granulomatous Disease (CGD)

1. INTRODUCTION

Living things are often plastic during their early development and are moulded by
the environment (i.e., individuals vary in survival chances due to differences in genetics,
environmental exposures, and gene-environment interactions). Difficulties arise when
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specifying causes of death at older ages. Multiple causes of death statistics may more
accurately portray mortality when deaths are due to multiple concurrent diseases
processes. In general, the human physiological systems can be defined as a collection
of more than one organ (i.e., respiratory system, the digestive system), which are
composed of more than one part to perform either single or multiple organic
function. Since the human physiological systems can therefore experience multiple
failures, the successive failure times are of special importance for judging the
performance of physiological function over time. The successive times between
failures are not necessarily identically distributed [Lawless 1982] and [Manton
1988]. More generally, they can become smaller and smaller (an indication of
deterioration), or conversely larger and larger (an indication of survival growth).
However, traditional competing risk analysis, which assumed independent risks
[Katsahian 2004], does not allow for the analysis of multiple causes of death. In
addition, such event durations are the intervals between the diagnosis of a disease
and the subsequent mortality due to that disease and the interval between a specific
clinical treat and recovery from chronic disease [Hu 1997]. 

If deterioration is detected, then the decision of when to take the critical
intervention treatment, given the costs of treatments and failures, is of fundamental
importance. At the time of a decision, the degree of future deterioration, which is
likely to be uncertain, is of primary interest for the decision maker (i.e., determining
the prevalence of disease, doing a population survey, or measuring the level of a
toxin) [Albisser 2002]. Uncertainties about the initial status of human physiological
systems, life time, the latent period, medical cost, etc., are also important factors
[Sendi 2002]. Bayesian value of information analysis can provide methods to deal
with these uncertainties. There are two reasons for Bayesian value of information
analysis to be the appropriate approach for this study. First, failure time data are
not always rich enough to perform a traditional statistical analysis with significant
power (i.e., some human physiological functions may fail only once or twice in past
several years). Secondly, many aging chronic diseases problems arise in situations
where there is a high level of uncertainty, either because of the influence of uncertain
factors which are hard to quantify, or because of the survival prediction problem
involves significant extrapolation from any available data. However, gathering
additional data will not always be economical. There are two pervasive problems in
the analysis of such duration data are the loss to follow-up of the study persons due
to withdrawal from the study, and the loss due to premature death from other causes
[Chang 2007]. 

The objective of this study is to determine analytically or numerically the conditions
under which collecting additional information will be worthwhile. Further, to identify
the ranges of numerical information values for which each option will be most efficient
with respect to the input parameters, such as actions of risk management, cost of
collecting additional information, uncertainty about the initial failure rate and trend
of the human physiological systems. Hence, this study provides a better understanding
of the different behaviors associated with each model, and a decision process that can
facilitate the development of guidelines for chronic diseases risk management. 

Section 2 presents a review of literature relevant to the concept of value of
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information. Section 3 and 4 describe some basic concepts about deterioration along
with three kinds of failure models (linear, exponential, and power law). The results of
Bayesian value of information analysis are also presented. Section 5, presents a
sample application of the models developed in section 3 and 4. Finally, Section 6
concludes the discussion of this study.

2. BAYESIAN VALUE OF INFORMATION

Bayesian decision theory and value of information analysis provides an analytical
framework that can be used to establish the value of acquiring additional information
to inform a decision problem. These methods have firm foundations in statistical
decision theory [Raiffa 1959] and [Pratt 1995] and have been successfully used in
many areas of research such as related engineering and environmental risk analysis
[Thompson 1997]. Recently, these methods have been extended to setting priorities
in the evaluation of healthcare technologies [Claxton 2001]. Consider a decision
problem that has many alternative actions available to be chosen and many possible
states of nature. The decision maker is to choose the action that will result in the
minimal expected loss with respect to the entire set of possible states of nature
[Feltham 1968]. However, taking action right away is not the only alternative
because there is always another option open to decision maker, the option of gathering
additional information before making a decision. This action does not actually change
the state of nature, but provides a more solid basis for forecasting it [Claxton 2001].

The value of information is a concept used in decision analysis to denote the most
a decision maker should be willing to pay to resolve some uncertainty. The concept
of value of information is a common topic in decision theory. [Raiffa 1968] described
“...the increase (decrease) in utility (loss) which would result if the decision maker
learned that Z=z (in the light of the additional information) and therefore altered his
prior choice of an act; and we can then take a weighted average of these utility
increases (loss decrease). The increase in utility (decrease in loss) which results or
would result from learning that Z=z will be called the value of the information z”.
[Flockhart 1993] pointed out that “the value of information is not intrinsic; rather, it
is entirely dependent on the usefulness of the information for decision making”. In
the light of significant uncertainty, the option of gathering additional information is
likely to be desirable and the value of information is likely to be positive. 

When the wrong decision is made, there will be costs in terms of health benefit and
resources forgone. In general, the expected cost of uncertainty is determined jointly
by the probability that a decision based on existing information. It can be interpreted
as the expected value of perfect information (EVPI), since perfect information can
eliminate the possibility of making the wrong decision. If problem is to maximize
gains in health outcome subject to a budget constraint then this is also should be
willing to pay for additional evidence to inform this decision in the future, and it
places an upper bound on the value of conducting further research [Claxton 1999].
The EVPI is simply the difference between the payoff (expected net benefit) with
perfect and current information [Fenwick 2000] and [Ades 2002]. Since, the EVPI
can be worked out directly from the simulated output from our model as it relates to
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the individual patient. In a word, the EVPI represents the value of completely
eliminating uncertainty (i.e., collecting information with perfect accuracy). 

3. LIKELIHOOD FUNCTIONS OF AGING CHRONIC DISEASES

In terms of Bayesian decision theory, the payoff is the loss function and the diagnostic
of data source is represented by the likelihood function. According to [Chang C. C.
2006, 2007], the human physiological failure process is given by the NHPP. The joint
density function of the first N failure times is 

(1)

where x* is a constant, N is a random variable and Λ(x)= λ(u)du is the mean number
of failures by time x in the NHPP. The likelihood functions of Lik
= [  for linear failure model, Lik
=  for exponential and Lik =

 for power law failure model, respectively.
In order to model medical decision making, the crucial decision is whether after

some period of time t, the failure rate of the physiological systems will be too high (in
which case perform some intervention treatment), or will still be within an acceptable
range (in which case under the status quo). Another option is to gather additional
information. We also assume that the decision maker is risk neutral, and can therefore
make the decision on the basis of expected monetary value. The basic elements of the
Bayesian decision analysis are: (1) Parameter space Θ: {(λ0,β)|λ0>0}, where λ0 is the
scale factor and β is the aging rate. Both parameters are uncertain and can be
estimated through experts’ opinions. (2) Action space A: {a1, a2}, where a1 is the
status quo, and a2 is undertaking the intervention treatment. (We eventually expand
this to consider a third possible action, the collection of additional information). (3)
Loss function L: the real function defined on Θ×A. If we decide to keep the status
quo, then the loss is L(θ,a1); if we decide to undertaking the intervention treatment,
then the loss we face is L(θ,a2). (4) Sample space S: the additional information
available to be collected. This information could be actual data (e.g., successive
failure times), or else information obtained by more detailed analysis of existing data
(e.g., more detailed root cause analysis of observed events). 

In addition, the cost of collecting this additional information should also be reflected
in the Bayesian decision process. The detailed analysis descriptions of each part are: 
(1) The Prior Analysis: The available prior knowledge (e.g., expert opinion, past

experience, or the status of similar chronic disease) about the parameter space,
Θ:{(λ0,β)| λ0>0}, can be represented by a joint distribution indicating the
relative likelihood of each state of nature. Loss functions appropriate for the
status quo (a1) and undertaking the intervention treatment (a2) can be derived
by taking all cost-related data into account. Once the prior distribution and loss
function have been specified, it is simple to perform a prior analysis by simply
comparing the expected losses for the options a1 and a2. If ,
then option a2 is optimal, and opposite if , then option a1
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is optimal. 
(2) The Value of Perfect Information: It assumed that there is an ideal experiment

that will yield perfect information concerning the true state Θ, then we can
simply choose the option that minimizes the loss according to the exact state θ;
i.e., if , then option a2 is optimal, and if , then
option a1 is optimal. There are two sets of states of nature can be identified, say
Θ1 and Θ2, such that we have  and ,
where  and . If the state of nature has a continuous
prior distribution as given by fΘ(θ), then the EVPI is given by −
{ + }, when , and 
−{ + }, when . If the
loss function is linear in decision variable (e.g., =   and

), and if the decision variable  is monotonically
increasing in θ, then the EVPI can be simplified to  ,
when E{W}≤wC, and , when E{W}>wC, where

. 
(3) The Pre-posterior Analysis: When the expected losses associated with options a1

and a2 are fairly close, decision maker might not feel very confident about a
decision based solely on a prior analysis. If EVPI can be calculated and is greater
than 0, then gathering additional information might be desirable. However, decision
maker has to investigate the possible outcomes and costs of each candidate
sampling plan, to determine whether collecting additional information is worthwhile
and also which sampling plan is the best in terms of cost-effectiveness. The
expected value of sample information (EVSI) can be calculated according to

EVSI = {ES{  (2)

where S(i) is the ith sampling plan under consideration, and CI(S(i)) is the cost of the
ith sampling plan. If , then it is not worthwhile to collect additional
information. Conversely, if , then we can start collecting data and prepare
for a posterior analysis. (4) The Posterior Analysis: Once the optimal sampling plan,
say S(k), and the observed data S(k)=s(k) can then be used to perform a posterior
analysis. The decision should then be made in accordance with the strategy that
if , then option a2 is optimal, and if

, then option a1 is optimal. By exploring the
relationships among the optimal decision and the extent of uncertainty about
deteriorating trends, the conditions under which gathering additional information is
worthwhile can be determined, and more generally in developing guidelines for the
use of isolating trends in data in risk management. 

The following terminology will be used throughout this paper:
CA: the cost of a failure if it occurs.
CR: the cost of the undertaking intervention treatment.
CI: the cost of collecting additional information.
ρ : the reduction in failure rate that would result from the proposed perform some

intervention treatment action (0 < ρ < 1).
M: the expected number of failures during the time period [t,T ] under the status

L θ,a1( ) L θ,a2( )≥ L θ,a1( ) L θ,a2( )<

θ Θ1∈ L θ,a1( ) L θ,a2( )<⇔ θ Θ2∈ L θ,a1( ) L θ,a2( )≥⇔
Θ1 Θ2∪ Θ= Θ1 Θ2∩ ∅=

E L θ,a1( ){ }
 Θ

1

 

∫ L θ,a1( )fΘ θ( )dθ  Θ
2

 

∫ L θ,a2( )fΘ θ( )dθ E L θ,a1( ){ } E L θ,a2( ){ }< E L θ,a2( ){ }
 Θ

1

 

∫ L θ,a1( )fΘ θ( )dθ  Θ
2

 

∫ L θ,a2( )fΘ θ( )dθ E L θ,a1( ){ } E L θ,a2( ){ }≥
L θ,a1( ) L W,a1( )≡ K1W+k1

L θ,a2( ) L W,a2( )≡ =K2W+k2 W W θ( )≡
K2 K1–  

w
C

∞
∫ w wC–( )fW w( )dw

K2 K1–  
∞–

w
C

∫ wC w–( )fW w( )dw
wC = k1 k2–( )/ K2 K1–( )

Min
j 1 2,=

E L θ,aj( ){ }− Min
i

Min
j 1 2,=

E L θ,aj( )|S i( ){ }}+CI S
i( )( )}

EVSI 0≤
EVSI 0>

E L θ,a1( )|S i( )
=s

i( ){ } E L θ,a2( )|S k( )
=s

k( ){ }≥
E L θ,a1( )|S i( )

=s
i( ){ } E L θ,a2( )|S k( )

=s
k( ){ }<



Bayesian Value of Information Analysis with Linear, Exponential 205

Journal of Computing Science and Engineering, Vol. 2, No. 2, June 2008

quo.
The decision variable we are dealing with is then the expected number of failures

during the time period [t,T ], 

M≡M(T,t,λ0,β)=  (3)

Note that the expected number of failures M is a random variable and it is a
function of the two uncertain parameters λ0 and β. Suppose that undertaking the
intervention treatment action will reduce the failure intensity by a fraction ρ, where

, and it is given by  M. On the basis of the assumptions
given above, decision maker therefore has a two-action problem with a linear loss
function, where the loss for taking action a1 (i.e., continuing with the status quo) is
CAM and the loss for taking action a2 (i.e., undertaking the intervention treatment)
is . The expected loss for the status quo is simply CAE{M}, and the
expected loss for undertaking some intervention treatment is .
Finally, Bayesian decision theory and an analysis of the value of information can be
used to decide whether the evidence in an economic study is sufficient substantiation.

4. BAYESIAN VALUE OF INFORMATION ANALYSIS

This section discusses the processes of prior and posterior analysis for each of three
failure models (linear, power law, and exponential) was studied under the assumptions
of unknown scale factor and known aging rate, known scale factor and unknown
aging rate, and unknown scale factor and unknown aging rate, respectively.

4.1 The Case of Unknown λ0 and Known β

This assumption can make the decision analysis more tangible, and therefore help us
to study the decision behavior by using sensitivity analysis to vary β, particular when
sample information is sparse. From equation (3), and since M≡M(T,t,λ0,β)=
λ0[H(β;T)−H(β;t)]=λ0H, the prior distribution of M can be easily transformation as

. Therefore, the EVPI can be simplified with respect to the scale
factor λ0, and is given by

 (4)

where τC=CR /{CAρH} is the cutoff value of E{λ0} for undertaking the intervention
treatment. If λ0 is distributed Uniform(a,b), then the EVPI is given by CAρH(τC−
a)2/2d, when , and the EVPI is given by CAρH(b−τC)2/2d, when ,
where d=b-a represents the uncertainty about λ0. If the cost of collecting perfect
information about λ0 is within the range , then collecting information

will be desirable when . Note that the width of this range
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desirable to collect information when the uncertainty about λ0 is larger. Also, wI

increases when the failure cost increases, and decreases when the cost of collecting
information increases. However, the cost of undertaking the intervention treatment
will has no effect on wI.
(1) The linear failure model: In this model, H is given by T−t+(1/2)β(T 2−t2). Figure

1 shows the EVPI about λ0 for this model as a function of the prior mean E{λ0}
and the prior standard deviation SD{λ0} when λ0 has a uniform prior distribution.
There are three different values for β were used in Figure 1, where β1<β2<β3. In
addition, Figure 2 shows the results of sensitivity analysis about β. If the prior
mean of λ0 is λ0

*, then undertaking the intervention treatment should be
undertaken when β>βU, the status quo should be maintained when β≤βL, and
additional information about λ0 should be collected before making the decision
when βL < β ≤ βU. The time horizon under consideration and the time at which the
decision is being made (i.e., T and t) can also affect wI. In other words, wI is
increasing in T when β>0 or when β<0 and T >-1/β, and is decreasing in T when
β<0 and T< -1/β. 

 (2) The power law failure model: In this model, H is given by for the power law
model and know from equation (3) that wI is increasing in β, if T>1. Conversely,
when T<1, wI is increasing in β when β<ln[ln(t)-ln(T)]/ln(T/t), and decreasing

Figure 1. EVPI about λ0 for the Linear Failure Model.

Figure 2. Sensitivity analyze about β for the Linear Failure Model.
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when β>ln[ln(t)-ln(T)]/ln(T/t). Figure 3 shows the EVPI about λ0 for this model
as a function of the prior mean E{λ0} and the prior standard deviation SD{λ0}
when λ0 has a uniform prior distribution with three different values of β, where
β1<β2<β3. The time horizon under consideration and the time at which the
decision is being made (i.e., T and t) can also affect wI. Since H is increasing in T
and decreasing in t and wI is increasing in T and decreasing in t, too.

(3) The exponential failure model: In this model, H is given by [exp(βT) − exp(βt)]/β
and know from equation (3) that wI is increasing in β. Figure 4 shows the EVPI
about λ0 for this model as a function of the prior mean E{λ0} and the prior
standard deviation SD{λ0}, when λ0 has a gamma prior distribution with three
different values of β, where β1 < β2 < β3. The time horizon under consideration and
the time at which the decision is being made (i.e., T and t) can also affect wI.
Since the parameter H is increasing in T and decreasing in t and wI is increasing
in T and decreasing in t, too. 

Nevertheless, it is difficult to determine the EVPI in closed form for this case,
except when λ0 has a uniform distribution. It cannot get strictly analytical results,
since the results depend on functions such as the incomplete gamma function or the
cumulative normal distribution. The functional forms for H corresponding to the
various failure models (i.e., the linear, exponential, and power law failure models)
can also be substituted into the above expressions to evaluate the EVPI with respect

Figure 3. EVPI about λ0 for the Power Law Failure Model.

Figure 4. EVPI about λ0 for the Exponential Failure Model.
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to different failure models. Unfortunately, when λ0 has a gamma, lognormal, or
Weibull distribution, the range of values of the prior mean E{λ0} within which
collecting information is desirable cannot be determined in closed form. However,
this problem can be determined by numerical integration.

4.2 The Case of Known λ0 and Unknown β

In the case of unknown β, it is difficult to develop decision processes based on the
NHPP model even when λ0 is known. However, the assumption that λ0 is known can
help decision maker to understand the decision behavior by using sensitivity analysis
to vary λ0. Since M≡M(T,t,λ0,β)=λ0[H(β;T)-H(β;t)]=λ0H, the EVPI can be simplified
with respect to H and is given by

 (5)

where τC=CR/{CAρλ0} is the cutoff value of E{H} at which undertaking some
intervention treatment action should be adopted. 
(1) The linear failure model: In this model, H is given by H(β)=H(β;T)-H(β;t). The

prior density function of H can be derived by transformation of variables as follows,

(6)
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increases, and decreases when the cost of collecting information increases. However,
the cost of undertaking the intervention treatment has no effect on wI. Figure 5
shows the EVPI about β for the linear failure model as a function of the prior mean
E{H} and the prior standard deviation SD{β} when β has a uniform prior
distribution with three different values of λ0, where λ01<λ02<λ03. In addition, Figure 6
shows the results of sensitivity analysis about λ0 for the linear failure model. If the
prior mean of H is h*, then undertaking the intervention treatment should be
undertaken when λ0>λ0U, the status quo should be maintained when λ0≤λ0L, and
information about β should be collected before making the decision when λ0L<λ0≤λ0U.

Nevertheless, it is difficult to determine the EVPI in closed form for linear failure
model, except when β has a uniform distribution. For most other distributions it
cannot get strictly analytical results, since the results depend on functions such as
the incomplete gamma function or the cumulative normal distribution.
(2) The power law failure model: In this model, H is given by H(β)=H(β;T)-H(β;t).

The inverse function H-1(h) cannot be found analytically for this model.
Therefore, no analytical functional form is available for EVPI with respect to the
aging rate β, and numerical computation is needed to determine the EVPI in this

Figure 5. EVPI about β for the Linear Failure Model.

Figure 6. Sensitivity analyze about λ0 for the Linear Failure Model.
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cases. Figure 7 shows the EVPI about β for the power law failure model as a
function of the prior mean E{H} and the prior standard deviation SD{β} when β
has a uniform prior distribution with three different values of λ0, where λ01<λ02<λ03.

(3) The exponential failure model: In this model, H is given by H(β)=H(β;T)-H(β;t).
The inverse function H-1(h) cannot be found analytically for this failure model.
Therefore, no analytical functional form is available for EVPI with respect to the
aging rate β, and numerical computation is needed to determine the EVPI in this
cases. Figure 8 shows the EVPI about β for the exponential failure model as a
function of the prior mean E{H} and the prior standard deviation SD{β} when β
has a gamma prior distribution with three different values of λ0, where λ01<λ02<λ03.

4.3 The Case of Unknown λ0 and Unknown β

In real world situations, it will generally be desirable to incorporate uncertainty into
both λ0 and β. The assumption that information can be obtained about either λ0 or β
individually is not necessarily realistic, since the information about which decision
maker collect is likely to come from actual anamnesis. Thus, the process of gathering
information will often provide us with joint knowledge about both λ0 and β. Since
scarcity of data can be partially compensated by careful selection of an informative

Figure 7. EVPI about β for the Power Law Failure Model.

Figure 8. EVPI about β for the Exponential Failure Model.
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prior. In general, as a simplistic assumption, one can assume that λ0 and β are
independent of each other. With this assumption, the joint distribution of λ0 and β is
just the product of the individual distributions of λ0 and β. Since the EVPI is given
by 

 (10)

where M is the expected number of failures during the time period [t,T] under the
status quo, and MC=CR/(CAρ) is the cutoff value of E{M} for undertaking the
intervention treatment. Since M is monotonic in λ0, the density function of M can be
derived by bivariate transformation of variables as follows:

,  (11)

where H = H(β)=H(β;T)-H(β;t) is the cumulative aging-time function over the period
[t,T]. Since the prior distributions of λ0 and β are assumed to be independent, the
prior density function of M is given by

. (12)

The functional forms for H corresponding to the various failure models can be
substituted into the above expressions, along with prior distributions for both λ0 and
β. The EVPI for each failure model can then be evaluated. For most combinations of
distributions for λ0 and β, closed form expressions for the EVPI are not available.
However, numerical integration can be used to obtain numerical values for use in
decision analysis. Figure 9 shows the EVPI for the linear failure model as a function
of the prior mean E{M} and the prior standard deviation SD{λ0} when λ0 has a
gamma prior distribution and b has a uniform prior distribution.

5. COMPUTER SIMULATION

This section will serves as a case study to illustrate the use of the models developed
in the previous section and discusses the processes of prior and posterior analysis for
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Figure 9. EVPI for the Linear Failure Model when λ0 and β are independent.
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each of three failure models was studied under the assumptions of unknown scale
factor and known aging rate, known scale factor and unknown aging rate, and
unknown scale factor and unknown aging rate, respectively. In addition, the range
within which collecting information is desirable, the expected value of perfect
information, the optimal sampling time, and the prior and posterior decisions are
investigated for each model in each case to assess the effects of prior knowledge about
λ0 and β. 

Real failure data from a trial of immunotherapy for the treatment of Chronic
Granulomatous Disease (CGD) are studied [International Chronic Granulomatous
Disease Cooperative Study Group 1991]. CGD is an inherited disease caused by
defects in superoxide-generating nicotinamideadenine dinucleotide phosphate
(NADPH) oxidase of phagocytes. Impairment of oxygen-dependent intracellular
killing mechanisms results in severe bacterial or fungal infections with catalase-
producing Staphylococcus aureus, Burkholderia cepacia, or Aspergillus spp.
Antimicrobial prophylaxis is efficient in reducing the incidence of severe bacterial
infections. However, fungal infections remained the main cause of mortality in CGD.
In one study the use of prophylactic itraconazole reduced the incidence of fungal
infections but the effectiveness of long-term prophylaxis remains to be evaluated.
Patients with CGD benefit from recombinant interferon-γ (rIFN-γ) prophylaxis. In
developed countries, survival of CGD patients has been improved with more
patients surviving into third decade of life. However, premature mortality is still the
hallmark of CGD. In developing countries, both delay in diagnosis of CGD and poor
compliance with long-term antimicrobial prophylaxis are responsible for high
morbidity and premature mortality.

The initial date of the studied subject was 1-May-1973, and the observation period
was from 24-August-1988, to 1-Sep-1989. The failure dates for the subject during the
observation period were: 26-Sep-88, 26-Oct-88, 25-Nov-88, 25-Dec-88, 24-Jan-89, 23-
Feb-89, 25-Mar-89, 24-Apr-89, 5-May-89, 24-May-89, 23-Jun-89, 23-Jul-89, 15- Aug-
89, 22-Aug-89. Throughout the time unit is taken to be years, time horizon under
consideration is 20 years (i.e., T=20), and the time at the decision is being made is
14.417 years after the Birth date (i.e., t=14.417). The cost of a possible undertaking
some intervention treatment action can be evaluated by considering the availability
cost, the required magnitude of undertaking some intervention treatment, and the
desired success probability of the action. It assumed that the cost of a failure if it
occurs is $100,000, the cost of the undertaking some intervention treatment action is
$75,000 (i.e., CA=100,000 and CR=75,000), and the reduction in failure intensity that
would result from the undertaking some intervention treatment action is 0.1 (i.e.,
ρ=0.1). Note that the number of failures during the remaining lifetime of CGD can
be large, and therefore, compared with the cost of undertaking some intervention
treatment action, maintaining the status quo can also be expensive.

5.1 The Case of Unknown λ0 and Known β

In the case of unknown λ0 and known β, an appropriate value of β may be obtained
from previous clinical experience or expert opinion. It assumed that λ0 has the same
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gamma distribution for the three failure models, with expected value 0.1 and
standard deviation 0.08 (i.e., E{λ0}=0.1 and SD{λ0}=0.08). However, β can take on
different values for the three failure models, since each model has its own way of
describing the aging process. It assume that β=0.6 for the linear failure model, β=1.65
for the power law failure model, and β=0.16 for the exponential failure model. These
parameters values were chosen to ensure that the three intensity functions were
reasonably close to each other during the observation period. In other words, the
three failure models were chosen to give similar results within the observation period,
and also to be reasonably consistent with the observed data. Figure 10 shows the
assumed mean failure intensity functions for the three failure models. 

Note that β is measured in units of 1/year for the linear and exponential failure
models, and is unitless for the power law failure model. Since there have CA=100,000,
CR=75,000, ρ=0.1, T=20, and t=14.417, and the distribution of λ0. Further, it can
determine the EVPI for each failure model using equation. The EVPI can therefore
be compared with the cost of collecting additional information to investigate whether
collecting such information would be desirable. It also assumed that the cost of
collecting perfect information is $10,000 (i.e., CI =10,000).
(1) Linear Failure Model: The failure process is modeled by the linear failure model

with β=0.6, then the EVPI is $14,995.45. Since the EVPI is nearly 50% greater
than the assumed cost of perfect information, gathering such information would
be desirable. Moreover, if let holding the standard deviation constant at SD{λ0}
=0.08, the range of prior expectations E{λ0} within which collecting information
is desirable is given by [0.0688, 0.1500], so collecting additional information
would still be desirable even if E{λ0} were nearly one-third lower than its assumed
value of 0.1. Sensitivity analysis can also be used to give the range values of β
within which collecting information is desirable. The results of β is less than
0.5085, the status quo should be maintained; if β is greater than 1.5437, the
intervention treatment should be undertaken; and if β is within the range
[0.5085, 1.5437], then collecting additional information is desirable. Thus, a large
increase from the assumed value of β=0.6 would be needed to justify an immediate

Figure 10. The mean of Failure Intensity Functions for Linear, Power Law, and Exponential
Failure Models.
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undertaking some intervention treatment action, while if β were only 10% lower
than its assumed value, the status quo would be clearly acceptable.

(2) Power Law Failure Model: The failure process is modeled by the power law
failure model with β=1.65, then the EVPI is $12,215.69. Since the EVPI is more
than 20% greater than the assumed cost of perfect information, gathering such
information would be desirable. Moreover, if let holding the standard deviation
constant at SD{λ0}=0.08, the range of prior expectations E{λ0} within which
collecting information is desirable is given by [0.0848, 0.1568], so collecting
additional information would still be desirable even if E{λ0} were more than 15%
lower than its assumed value of 0.1. Sensitivity analysis can also be used to give
the range of values of β within which collecting information is desirable. The
results are that if β is less than 1.6292, the status quo should be maintained; if β
is greater than 1.9339, the undertaking intervention treatment action should be
undertaken; and if β is within the range [1.6292, 1.9339], then collecting additional
information is desirable. Thus, a large increase from the assumed value of β=1.65
would be needed to justify an immediate undertaking some intervention treatment,
while if β were only about 1% lower than its assumed value, the status quo would
be clearly acceptable.

(3) Exponential Failure Model: The failure process is modeled by the exponential
failure model with β=0.16, then the EVPI is $18,654.01. Since the EVPI is more
than 85% greater than the assumed cost of perfect information, gathering such
information would be desirable. Moreover, if let holding the standard deviation
constant at SD{λ0}=0.08, the range of prior expectations E{λ0} within which
collecting information is desirable is given by [0.0212, 0.1245], so collecting
additional information would still be desirable even if E{λ0} were more than 75%
lower than its assumed value of 0.1. Sensitivity analysis can also be used to give
the range of values of β within which collecting information is desirable. The
results are that if β is less than 0.1310, the status quo should be maintained; if β
is greater than 0.1900, the undertaking intervention treatment action should be
undertaken; and if β is within the range [0.1310, 0.1900], then collecting additional
information is desirable. Thus, a nearly 19% increase from the assumed value of
β=0.16 would be needed to justify an immediate undertaking some intervention
treatment action, while if β were about 18% lower than its assumed value, the
status quo would be clearly acceptable.

5.2 The Case of Known λ0 and Unknown β

In the case of known λ0 and unknown β, an appropriate value of λ0 may be obtained
from previous clinical experience or expert opinion. It assumed that aging (rather
than survival growth) is sure to occur for CGD. Furthermore, it assume that β is
Uniform[0, 1.2] for the linear failure model, Uniform [1, 2.3] for the power law failure
model, and Uniform[0, 0.32] for the exponential failure model. These assumptions
are made to ensure that the mean values of β for these models are equal to the values
of β used in the previous section, and that the lower bounds are the minimal values
consistent with aging rather than survival growth. It also assumed that λ0=0.1 for all
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three failure models. Since we have CA=100,000, CR=75,000, ρ=0.1, T=20, and t=14.417,
and the distribution of β, it also assumed that the cost of collecting perfect information
is $10,000. The EVPI can therefore be compared with the cost of collecting additional
information to investigate whether collecting such information would be desirable.
The three failure models all have the same cutoff value of E{M} for taking the
undertaking some intervention treatment action, which is given by MC=CR/(CAρ)=7.5.

Table I summarizes the results of the data analyses for the case of known λ0 and
unknown β. The observed data support the undertaking intervention treatment action
for all failure models, whereas the priors support the adoption of the undertaking
intervention treatment action only for the power law and exponential failure models.
This can be explained by the fact that the observed data indicate greater aging than
was assumed by the prior distributions, since the posterior means of β are greater
than the prior means of β for all failure models. Furthermore, since the functional
form of M is more sensitive to the value of β for the power law and exponential failure
models than for the linear failure model. Hence, the uncertainty about β makes the
undertaking intervention treatment action worthwhile for the other two models but
not for the linear failure model. This also explains why the optimal prior decisions
are different for the power law and the linear failure models even though their mean
failure intensity functions are closed.

5.3 The Case of Unknown λ0 and Unknown β

In this section, it considered the case in which both λ0 and β are unknown. In the

Table I. Decision table for the case of known λ0 and unknown β.

Linear Failure 
Model

Power Law 
Failure Model

Exponential Failure 
Model

Prior E{M} 6.3228 11.7914 27.2395

Range of E{M} for 
Collecting Information

6.5375~8.4625 4.1569~35.8163 3.6850~82.1073

Assumed Value of λ0 0.1 0.1 0.1

Range of λ0 for 
Collecting Information

0.1022~0.1822 0.0358~0.3304 0.0124~0.2924

EVPI 9,125.86 26,228.35 22,373.73

Prior E{β} 0.6 1.65 0.16

Posterior E′{β} 0.9148 1.7943 0.2164

Cutoff Value of E{M} for 
Intervention Treatment

7.5 7.5 7.5

Prior Decision Status Quo
Intervention 
Treatment

Intervention 
Treatment

Posterior E′{M} 9.3474 10.2215 27.8104

Posterior Decision
Intervention 
Treatment

Intervention 
Treatment

Intervention 
Treatment
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case where λ0 and β are independent, it assumed that λ0 has the same gamma
distribution for all three failure models, with expected value 0.1 and standard deviation
0.08, and that β is Uniform[0, 1.2] for the linear failure model, Uniform[1, 2.3] for
the power law failure model, and Uniform[0, 0.32] for the exponential failure model.
Therefore, λ0 has the same distribution, and β has the same distribution for each
failure model.

Therefore, it have CA=100,000, CR=75,000, ρ=0.1, T=20, and t=14.417, and the
distributions of λ0 and β, it can evaluate the EVPI and compared with the cost of
collecting additional information to investigate whether collecting such information
would be desirable. It also assumed that the cost of collecting perfect information
about both λ0 and β is $15,000. This is greater than the cost of collecting perfect
information about either λ0 or β individually, but smaller than the sum of these
costs, since there may be some repetitive costs that can be eliminated when collecting
additional information about both λ0 and β. Three failure models have the
same cutoff value of E{M} for taking the undertaking intervention treatment
action, which is given by MC=CR/(CAρ)=7.2. The optimal sampling time and
the expected net gain of sample information are not available, because the joint
probability density function of the sample data is too complicated. Nevertheless,
since the failure data are available, we use the entire failure data for the posterior
analysis. Prior and posterior analyses are performed by comparing the prior
and posterior mean values of M with the cutoff value MC. Table II summarizes the
results of the decision analyses under the assumption of independence between λ0

and β. 

Table II. Decision table for the case of unknown λ0 and unknown β.

Linear Failure 
Model

Power Law Failure 
Model

Exponential Failure 
Model

Prior E{M} 6.1428 11.0327 26.4416

Range of E{M} for 
Collecting Information

5.327~10.152 2.538~27.968 3.622~55.860

EVPI 19,046.56 32,231.42 28,224.74

Prior E{λ0} 0.1 0.1 0.1

Posterior E′{λ0} 0.1694 0.1422 0.17

Prior E{β} 0.5 1.57 0.16

Posterior E′{β} 0.7849 1.8488 0.1809

Cutoff Value of E{M}
for Intervention Treatment

7.2 7.2 7.2

Prior Decision Status Quo
Intervention 
Treatment

Intervention 
Treatment

Posterior E′{M} 9.9132 10.2495 23.4724

Posterior Decision
Intervention 
Treatment

Intervention 
Treatment

Intervention 
Treatment
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5.4 Discussions

In the case of unknown λ0 and known β, for the base case the width of values of λ0

within which collecting additional information is desirable is larger for the exponential
failure model than for either the linear failure model or the power law failure model.
Similarly, the EVPI is larger for the exponential failure model than for the other
failure models for the base case. These results suggest that the possibility of rapid
aging with the exponential failure model may make reduction of uncertainty more
important, as one might expect (although it would not have been entirely clear a
priori whether decision maker should expect the possibility of rapid aging to favor
data collection or the immediate adoption of the intervention treatment). 

In the case of known λ0 and unknown β, the width of the range of values of E{M}
within which collecting additional information is desirable is much larger for both
the power law failure model and the exponential failure model than for the linear
failure model. This is because the functional form of M is more sensitive to the value
of β for the power law and exponential failure models than for the linear failure
model. The range of values of λ0 within which collecting additional information is
desirable is also larger for the power law and exponential failure models than for the
linear failure model. Finally, the EVPI is larger for both the power law and exponential
failure models than for the linear failure model. These results again show the importance
of reducing uncertainty when rapid aging is possible as is intuitively reasonable.
Similar results are also found in the case of unknown λ0 and unknown β.

Overall, the case of unknown λ0 and unknown β represents greater uncertainty
than the other two cases, since the EVPI for the case of unknown λ0 and unknown β
is larger than for the other two cases. Thus, even with the linear failure model (where
the prior decision is always to maintain the status quo), the optimal posterior
decision is to undertake the intervention treatment.

6. CONCLUSIONS

The expected costs of uncertainty are determined by the probability that a
treatment decision based on existing information will be wrong and by the
consequences if the wrong decision is made. This paper develops Bayesian value of
information analysis procedures for risk management of aging chronic diseases,
without arbitrarily assuming that human physiological systems are perfectly renewed
by each repair. The proposed decision models can provide decision support
techniques not only for taking action in the light of all available relevant information,
but also for minimizing expected loss. In this study, three parametric failure models
(the linear, power law, and exponential failure models) are studied to give a better
understanding of the differing behavior associated with each model. The power law
and exponential failure models appear to be more sensitive to the aging rate than the
linear failure model. In addition, the exponential failure model may be less realistic,
since the intensity function often becomes too steep after the observation period. In
particular, the proposed priors allow decision maker to explicitly account for
independence between λ0 and β, and are a significant improvement over previous
approaches, which have generally been based on the assumption either that β is
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known or that λ0 and β are independent. Furthermore, the prior distribution for the
power law failure model has more advantages than the corresponding distribution
for the exponential failure model, since it has a wide range of intensity function
shapes.

Further work could relax the assumption that medication times can be neglected,
that medication take place instantaneously after failure. Besides, the assumption
that the decision maker is risk neutral can also be relaxed, by eliciting the loss
functions in terms of utility instead of monetary values and hence considering the
decision maker’s risk attitude, the cost of a failure, the cost of the intervention
treatment, the cost of collecting information, the lifetime, and the risk reduction
fraction are known constants instead of random variables. However, in such case,
simulation would be more appropriate than sensitivity analysis for studying the
resulting model, since there would be too many random variables involved in the
decision process.

Finally, risk modeling for aging chronic diseases requires the development of new
concepts and methodologies. This is because important substantive issues arise in
the analysis of aging chronic disease risks that do not arise in the context of modeling
risk processes for acute diseases or disease episodes. Probably the most fundamental
difference in modeling aging chronic diseases is that such diseases behave as processes,
with their own internal time-dimension, rather than as shocks or instantaneous events.
Hence a major purpose of Bayesian value of information analysis is to assist in
comprehension of the problem and to give decision maker insight into what variables
or features of the problem should have a major impact on the further research. 
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