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Epidemic protocols have two fundamental assumptions. One is the availability of a mechanism
that provides each node with a set of log(N) (fanout) nodes to gossip with at each cycle. The
other is that the network size N is known to all member nodes. While it may be trivial to
support these assumptions in small systems, it is a challenge to realize them in large open
dynamic systems, such as peer-to-peer (P2P) systems. Technically, since the most fundamental
parameter of epidemic protocols is log(N), without knowing the system size, the protocols will
be limited. Further, since the network churn, frequently observed in P2P systems, causes rapid
membership changes, providing a different set of log(N) at each cycle is a difficult problem. In
order to support the assumptions, the fanout nodes should be selected randomly and uniformly
from the entire membership.

This paper investigates one possible solution which addresses both problems; providing at
each cycle a different set of log(N) nodes selected randomly and uniformly from the entire
network under churn, and estimating the dynamic network size in the number of nodes. This
solution improves the previously developed distributed algorithm called Shuffle to deal with
churn, and utilizes the Shuffle infrastructure to estimate the dynamic network size. The
effectiveness of the proposed solution is evaluated by simulation. According to the simulation
results, the proposed algorithms successfully handle network churn in providing random log(N)
fanout nodes, and practically and accurately estimate the network size. Overall, this work
provides insights in designing epidemic protocols for large scale open dynamic systems, where
the protocols behave autonomically. 
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1. INTRODUCTION

Epidemic algorithms function by randomly disseminating information throughout
the network in a manner similar to the spread of a disease [Demers et al. 1987],
[Eugster et al. 2004], [Eugster et al. 2001], [Ganesh et al. 2003]. In each round, any
given node randomly selects a set of peers from the entire network to communicate
the given message to and continues to do so in subsequent rounds for the determined
lifetime of the message. Each subsequent recipient then also gossips received messages
in a similar manner for the remainder of the message lifetime. This paradigm of
communication has been proved to reliably deliver the message to all nodes in the
network [Birman et al. 1999], [Gupta et al. 2002] while reducing communication
overhead and increasing scalability with respect to traditional broadcast schemes
[Portmann and Seneviratne 2003], [Tanaraksiritavorn and Mishra 2004]. Due to
these advantages, epidemic protocols have been utilized in many research areas, for
instance, to manage databases [Demers et al. 1987], to maintain routing tables in
large peer-to-peer (P2P) overlay networks [Voulgaris and van Steen 2003], to locate
resources [Voulgaris and van Steen 2004], and to provide anonymous communication
[Bansod et al. 2005].

Another advantage of epidemic protocols is that their parameters have been
rigorously studied [Birman et al. 1999]. In order for the studied properties to be valid,
however, each node running the epidemic protocol must randomly select log(N)
nodes to communicate a given message to, where N is the size of the entire network.
In order to achieve this, nodes must therefore (1) have a method of choosing a
random set of nodes, and (2) must know the size of the network. Both of these
assumptions can be realized if information on the entire membership is contained
either at each individual node or at some centralized node. Both approaches have a
problem, however, as the network size increases. In the first approach, the maintenance
of membership information consistency on all individual nodes becomes difficult. In
the second approach, a centralized node can cause both a single point of failure and
be a communication bottleneck. In addition, for dynamic systems like unstructured
peer-to-peer (P2P) systems with churn (frequent node leaves and joins), a special
care needs to be given to ensure that membership information is valid.

In order to use epidemic protocols in dynamic systems with frequent membership
change, this paper investigates an engineering approach in an effort to find a good
solution to the two assumptions of (1) randomly choosing log(N) nodes and (2)
knowing the network size under the constraint of network churn. By randomly
choosing log(N) nodes we mean that each node should be able to find different log(N)
nodes in different cycles of epidemic. As a result, log(N) nodes should be chosen
randomly and uniformly from the entire membership. By knowing the network size
we mean that each node should be able to estimate the current network size with a
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practically tolerable difference from the actual network size. As a result, estimated
network sizes will allow epidemic protocols to use proper values of log(N). Estimating
network sizes should not be overwhelming such that each node should be able to
follow network size changes closely in time domain. In addition, network size estimates
on all nodes should show only a small variance such that most of the nodes recognize
about the same value of N most of the time. By the constraint of network churn we
mean not only node leaves and joins but also asymmetric network churn which
shows either more leaves than joins (shrinking networks) or more joins than leaves
(expanding networks).

The engineering approach proposed in this paper is based on a set of distributed
algorithms, which (1) allocates a tiny subset of the entire membership at each node,
where an entry is a node pointer such that different nodes have a different subset, (2)
exchanges part of the tiny subset of a node with a set of randomly chosen node pointers
and, (3) performs statistical analysis on the tiny subset to estimate the dynamic
network size. Following a previous work [Voulgaris et al. 2005], in this paper, the
tiny subset is called the local view, and exchanging part of a local view with part of
another local view is called shuffle. 

The essence of this approach is to utilize two concepts: shuffle and sampling. First,
the concept of shuffle was previously studied in [Stavrou et al. 2004] and in CYCLON
[Voulgaris et al. 2005]. Shuffle was used as a way to disseminate information quickly
to flash crowds in [Stavrou et al. 2004] and was also used as an efficient way to
manage dynamic membership. The work of CYCLON is an enhanced version of
[Stavrou et al. 2004]. In addition, a methodology to extend the work of CYCLON to
address the issue of network churn with shuffle, DIMPLE (DynamIc Membership
ProtocoL for Epidemic protocols) has been proposed [Sun et al. 2007]. Second, the
concept of sampling has long been studied to estimate the system size or population.
The proposed method of network size estimation, in this paper, is inspired by [Mane
et al. 2005], where two independent samples were used to estimate the system size.
DIMPLE-II adapts the methodology of [Mane et al. 2005] to the structure of shuffle.
This results in an efficient and unique estimation, utilizing the infrastructure of
shuffle without introducing additional protocols and communication overhead. The
new contribution of this paper is twofold; one is to further utilize the notion of shuffle
to estimate the dynamic network size, and the other is to enhance the performance of
DIMPLE-II by improving the shuffle under network churn.

The remainder of the paper is organized as follows. Section 2 details the related
work within the field of membership and network size estimation. Section 3 next
describes the work of CYCLON to provide the background for the current work.
Section 4 provides the system model of DIMPLE-II while the main ideas of this
paper are presented in Section 5. After that, Section 6 evaluates the main ideas by
simulation and comparison between DIMPLE-II and CYCLON. Lastly, Section 7
concludes the paper with a summary of the results and also describes avenues of
possible future research.

2. RELATED WORK

The two related areas of this work are dynamic membership management and dynamic
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network size estimation. By ‘dynamic’ we mean network churn which can be of high
rates and also asymmetric with frequent node joins and leaves. 

Within the area of membership, a network can have centralized information, fully
distribute the information amongst its nodes, or use some sort of middleground. A
group of work ([Aguilera et al. 1999], [Carzaniga 1998], [Das et al. 2002]) takes the
centralized approach. In this research, the membership information is all handled at
a centralized server or set of servers. Upon entering, each node must communicate
with the server and upon leaving must do likewise (or the server must perform routine
checks for connectivity). As a result, the centralized server always has a consistent
view of the membership of the system and therefore a correct perception of the
network size also. Utilizing this information, the server can then assign a random set
of nodes for each of the members to communicate with. The drawback to these
schemes is that they leave themselves vulnerable to a single or fixed number of points
of failure (i.e. the server(s)). In addition, performance bottlenecks are created at the
servers and communication overhead is increased due to the necessity of informing
the server. As a result, others have chosen to distribute the membership information
at the individual nodes, giving each of them either full or partial views.

The first approach would be to fully replicate the membership information at each
node, making the choosing of a random set of nodes to communicate with trivial.
However, in large-scale networks, this approach is not possible due to the memory
resources it would occupy (e.g. [Cuenca-Acuna et al. 2003] has this constraint). Partial
views, however, can reside at individual nodes since they take up significantly less
space. The goals then become ensuring that by using these partial views, an overall
randomness is still guaranteed and an accurate network size is also known by each
individual node.

One avenue that does attempt to alleviate the problem of providing randomness
for overlay networks is the concept of Newscast Networks [Jelasity et al. 2003]. In
these networks, the focus is on “macro behavior”-a term used to define overall functions
of a network regardless of whether individual functions perform correctly (from
biological inspirations such as ant colonies). In simulations, it is shown that the path
length and clustering of the randomly-generated networks provide a reasonable
amount of randomness. The protocol makes use of exchanging parts of local views of
the current membership in order to attempt to achieve a random subset of the global
membership at each node. Another closely related method randomizes the partial
views by probabilistically keeping or forwarding subscription messages from joining
or leaving nodes [Ganesh et al. 2003]. This latter research, however, is not concerned
with maintaining the network size at each node.

Another approach to providing random partial views is through the use of a shuffling
mechanism. Such mechanisms are necessitated by the fact that left on their own,
P2P networks do not form random graphs, but rather power law graphs [Lv et al.
2002]. Within the area of shuffling, the Peer Sampling Service considered three
dimensions making the tuple (peer selection, view selection, view propagation) [Jelasity
et al. 2004]. The options for these are shown in the following brackets: {random,
head, tail} for peer selection, {random, head, tail} for view selection, and {push, pull,
push-pull} for view propagation. Within these options, head and tail correspond to
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the most recently added (to the view) and least recently added nodes, respectively.
Push, pull, and push-pull depict whether the initiating node sends its view, receives
the view of the other node, or both. Within this taxonomy, the previously described
Newscast Networks and the shuffling mechanism of CYCLON would both correspond
to a (random or tail, head, push-pull). For the 27 possible combinations of the
classifications, the Peer Sampling Service measured partitioning, path length,
clustering coefficient, and the degree distribution of nodes throughout the network.

While the work mentioned above focuses on the detailed algorithms of shuffling,
the work of Allavena et al. [Allavena et al. 2005] provides an interesting theory
predicting the network partition probability of the general idea of shuffling. As one
can imagine, with a reasonably large size of local views and an appropriate shuffle
length, the probability of creating a network partition is extremely small. We consider
that this work [Allavena et al. 2005] generalizes the resilience of the shuffling
mechanism demonstrated by simulation in CYCLON [Voulgaris et al. 2005].

The problem of estimating dynamic network size is not unique to this research.
Because the system size is one of crucial information for many applications, a
number of methodologies have been proposed. One typical trade-off to this problem
is communication overhead and accuracy. One straightforward approach to measure
the network size is to count the nodes using some communication infrastructure. As
the network size increases, however, this would result in impractically large
communication overhead and time. Moreover, when the network changes in size at a
high rate, i.e., is highly dynamic, counting itself may not be feasible. This has led
researchers to sampling-based approaches, where typically the entire system size is
guessed based on a sampled data set. The problem then becomes not only to provide
practical accuracy but also timely estimation.

Recently, two generic methods of network size estimation have been proposed in
[Massoulie et al. 2006], namely, Random Tour and Sample and Collide. The former
is based on the return time of continuous time random walk to the node originating
query. The latter is based on counting the number of random samples gathered until
a target number of redundant samples are obtained. As these two methods are network
architecture independent, they can be used for dynamic systems such as large scale
P2P systems. Another interesting work of P2P system size estimation can be found
in [Mane et al. 2005], where two independent random samples of population are used
for statistical analysis of entire population. Although, this method was originally
used in oceanography and epidemiology, the generality of this method has some
potential to be used for dynamic P2P systems. The method of size estimation in
DIMPLE-II, in this paper, is inspired by this approach. Thus DIMPLE-II adapts this
approach to the infrastructure of shuffle. Other network architecture-specific methods
such as [Bolot et al. 1994], [Horowitz and Malkhi 2003], [Kostoulas et al. 2005],
[Manku 2003], [Psaltoulis et al. 2004] can also be found in the literature. Interested
readers are referred to these works. 

Although the problem of dynamic membership management and the problem of
dynamic network size estimation have been studied in separate two topics in the
literature, DIMPLE-II suggests an integrated methodology, which is able to manage
dynamic membership and estimate network size at the same time by utilizing the
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infrastructure of shuffle.

3. PRELIMINARY

This section starts with an informal description of epidemic protocols, for which this
paper provides distributed algorithms for dynamic membership management and
network size estimation. The two technical backgrounds for the distributed algorithms
are then followed: CYCLON shuffle for membership management and the capture-
recapture method for network size estimation.

3.1 Epidemic Protocols

An epidemic protocol delivers a message from a sender to all members in log(N)
rounds of forwarding, where N is the number of peers in a P2P system. In the first
round, a sender transmits a copy of the message to log(N) randomly chosen peers.
After that, each peer that received a copy of a message repeats the same job, i.e. it
forwards a copy of the message to another log(N) randomly chosen peers. The message
lifetime is represented as a number of protocol rounds and is decremented by one at
each intermediate forwarding. A copy of a given message is held at a node until its
lifetime is exhausted. Hence, a copy of the message is gossiped (randomly forwarded)
as many times as its current lifetime and then is discarded. The time interval between
two consecutive protocol rounds can be set arbitrarily. As a result, all peers are
highly likely to receive a copy of the original message in log(N) rounds of cascaded
forwarding.

3.2 CYCLON Shuffle

The shuffling mechanism of CYCLON is shown in Algorithm 1 and the join mechanism
is in Algorithm 2. Each node initiates CYCLON Shuffle exactly once in each cycle.
Nodes are not synchronized to perform shuffling in the same order at each cycle.
Different orders can be seen in different cycles. Thus, a node, which shuffles at ith in
a cycle, can shuffle at jth in the next cycle (i ≠ j). In effect, each node shuffles views
probabilistically twice in each single cycle; once initiated by itself and another
initiated by another random node.

Data structure. Each node maintains a local view which consists of c number of
entries (The method of determining the value of c is outside the scope of this work).
Each entry contains the information of a node address (ID) and an associated age.
Hence, each entry is in effect a pointer to another node. When a node P has a pointer
to another node Q, P can initiate communication with Q. As a result, a node pointer
represents connectivity and when all pointers are viewed, the connectivity of the
entire system is revealed. If the system is randomly connected, the map will show the
same properties of a random network. In this paper, a node pointer that points to a
node that has already left the system and thus is not available anymore (dead) is
called a dangling pointer.

Description of Algorithm 1. The essence of the CYCLON shuffling mechanism is
the exchange of a portion of each individual local view between nodes. Upon receiving
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a shuffle request from a node P, a node Q selects a subset of the same size l out of its
own local view, and then sends this subset to the shuffle requester P. By repeating
the shuffle operation at every cycle, the system automatically converges to a steady
state where both the average shortest path length1 between any pair of nodes and
the clustering coefficient remain comparable to those of a random network. A
random network is typically defined as one that has the same number of nodes and
the same number of edges, and is connected randomly. While this convergence is
desirable and is a fundamental characteristic of the shuffling operation, the convergence
speed and the difference in the two metrics from those of a random network were
concerns of CYCLON.

The age starts from 0 (zero) when a node pointer is first created in a local view, and
increases by one at each subsequent cycle thereafter. Furthermore, the age is
transferable such that whenever a node pointer is shuffled to another local view, it
preserves the age. As a result, a node pointer is chosen as a shuffle partner by the
time the age reaches c. This means that a node pointerΓfis life time has a maximum
value of c. As seen in Algorithm 1, once a pointer is chosen as a shuffle partner, the
age of the pointer is reset to 0 (zero).

 Algorithm 1: CYCLON Shuffle

1. Increase the age of all nodes in the local view by one.

2. Select a random subset of l neighbors from P’s own local view as follows. The subset has a
node Q with the highest age in the local view, and l-1 other random nodes.

3. Replace Q’s entry in the subset with a new entry of age 0 and with P’s address.

4. Send this subset to peer Q.

5. Receive from Q a subset of no more than l of Q’s neighbors.

6. Discard entries pointing to P, and entries that are already in the P’s local view.

7. Update P’s local view to include all remaining entries, by firstly using empty local view
slots (if any), and secondly by replacing entries among the ones originally sent to Q.

 Algorithm 2: CYCLON Join

1. P contacts a randomly chosen node Q, an introducer.

2. Upon receiving P’s join request, Q launches c number of random walks where each one
has a unique entry of Q’s local view as its starting address. Each one has a Time To Live
(TTL) whose minimum value is the average shortest path length.

3. An intermediate node decrements the TTL by one and forwards the join request to a node
I randomly chosen out of its own local view.

4. At node R, where the TTL is decremented to 0 (zero), a randomly chosen entry is replaced
with P’s address and age 0. R sends the replaced entry to P.

5. P collects all the replaced entries and starts using these entries as its own local view.

1The averaged shortest path length in number of hops between all the possible pairs of nodes in
the system.



256 Jin Sun et al.

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

3.3 Capture-Recapture Method

The capture-recapture method was originally proposed in [Darroch 1958], and

subsequently used to estimate population of France in 1786 and some other similar

purposes [Mane et al. 2005]. There are two critical assumptions to this method;

closed system and two independent random samplings. By closed system we mean

that the system population does not change during the estimation process. By two

independent random samplings we mean that the two population samplings are

obtained randomly and independently of each other. The essence of the algorithm is

presented in Algorithm 3. While the approach seems statistically reasonable, the

assumption of random samplings presents a technical challenge to open systems such

as P2P systems because the population of a P2P system changes unpredictably at

anytime. Also, a random sampling of a P2P system itself is not an easy task either.

The work of [Mane et al. 2005], therefore, uses a random walk-based capture-recapture

approach because a previous work reports that independent network samplings can

be achieved by taking some random walks [Gkantsidis et al. 2004].

In this paper, however, because we have an infrastructure of shuffle, by utilizing

the shuffle infrastructure, we propose a rather simple method to estimate the network

size by any node at anytime efficiently and effectively. The details of the proposed

method are presented in Section 5.

4. SYSTEM MODEL

Nodes can join and leave the system at anytime, which creates high network churn.

When a node joins the system, it contacts an existing node chosen randomly from the

system, which is called an introducer. A mechanism is assumed to be in place which

automatically chooses one member uniformly at random for a new node to contact

and join the system.

The parameters of epidemic protocols are dependent on the system size. The system

size changes reasonably fast due to asymmetric network churn. Thus, the system size

either increases or decreases. DIMPLE-II does not distinguish a node fault from a

 Algorithm 3: Capture-Recapture

1. Take a random sampling of a system (capture).

2. Let the number of entities captured in Step 1 N1.

3. Mark the captured entities in Step 1.

4. Release the captured entities to the system.

5. Give enough time to the system such that the captured entities in Step 1 are randomly
mixed in the system.

6. Take another random sampling of the system (recapture).

7. Let the number of entities captured in Step 6 N2.

8. Let the number of entities captured both in Step 1 and 6 n11.

9. Then the total population of the system N is estimated as N1 N2×

n11

-----------------



DIMPLE-II: Dynamic Membership Protocol for Epidemic Protocols 257

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

node leave. Any node which does not respond to a protocol activity is considered
dead. Intermittent faults are not considered in this work.

The time interval of the cycle of the shuffling mechanism is theoretically independent
of that of the protocol round for epidemic protocols. In static systems, where the
number of nodes is relatively constant, once the network is randomized (i.e. the entire
membership information is randomly and uniformly distributed over the local views),
the shuffle cycle does not affect the quality of epidemic protocols. This is because the
local view remains random and uniform regardless of the cycle. In dynamic systems,
however, because the membership frequently changes, larger cycles will not be able
to provide the same quality of random and uniform distribution of the entire membership
to the local views. In this work, it is assumed that the cycle of the shuffling and the
round of epidemic protocols are the same. It would be interesting to investigate the
impact to the quality of epidemic protocols caused by the difference between the
shuffle cycle and the epidemic round when the former is larger than the latter.

5. MAIN IDEAS

DIMPLE-II has four components; shuffle, join, leave, and network size estimation.
Shuffling is initiated by each node at every epidemic protocol round. In effect, each
node performs the shuffling mechanism twice; once initiated by itself and another
initiated by another random node. At the end of a shuffle, each node can estimate
the current network size. Network samplings required to estimate the network size
are provided by buffering the information of the dynamic local view. Nodes are not
synchronized to perform a shuffle. The global order of shuffles can be different in
different rounds.

5.1 Data Structure

In CYCLON, each entry of a local view consists of two pieces of information-the
address and the age of the node. In this work we extend the information of the entry
to have information on visited nodes, where a “visited” node refers to a list of nodes
in whose local views a node P has resided. The size of the visited list is determined
dynamically by the average shortest path length of the system. The average shortest
path length is that of the corresponding random network. A visited list is created and
maintained as follows. Assume a node Q has a pointer to another node P in its local
view. At a shuffle round, the pointer to P is shuffled to another node R. The node R
receives a new entry P from Q. The new entry comes with a pointer to P and another
pointer to Q where the pointer to P comes from. From the node R’s perspective, Q is
the “just visited” node by P. At a later shuffle round, the node R shuffles the entry of
P to another node S. The node S receives a new entry from the node R. From the
node S’s perspective, P has visited Q and R in sequence. Therefore, the visited list of
P increases by one whenever it is shuffled to another node up to an upper bound,
which is the average shortest path length of the network. When the visited list
overflows, the oldest node is discarded. The oldest node is the node which has been in
the list for the longest time. As a result, an entry of the local cache has the node
address (ID), age, and a visited list. In addition, each node maintains a buffer which
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contains s network samplings, where s means the number of local views captured in
the buffer. For example, in case of s 30, each node allocates the buffer space proportional
to 30 × log(N) × the size of a single entry of the local view. Thus, in terms of memory
overhead, DIMPLE-II requires k times larger local view space and additional buffer
space than CYCLON, where k is determined by the average shortest path length.
Because the size of local views is O(log(N)), however, this linear increase of space
overhead should not cause a big concern. For example, in case of local view size 2 ×
log(N), the average shortest path length k is less than 10, up to the network size (N)
one million. This implies that the local view size is practically large enough to reach
any other peer node within 10 hops in a network of one million nodes. The averaged
shortest path length increases with the network size very slowly. The space overhead
of DIMPLE-II is highly scalable with the network size, therefore. 

5.2 DIMPLE-II Shuffle

DIMPLE-II Shuffle is shown in Algorithms 4, 5 and 6. There are two differences
between this shuffling mechanism and that of CYCLON. One is the shuffle length
and the other is the way to choose the shuffle partner. As shown in the algorithm, a
node P selects the oldest node Q from its local view, and then tries shuffle with the
node Q. This single-entry shuffle is repeated until half of the local view are shuffled.
In comparison to CYCLON, DIMPLE-II uses a single-entry shuffle multiple times
while CYCLON performs a single shuffle with multiple entries. As a result, DIMPLE-
II challenges the oldest nodes, half of the local view in size, from its local view at each
cycle. Note that since DIMPLE-II shuffle always chooses the current oldest node, the
system challenges older nodes much more frequently than CYCLON does. The
motivation of DIMPLE-II Shuffle is to detect dangling pointers significantly faster
than CYCLON does. Ideally each entry of the out-degree2 should point to a node
that is functional and still connected. While this is true for a static system, this claim
is not valid when network churn is introduced. In our experiments, CYCLON
produces a relatively poor quality of out-degrees with churn in that a large portion of
the out-degree is actually pointing to dead nodes (which have left the system already
but have not been detected yet as such). In an extreme case with high churn, there
was a node whose out-degree did not point to any live (still existing) node in
CYCLON. While a small number of dead node pointers in the local view may not
degrade the quality of epidemic protocols significantly, we found in our experiments
that the number of dead node pointers becomes larger with increasing churn rates.
By executing DIMPLE-II Shuffle either a node Q will have an opportunity to fill an
empty slot in the view (which may have been caused by either detecting a dead node
or a large variance of the in-degree distribution) or a node P will challenge a random
node to see if the node is alive. 

In fact, DIMPLE-II Shuffle not only reinforces the quality of the out-degree but so
for the in-degree also. Because the out-degree is a collection of pointers, reinforcing
the pointers will result in a smaller variance of the in-degree by filling empty slots in
the view and by removing dangling pointers. A large variance of the in-degree will

2The out-degree of node A is the number of pointers held by node A, pointing to other nodes.
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degrade the quality of epidemic protocols because en epidemic protocol requires a

local view which is uniformly random. As seen in the evaluation section, DIMPLE-II

Shuffle indeed contributes to reinforcing the quality of both in and out-degrees.

One concern with DIMPLE-II Shuffle is the communication overhead and the

amount of time to perform multiple single-entry shuffles within a single protocol

round. Currently, DIMPLE-II Shuffle takes longer than that of the CYCLON shuffling

mechanism because DIMPLE-II Shuffle repeats a single-entry shuffle multiple times

in simulation. Although we conjecture that performing a single-entry shuffle many

times in sequence and performing the same job in parallel would produce about the

same results, finding the subtle difference is left as part of the future work. In practice,

a node would perform multiple single-entry shuffles in parallel not in sequence because

it would not need to be in sequence. The current method of sequential shuffle in

DIMPLE-II is simulation specific. Thus, the communication overhead of DIMPLE-II

would rather be in the number of messages to maintain the shuffle infrastructure in

each cycle, not in the communication time. The problem then becomes the number

of messages DIMPLE-II can process within an interval in parallel. In turn, this leads

to the question; what would be the time constraint on the length of the epidemic

protocol round? If the time interval for one epidemic cycle needs to be very short, for

example, a few tens of mili-seconds, DIMPLE-II would be more difficult to meet the

time requirement. For cases where the protocol round is in the range of seconds,

however, this will not be a concern. In this paper, the time constraint issue is not

further investigated as this would be an implementation problem. Instead, this paper

is focused on the scientific understanding of the proposed distributed algorithms.

Investigation on the practical time interval of the protocol round for implementation

is left as future work.

 Algorithm 4: DIMPLE-II Shuffle

1. Increase the age of all nodes in the local view by one.

2. Repeat DIMPLE-II Shuffle Initiate (Algorithm 5) as many as half of the local view times.

 Algorithm 5: DIMPLE-II Shuffle Initiate

1. Select the oldest node Q in P’s local view in terms of the age.

2. Set Q’s age to zero and send P’s address to Q.

3. When P receives a response from Q, P adds the node information to an empty slot if there
is, or replaces the entry of Q with the received information of another node pointer.

4. If P receives no response from Q, P removes the entry of Q.

 Algorithm 6: DIMPLE-II Shuffle Response

1. Q adds P’s information to Q’s local view with age 0 if there is an empty slot. Q then
returns a node which is randomly selected from its local view (before P is added) to P.

2. If Q’s local view is full, Q randomly selects a node and replaces it with P’s information. Q
then returns the replaced node information to P.
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5.3 DIMPLE-II Join

The DIMPLE-II Join mechanism is shown in Algorithm 7. Compared to the
corresponding mechanism in CYCLON, DIMPLE-II Join is significantly simpler. A
new node P requires only one message exchange with another node Q and DIMPLE-
II Shuffle to create its own new local view. This simple procedure eliminates or
substantially shortens the time delay required in CYCLON Join, where a number of
parallel random walks are launched to create a new local view for P to use. This
dramatic reduction of the time delay is achieved by extending the information of
each entry of a local view. Two questions may arise with this procedure. One is
whether a global randomness is preserved by creating a new local view out of an
introducer’s local view. The other is whether the newly created local view contains
sufficiently recent (fresh) and few or no dangling pointers. As can be seen in the
evaluation section, however, the global randomness of the system before and after
this operation is still the same. Intuitively, this procedure has almost the same
effectiveness of the random walks of CYCLON Join. The difference is when the
random walk takes place. In DIMPLE-II Join it happens k cycles before the join event
by utilizing the visited list while it takes the action k cycles after the join event in
CYCLON Join, by newly launching random walks where k is the average path length.
The time delay to handle a new join event in DIMPLE-II is therefore one message
exchange between the joining node and the introducer. The upper bound of the time
delay incured by a join event in CYCLON can be very large because a random walk
should take at least the average shortest path length number of hops, and any one
hop walk could take a long response time to timeout when the next hop has already
left the system (a dangling pointer). There is a chance that the newly created local
view may have some dangling pointers, but this probability is quite small.

5.4 DIMPLE-II Leave

DIMPLE-II uses a timeout event to detect a dead node. Essentially it is the same
method as used in CYCLON. The difference, however, is in how frequently the system
tries to detect a dead node. In CYCLON each node initiates the shuffling mechanism
exactly once in each cycle. Therefore, regardless of the in-degree of a dead node, the
system requires at worst c number of cycles to purge the dangling pointer, where c is
the size of the local view. In DIMPLE-II, the worst case detection time is bounded by
half of the local view because the new single-entry shuffle is repeated for half of the

 Algorithm 7: DIMPLE-II Join

1. P contacts a randomly chosen node Q, an introducer.

2. Upon receiving the P’s join request, Q builds a local view by collecting the oldest node of
the visited list of each entry of Q’s local view.

3. Q sends this new local view to P.

4. P initiates DIMPLE-II Shuffle Initiate (Algorithm 5).

5. P starts using this local view as its own local view.
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local view.

5.5 Network Size Estimation

The network size estimation of DIMPLE-II (Algorithm 8) is directly from the
capturerecapture method described in the previous section. The difference is in the
way in which network samplings are done. Following the original concept of two
samplings, DIMPLE-II uses two buffers; one for capture and the other for recapture.
More specifically, however, the samplings are done over many cycles not at one point
in time. Moreover, as seen in the algorithm below, DIMPLE-II performs capture and
recapture at the same time. Although this may appear to violate the two assumptions
of the capture-recapture method (two independent random samplings), DIMPLE-II
Shuffle in fact supports the two assumptions. First, the information in the local view
is randomly collected from the entire membership. Second, given that each entry in
the local view is collected independently and randomly, there is no need to give a
time interval between the two samplings. Essentially, utilizing the shuffle infrastructure
eliminates the cumbersome and costly procedure of network sampling. As seen in the
next section, this estimation method follows the actual network size very closely.

6. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DIMPLE-II by simulation. As can be
seen in the following figures, DIMPLE-II converges to a steady state significantly
faster than CYCLON does due to the use of the single-entry shuffles and the visited
list under reasonably high network churn. In addition, the resultant network (when
in a steady state after the churn subsides) shows an even lower average shortest path
length and a slightly higher clustering coefficient [Sun et al. 2007]. Overall, DIMPLE-
II embraces network churn smoothly, enhances the global randomness achieved by
CYCLON, and estimates dynamic network sizes accurately for epidemic protocol
purposes.

Metrics. Two groups of metrics are used in this paper: one is to show the performance
of DIMPLE-II in comparison to CYCLON, and the other is to show the performance
of network size estimation. The former metrics will show how fast DIMPLE-II handles
join and leave events, and consequent impact on the quality of in- and out-degrees

 Algorithm 8: Network Size Estimation

1. Initially, each node creates two sampling buffers S
c
 and S

rc
, where S

c
 is the buffer for the

first sampling (capture), and S
rc
 is the buffer for the second sampling (recapture).

2. At every cycle, each node records (adds) half of its local view, to S
c
 and the other half to

S
rc
. The first and the second halves are chosen randomly.

3. The two buffers are used in a FIFO fashion. The oldest sampling is dropped when the
buffer overflows. Step 2 is repeated continuously.

4. The current network size N is estimated as follows: N = (N1 × N2)/N11, where N1 is the size
of S

c
 and N2 is the size of S

rc
, N11 is the number of duplicates that appear both in N1 and

N2.
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and on the global randomness already achieved by CYCLON. As can be seen in
Algorithm 2 and 7, CYCLON has to launch random walk processes as many as the
number of entries of the local view to create a new local view for the joining node. In
contrast, DIMPLE-II gets a new local view at the cost of one message exchange with
the introducer. Each random walk in CYCLON has to visit at least a lower bound
number of hops, which is the average shortest path length of the system. At each
hop, however, in CYCLON, a random walk can try to reach a node which is no longer
in the system by using a dangling pointer. To resume the troubled random walk, the
intermediate node has to timeout such a waiting. The timeout value in the application
process can be very long compared to the shuffle cycle. The chances of using a
dangling pointer in CYCLON is fairly high as can be seen in the following Figures on
the node degree qualities. CYCLON has to wait to collect a reply from each random
walk. The join procedure completes upon receiving all the replies. Then, the new
node is recognized by the system as a new node by participating the regular shuffle
operation. The entire time to collect all the replies to create a new local view, therefore,
is necessarily much longer than DIMPLE-II. The quality of the node degree is in fact
the crucial factor determining the quality of epidemic protocols. The latter metrics
will show the proximity of the estimates to the actual network size which changes
fast. Two systems are used for the first metrics: one system uses DIMPLE-II to provide
dynamic membership service for a P2P system while the other uses CYCLON. Some
rates of network churn are used to measure the relative time required for the two
systems to converge to a steady state.

Simulation Setting. Throughout the simulation, we use our own cycle-based simulator
written in C++. Variable network sizes up to 100,000 nodes are used to measure the
metrics. The network size estimation algorithms are evaluated separately from the
first metrics. For the first metrics, in one simulation run, the network size does not
change in order to decouple the network size impact from the final results. This
means that whenever a node leaves the system another node with another globally
unique ID is added to the system to maintain the same network size. When a new
node is added it contacts an introducer, i.e. a randomly chosen node from the entire
system. The network churn is implemented as a Weibull distribution {  = 21.3, k =
0.34} of the node lifetime with an average value in cycles [Stutzbach and Rejaie
2004]. Whenever a new node is added, the new node is given a lifetime (in number of
cycles). The lifetime of each node is decremented by one at each cycle. For example,
when the shuffle cycle is 1 second and the average lifetime is 180 cycles, the time of
the average lifetime would be about three minutes. The selection of this lifetime is
based on previous work [Rhea et al. 2004] (see Table I). From this it can be seen that
the average lifetime of three minutes is comparable to that of the two real systems-
FastTrack and KaZaA.

When the lifetime reaches 0 (zero) the node silently leaves the system without
generating any notification. During its lifetime a node always conforms to DIMPLEII
and never fails. A dead node is detected when another node tries to contact it to
shuffle with. The timer resolution to detect a dead node may be large in this simulation
because the timeout value is given in the number of cycles. Although this resolution
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would not be realistic for systems where a fine resolution (e.g. a few milliseconds) is
required, it is still fair to compare the two systems in a highly dynamic situation.
Initially, the two systems are completely randomized, after which the network churn
begins. The simulation was run on a set of different desk top computers using Linux
OS. The final results are represented independently of the wall clock time.

6.1 Convergence: Churn Processing Time

In order to demonstrate the improvement on the dynamic membership made by
DIMPLE-II, the churn processing time of the two systems is compared here. The
churn processing time has two components: one is the time required for the system to
recognize a newly added node, and the other is the time to purge a dangling pointer
out of the local view. In this section, two metrics are introduced for the comparison
study: join time and leave time. The former is defined as the time elapsed from when
a new node contacts an introducer to the time when the new node creates a complete
local view of its own. The latter is defined as the time elapsed between when a node
leaves the system and when the system completely purges the dangling pointer from
all local views in the system.

A comparison of the two join times is trivial. The join time for DIMPLE-II is one
cycle. This is obvious from the DIMPLE-II Join (Algorithm 7) procedure in the
previous section. The CYCLON system join time is bounded by the average path
length for message forwarding. Although the exact time for the CYCLON join depends
on each nodeΓfis workload at runtime, the join time of the CYCLON system can be
equated to the number of forwards required in the join procedure. The join time of
CYCLON becomes even longer when a timeout due to a dangling pointer at an
intermediate node is taken into account.

The leave time measurements are shown in Figure 1. In this experiment, an
increasing system size from 1,000 to 100,000 nodes was utilized. The average node
lifetime was 180 cycles, the local view size was 2 × log(N), and the shuffle length
was log(N) for both systems. While it is expected that the DIMPLE-II system
removes the dangling pointers sooner than the CYCLON system, it is interesting to
note that the leave time of CYCLON increases at a much higher rate than that of
DIMPLE-II, i.e. the speed gain becomes larger as the network size increases. The
reason it looks like a step function is that the local view size increases step-wise by 2
× log(N), where N is the network size. This increase results in more cycles to purge
dangling pointers.

Table I. From Handling Churn in a DHT.

First Author Systems Observed Session Time

Saroiu Gnutella, Napster 50% ≤ 60min

Chu Gnutella, Napster 31% ≤ 10min

Sen FastTrack 50% ≤ 1min

Bhagwan Overnet 50% ≤ 60min

Gummadi KaZaA 50% ≤ 2.4min
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6.2 Convergence Under Churn

The convergence of the CYCLON system is well studied in [Voulgaris et al. 2005].

According to the work, the CYCLON system converges to a steady state where the

system shows the same properties as the corresponding random network even after a

high percentage of node failures. In this section, both systems are investigated to see

if they converge under network churn. In this experiment, the average node lifetime

was 180 cycles, and the network size was 2,000. Both systems were run for 20,000

cycles to give enough time to observe convergent behavior. The metric used to measure

this behavior was the standard deviation of the average shortest path length.

Figure 2 and Figure 3 show the standard deviation of the in- and out-degrees of

both systems respectively. As can be seen, both systems converge to a steady state

with the churn rate that was used throughout the experiments. Secondly, the DIMPLE-

II system shows lower values. While it is very likely that lower values will support

Figure 1. Cycles to remove dangling pointers.

Figure 2. Node degree standard deviation of CYCLON with 2000 nodes.
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higher quality of epidemic protocols, further research is required to accurately measure
the resultant quality of information dissemination and is beyond the scope of this
paper. The rest of the figures in this paper show data obtained from a converged state.

6.3 Impact on Randomness: Degree Distribution

The quality of node degree distributions is critical to epidemic protocols because they
determine the overall quality of information dissemination. First, in dynamic systems,
a local view can have dangling pointers at any moment which degrade the quality of
epidemic protocols eventually. The second issue is load balancing among nodes.
Ideally, each node should have the same in-degrees over time because the critical
parameter of epidemic protocols log(N) assumes a random selection. Different in-
degrees would bias the selection process of log(N) in an undesirable way.

The quality of the node degree distribution, therefore, is measured by the two
metrics in this section: uniformness and freshness. Uniformness refers to the distribution
of the in-degree sizes considering only the live nodes. Freshness meanwhile refers to
the distribution of out-degree sizes, again considering only the live nodes. Effectively,
the two metrics are concerned about the same quality−i.e. node degree distribution.
However, given that the size of the in-degree is not fixed at each node, measuring the
number of pointers from live nodes is an effective measurement of the corresponding
quality. On the other hand, because the size of the out-degree is uniformly fixed to
some value at each node, measuring the percentage of dangling pointers is the
preferred metric for observing the quality of the out-degrees. 

Figure 4 shows the in-degree distribution of the two systems from an experiment
where both systems had 100,000 nodes with an average lifetime of 180 cycles. The
local view size was fixed to 2 × log(N), and the shuffle length was log(N) for both
systems. As can be seen, the CYCLON system has a wider distribution than DIMPLE-
II. Accordingly, the peak value of CYCLON is lower. Interestingly, the average values
of the two systems are different. This is because CYCLON has a larger number of

Figure 3. Node degree standard deviation of DIMPLE-II with 2000 nodes.
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pointers from dead nodes than DIMPLE-II. Consequently, the average value of
CYCLON is shifted down from the value of 2 × log(N), which is 34 in this particular
case. On the other hand, DIMPLE-II maintains an average value very close to log(N)
because it can detect a dangling pointer much faster. Overall, this figure clearly
demonstrates that DIMPLE-II maintains a higher quality of in-degrees under high
churn.

Figure 5 shows the out-degree distribution of the two systems respectively from
the same experiment. Although the size of the out-degree is uniformly fixed to 2 ×
log(N) at each node, CYCLON shows a severe distortion of the nominal size when
pointers are measured only from live nodes. This is, again, because the local views of
nodes in the CYCLON system have a higher percentage of dangling pointers at
runtime under churn. DIMPLE-II also contains dangling pointers, but due to the new
shuffle procedure, the dangling pointers are eliminated from the local views in a more
timely manner. This enables DIMPLE-II to maintain a majority of the local views at

Figure 4. In-degree distribution in converged 100,000-node overlay.

Figure 5. Out-degree distribution in converged 100,000-node overlay.
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the original fixed value of log(N). Taking these figures into account, DIMPLE-II
demonstrates its capability to support a higher quality of node degree distributions
even under high churn.

Average Shortest Path Length and Clustering Coefficient. The average shortest
path length is defined as the averaged shortest path length between all possible pairs
of nodes of the network. The clustering coefficient is defined as the ratio of the existing
links among a node’s neighbors over the total number of possible links among them.
This metric is typically used to understand what percentage of the neighbors of a
node are also neighbors among themselves. The average clustering coefficient is then
the averaged value taking all the nodes in the system into account. In this experiment,
lower values are desirable because higher values would result in both higher chances
of network partitioning and poor information dissemination. Although not shown in
this paper, CYCLON shows lower values than those of the corresponding random
network. Further, the DIMPLE-II system slightly improves these two metrics from
the CYCLON system. The details of these results can be found in the previous work
(the conference version of this paper) [Sun et al. 2007].

6.4 Performance Gain with Increasing Churn

In this subsection, the standard deviation of the out-degrees is shown as a metric to
show the performance difference with different churn rates. Figure 6 shows the metric
for the out-degrees given a system size of 5,000 nodes. Intuitively, the performance
difference between the two systems should increase with increasing churn rates and
vice versa. As can be seen for average node lifetimes greater than 300 cycles, the out-
degree of CYCLON is significantly affected by the network churn while that of
DIMPLE-II is not. A similar trend can be found in the in-degrees too (not shown in
this paper). Since an average lifetime of about 200 cycles is realistic, the performance
gain that DIMPLE-II provides is justified in such situations with churn.

Figure 6. Out-degree standard deviation in converged 5000 node overlay with different mean

node lifetimes.
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6.5 Network Size Estimation

To measure the effectiveness of the proposed network size estimation, a separate set
of experiments were performed. The effectiveness are measured in terms of the
following three metrics: the average difference between estimates and actual sizes,
the standard deviation of the estimation, and the convergence speed of the estimation
to an abrupt change of network size.

The simulation results in this section are from DIMPLE-II only (Algorithm 8).
The original capture recapture algorithm (Algorithm 3) is not directly applicable to
the class of open systems incuding P2P systems, which have the same common
problem, open membership or churn. In order to use the original method, the system
should be static in membership. Comparsion of DIMPLE-II and the original method
against dynamic open systems would technically be unfair. Comparison study of
DIMPLE-II and other methods for dynamic open systems such as [Massoulie et al.
2006] are left as future work. The simulation settings for these experiments are the
same as before (local view size, shuffle length, churn model, node lifetime) except the
network size estimation. Several network sampling sizes were tried for the capture
and recapture algorithm. For the given network sizes from 1,000 to about 60,000
nodes, however, the sampling size 30 produced good results. Smaller samplings
resulted in less accuracy. More sampling sizes did not improve the results much. As a
result, 30 samplings were used for the rest of experiments. As can be seen in Step 2 in
Algorithm 8, one samping consists of log(N) individual entries of the local view. The
number of nodes in one sampling is therefore log(N) × the number of nodes in a single
entry of the local view. The number of nodes in a single entry in turn is upper
bounded by the size of the visited list plus one. Since the visited list is upper bounded
by the average shortest path length of the system, the number of nodes in 30
samplings is bounded by 30 × log(N)× (average shortest path length + 1). The value
of N1 × N2 in Algorithm 8 becomes the square of this value. 

Two networking scenarios were used as follows. In the first scenario, in the first
half of the simulation, a small network size of 1,000 nodes started to grow to about
60,000 nodes. Then, in the second half, it shrank back to 1,000 nodes (Figure 7). This
is to represent the general case of fluctuating network size. The network size change
is implemented as asymmetric churn scenarios, where a leaving node is replaced by
two new nodes for the first half of the simulation until the network size reaches
60,000 nodes, and in the second half, two node leaves are replaced by only one new
node until the size goes down to the original 1,000 nodes. In the second scenario, a
network of 32,000 nodes is given and stabilized first. Then half of the nodes (16,000)
are removed at one time (Figure 8). This is to measure the convergence speed of the
capture recapture algorithm to a large change of network size, for example, due to a
large scale network failure.

Figure 7 shows the results of the network size estimation with fluctuating network
size. In order to obtain an average, the simulation was repeated twenty times, in
which a random node was selected and estimation was performed based on the
samplings collected by that node. As seen in the figure, the average estimation
follows the actual size closely. The average is slightly behind the actual as it is a little
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lower in the first half of the simulation and a little higher in the second half. The
vertical bars represent the full scale of the deviation of the estimation from the actual
size by twenty simulation runs.

Two questions may arise with these results. One is whether the estimation is good
enough for epidemic protocols and the other is whether the network changes fast
enough to reflect most realistic cases. In terms of usability for epidemic protocols, the
results seem practically good enough. Because the most fundamental parameter of
epidemic protocols is log(N), even the most distant estimates of N in the figure in fact
produce the same value of log(N) as the actual N does once log(N) is taken into
account. This accuracy is valid as long as epidemic protocols are concerned. Whether
this accuracy is extend-able to other general network management purposes is open,
however. This important question needs to be answered in follow-up work in
comparison with other popular methods. To the best of our knowledge, this is the
first attempt to utilize a shuffle infrastructure to estimate the network size. In the

Figure 7. Network size estimation: estimates vs. actuals.

Figure 8. Network size estimation - node failures.
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context of the second question, the network seems to change fast enough because the
churn scenario uses 180 cycles as the average node lifetime. It took only 700 cycles for
the initial size of 1,000 nodes to reach 60,000 nodes. If one cycle is equivalent to 1
second, it corresponds to 700 seconds, or 11.5 minutes only. This is because the
average lifetime was taken based on the real measurement study [Rhea et al. 2004].

In order to see the convergence speed of the algorithm in an extreme situation, a
large scale network failure was experimented (Figure 8). In this experiment, as seen
in the figure, half of the nodes (16,000) are removed at the cycle 500. Then the
estimate goes down toward the new network size 16,000. However, it takes a little
more than 50 cycles to fully recognize the new size. Again, if one cycle is equivalent
to 1 second, the algorithm takes less than a minute to learn the large scale network
failure. Considering these experiments, the capture and recapture algorithm can be
said to follow the actual size fairly quickly.

In order to understand the relative difference of the estimation from the mean
estimation size, Figure 9 shows standard deviation of the estimation obtained from
the same experiments above. The metric, as seen in the figure, goes up as the
network size grows, and goes down as the size goes down. Although the distant
estimates of N in Figure 7 produce the same value of log(N) as the actual N does, this
trend of the standard deviation being proportional to the actual network size does
not seem desirable. This means that, in general cases, where more accurate estimation
is required, the capture recapture algorithm may need to improve to be applied to
other protocol-independent network management applications. Overall, DIMPLE-II
is an effective dynamic membership protocol supporting randomness and network
size estimation for epidemic protocols to be used in open systems such as P2P networks.

7. CONCLUSIONS

This paper proposes a methodology which enhances the existing shuffle algorithms,
and estimates the network size fairly accurately for dynamic open systems such as
P2P systems. The proposed methodology improves the quality of the node degrees

Figure 9. Network size estimation: standard deviation.
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by using a repeated single-entry shuffle, and estimates the network size by utilizing

the shuffle infrastructure. At each cycle, the local view is considered as part of network

sampling. As shown in the simulation, the proposal helps process frequent join and

leave activities efficiently and effectively, thus enhancing the dynamic membership

service for large-scale systems. In addition, the estimates follow the actual network

sizes closely. As a result, epidemic protocols will be able to maintain a high quality of

information dissemination even with high network churn and dynamic network sizes.

Also, these results will help provide a methodology to achieve self-organizability of

P2P systems.

This paper solicits future work in two directions: reliable broadcasting in open

dynamic systems such as P2P systems, and improvement on the proposed

capturerecapture based network size estimation. Many existing work, using epidemic

protocols, addressing reliable broadcasting, assume that the network size is known.

To improve the understanding of the epidemic behavior as a means to achieve

reliable broadcasting, the network size should be estimated dynamically. Depending

on the quality of estimates, the effectiveness of information dissemination will vary.

On the other hand, the evaluation of network size estimation given in this paper can

be considered preliminary. Although it strongly suggests that the shuffle infrastructure

can be easily utilized for network size estimation, possible performance optimization

and comparison study with other existing methods still remain as future work.
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